Search results for: suction caisson foundation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1400

Search results for: suction caisson foundation

1310 1-g Shake Table Tests to Study the Impact of PGA on Foundation Settlement in Liquefiable Soil

Authors: Md. Kausar Alam, Mohammad Yazdi, Peiman Zogh, Ramin Motamed

Abstract:

The liquefaction-induced ground settlement has caused severe damage to structures in the past decades. However, the amount of building settlement caused by liquefaction is directly proportional to the intensity of the ground shaking. To reduce this soil liquefaction effect, it is essential to examine the influence of peak ground acceleration (PGA). Unfortunately, limited studies have been carried out on this issue. In this study, a series of moderate scale 1g shake table experiments were conducted at the University of Nevada Reno to evaluate the influence of PGA with the same duration in liquefiable soil layers. The model is prepared based on a large-scale shake table with a scaling factor of N = 5, which has been conducted at the University of California, San Diego. The model ground has three soil layers with relative densities of 50% for crust, 30% for liquefiable, and 90% for dense layer, respectively. In addition, a shallow foundation is seated over an unsaturated crust layer. After preparing the model, the input motions having various peak ground accelerations (i.e., 0.16g, 0.25g, and 0.37g) for the same duration (10 sec) were applied. Based on the experimental results, when the PGA increased from 0.16g to 0.37g, the foundation increased from 20 mm to 100 mm. In addition, the expected foundation settlement based on the scaling factor was 25 mm, while the actual settlement for PGA 0.25g for 10 seconds was 50 mm.

Keywords: foundation settlement, liquefaction, peak ground acceleration, shake table test

Procedia PDF Downloads 49
1309 Behavior of the Foundation of Bridge Reinforced by Rigid and Flexible Inclusions

Authors: T. Karech A. Noui, T. Bouzid

Abstract:

This article presents a comparative study by numerical analysis of the behavior of reinforcements of clayey soils by flexible columns (stone columns) and rigid columns (piles). The numerical simulation was carried out in 3D for an assembly of foundation, columns and a pile of a bridge. Particular attention has been paid to take into account the installation of the columns. Indeed, in practice, due to the compaction of the column, the soil around it sustains a lateral expansion and the horizontal stresses are increased. This lateral expansion of the column can be simulated numerically. This work represents a comparative study of the interaction between the soil on one side, and the two types of reinforcement on the other side, and their influence on the behavior of the soil and of the pile of a bridge.

Keywords: piles, stone columns, interaction, foundation, settlement, consolidation

Procedia PDF Downloads 244
1308 Energy Efficient Construction and the Seismic Resistance of Passive Houses

Authors: Vojko Kilar, Boris Azinović, David Koren

Abstract:

Recently, an increasing trend of passive and low-energy buildings transferring form non earthquake-prone to earthquake-prone regions has thrown out the question about the seismic safety of such buildings. The paper describes the most commonly used thermal insulating materials and the special details, which could be critical from the point of view of earthquake resistance. The most critical appeared to be the cases of buildings founded on the RC foundation slab lying on a thermal insulation (TI) layer made of extruded polystyrene (XPS). It was pointed out that in such cases the seismic response of such buildings might differ to response of their fixed based counterparts. The main parameters that need special designers’ attention are: the building’s lateral top displacement, the ductility demand of the superstructure, the foundation friction coefficient demand, the maximum compressive stress in the TI layer and the percentage of the uplifted foundation. The analyses have shown that the potentially negative influences of inserting the TI under the foundation slab could be expected only for slender high-rise buildings subjected to severe earthquakes. Oppositely it was demonstrated for the foundation friction coefficient demand which could exceed the capacity value yet in the case of low-rise buildings subjected to moderate earthquakes. Some suggestions to prevent the horizontal shifts are also given.

Keywords: earthquake response, extruded polystyrene (XPS), low-energy buildings, foundations on thermal insulation layer

Procedia PDF Downloads 225
1307 Nonlinear Analysis of Shear Deformable Deep Beam Resting on Nonlinear Two-Parameter Random Soil

Authors: M. Seguini, D. Nedjar

Abstract:

In this paper, the nonlinear analysis of Timoshenko beam undergoing moderate large deflections and resting on nonlinear two-parameter random foundation is presented, taking into account the effects of shear deformation, beam’s properties variation and the spatial variability of soil characteristics. The finite element probabilistic analysis has been performed by using Timoshenko beam theory with the Von Kàrmàn nonlinear strain-displacement relationships combined to Vanmarcke theory and Monte Carlo simulations, which is implemented in a Matlab program. Numerical examples of the newly developed model is conducted to confirm the efficiency and accuracy of this later and the importance of accounting for the foundation second parameter (Winkler-Pasternak). Thus, the results obtained from the developed model are presented and compared with those available in the literature to examine how the consideration of the shear and spatial variability of soil’s characteristics affects the response of the system.

Keywords: nonlinear analysis, soil-structure interaction, large deflection, Timoshenko beam, Euler-Bernoulli beam, Winkler foundation, Pasternak foundation, spatial variability

Procedia PDF Downloads 297
1306 Free Convection from a Perforated Spinning Cone with Heat Generation, Temperature-Dependent Viscosity and Partial Slip

Authors: Gilbert Makanda

Abstract:

The problem of free convection from a perforated spinning cone with viscous dissipation, temperature-dependent viscosity, and partial slip was studied. The boundary layer velocity and temperature profiles were numerically computed for different values of the spin, viscosity variation, inertia drag force, Eckert, suction/blowing parameters. The partial differential equations were transformed into a system of ordinary differential equations which were solved using the fourth-order Runge-Kutta method. This paper considered the effect of partial slip and spin parameters on the swirling velocity profiles which are rarely reported in the literature. The results obtained by this method was compared to those in the literature and found to be in agreement. Increasing the viscosity variation parameter, spin, partial slip, Eckert number, Darcian drag force parameters reduce swirling velocity profiles.

Keywords: free convection, suction/injection, partial slip, viscous dissipation

Procedia PDF Downloads 223
1305 Music for Peace, a Model for Socialization

Authors: Mina Fenercioglu

Abstract:

This study discusses a Turkish music education model similar to El Sistema. The Music for Peace (Baris icin Muzik) program, founded in 2005 by an idealist humanitarian in Istanbul, started as a pilot project with accordion and then with flute in ensembles at the Ulubatlı Hasan Primary School where mostly underprivileged children attend. The program gives complimentary music lessons particularly to deprived children, who at the beginning were prone to crime. With music education, the attitudes of the children turn to a positive aspect. The aim of this initiative provides social and cultural awareness, which serves the same mission as the world known El Sistema. In 2009, the Music for Peace project received Deutsche Bank Urban Age Award, which is a prize presented to enterprises that improve the quality of life in urban environment. Since 2010, the Music for Peace continues the symphonic music education at its own place. In 2011, Music for Peace gained foundation status, and started to accept donations as musical instruments for children who attend the courses. On July 2013, IKSV (Istanbul Culture and Arts Foundation) became the institutional partner of Music for Peace Foundation and in June 2014, the foundation signed up to join El Sistema’s global program. Now in 2015, the foundation has three ensembles: the Music for Peace Orchestra, which consists of two orchestras practicing and performing in different levels; the Music for Peace Chorus, which has joined Istanbul International Polyphonic Choruses Festival; and the recently established Music for Peace Brass Ensemble.

Keywords: El Sistema, music education, music for peace, socialization

Procedia PDF Downloads 388
1304 The Effect of Geogrid Reinforcement Pre-Stressing on the Performance of Sand Bed Supporting a Strip Foundation

Authors: Ahmed M. Eltohamy

Abstract:

In this paper, an experimental and numerical study was adopted to investigate the effect geogrid soil reinforcement pre-stressing on the pressure settlement relation of sand bed supporting a strip foundation. The studied parameters include foundation depth and pre-stress ratio for the cases of one and two pre-stressed reinforcement layers. The study reflected that pre-stressing of soil reinforcement resulted in a marked enhancement in reinforced bed soil stiffness compared to the reinforced soil without pre-stress. The best benefit of pre-stressing reinforcement was obtained as the overburden pressure and pre-straining ratio increase. Pre-stressing of double reinforcement topmost layers results in further enhancement of stress strain relation of bed soil.

Keywords: geogrid reinforcement, prestress, strip footing, bearing capacity

Procedia PDF Downloads 273
1303 Structural-Geotechnical Effects of the Foundation of a Medium-Height Structure

Authors: Valentina Rodas, Luis Almache

Abstract:

The interaction effects between the existing soil and the substructure of a 5-story building with an underground one were evaluated in such a way that the structural-geotechnical concepts were validated through the method of impedance factors with a program based on the method of the finite elements. The continuous wall-type foundation had a constant thickness and followed inclined and orthogonal directions, while the ground had homogeneous and medium-type characteristics. The soil considered was type C according to the Ecuadorian Construction Standard (NEC) and the corresponding foundation comprised a depth of 4.00 meters and a basement wall thickness of 40 centimeters. This project is part of a mid-rise building in the city of Azogues (Ecuador). The hypotheses raised responded to the objectives in such a way that the model implemented with springs had a variation with respect to the embedded base, obtaining conservative results.

Keywords: interaction, soil, substructure, springs, effects, modeling , embedment

Procedia PDF Downloads 192
1302 Comparison of High Speed Railway Bride Foundation Design

Authors: Hussein Yousif Aziz

Abstract:

This paper discussed the design and analysis of bridge foundation subjected to load of train with three codes, namely AASHTO code, British Standard BS Code 8004 (1986), and Chinese code (TB10002.5-2005).The study focused on the design and analysis of bridge’s foundation manually with the three codes and found which code is better for design and controls the problem of high settlement due to the applied loads. The results showed the Chinese codes are costly that the number of reinforcement bars in the pile cap and piles is more than those with AASHTO code and BS code with the same dimensions. Settlement of the bridge was calculated depending on the data collected from the project site. The vertical ultimate bearing capacity of single pile for three codes is also discussed. Other analyses by using the two-dimensional Plaxis program and other programs like SAP2000 14, PROKON many parameters are calculated. The maximum values of the vertical displacement are close to the calculated ones. The results indicate that the AASHTO code is economics and safer in the bearing capacity of single pile. The purpose of this project is to study out the pier on the basis of the design of the pile foundation. There is a 32m simply supported beam of box section on top of the structure. The pier of bridge is round-type. The main component of the design is to calculate pile foundation and the settlement. According to the related data, we choose 1.0m in diameter bored pile of 48m. The pile is laid out in the rectangular pile cap. The dimension of the cap is 12m 9 m. Because of the interaction factors of pile groups, the load-bearing capacity of simple pile must be checked, the punching resistance of pile cap, the shearing strength of pile cap, and the part in bending of pile cap, all of them are very important to the structure stability. Also, checking soft sub-bearing capacity is necessary under the pile foundation. This project provides a deeper analysis and comparison about pile foundation design schemes. Firstly, here are brief instructions of the construction situation about the Bridge. With the actual construction geological features and the upper load on the Bridge, this paper analyzes the bearing capacity and settlement of single pile. In the paper the Equivalent Pier Method is used to calculate and analyze settlements of the piles.

Keywords: pile foundation, settlement, bearing capacity, civil engineering

Procedia PDF Downloads 388
1301 Flow-Induced Vibration Marine Current Energy Harvesting Using a Symmetrical Balanced Pair of Pivoted Cylinders

Authors: Brad Stappenbelt

Abstract:

The phenomenon of vortex-induced vibration (VIV) for elastically restrained cylindrical structures in cross-flows is relatively well investigated. The utility of this mechanism in harvesting energy from marine current and tidal flows is however arguably still in its infancy. With relatively few moving components, a flow-induced vibration-based energy conversion device augers low complexity compared to the commonly employed turbine design. Despite the interest in this concept, a practical device has yet to emerge. It is desirable for optimal system performance to design for a very low mass or mass moment of inertia ratio. The device operating range, in particular, is maximized below the vortex-induced vibration critical point where an infinite resonant response region is realized. An unfortunate consequence of this requirement is large buoyancy forces that need to be mitigated by gravity-based, suction-caisson or anchor mooring systems. The focus of this paper is the testing of a novel VIV marine current energy harvesting configuration that utilizes a symmetrical and balanced pair of horizontal pivoted cylinders. The results of several years of experimental investigation, utilizing the University of Wollongong fluid mechanics laboratory towing tank, are analyzed and presented. A reduced velocity test range of 0 to 60 was covered across a large array of device configurations. In particular, power take-off damping ratios spanning from 0.044 to critical damping were examined in order to determine the optimal conditions and hence the maximum device energy conversion efficiency. The experiments conducted revealed acceptable energy conversion efficiencies of around 16% and desirable low flow-speed operating ranges when compared to traditional turbine technology. The potentially out-of-phase spanwise VIV cells on each arm of the device synchronized naturally as no decrease in amplitude response and comparable energy conversion efficiencies to the single cylinder arrangement were observed. In addition to the spatial design benefits related to the horizontal device orientation, the main advantage demonstrated by the current symmetrical horizontal configuration is to allow large velocity range resonant response conditions without the excessive buoyancy. The novel configuration proposed shows clear promise in overcoming many of the practical implementation issues related to flow-induced vibration marine current energy harvesting.

Keywords: flow-induced vibration, vortex-induced vibration, energy harvesting, tidal energy

Procedia PDF Downloads 124
1300 Sustainability of Vernacular Architecture in Zegalli Houses in Northern Iran with Emphasis on Their Seismic Behavior

Authors: Mona Zaryoun, Mahmood Hosseini, Seyed Mohammad Hassan Khalkhali, Haniyeh Okhovat

Abstract:

Zegalli houses in Guilan province, northern Iran, are a type of vernacular houses which their foundation, skeleton and walls all have been made of wood. The only houses which could survive the major Manjil-Rudbar earthquake of 1990 with a magnitude of 7.2 were these houses. Regarding this fact, some researchers started thinking of this type of foundations used in these houses to benefit from rocking-wise behavior. On the one hand, the relatively light weight of the houses, have helped these houses to withstand well against seismic excitations. In this paper at first a brief description of Zegalli houses and their architectural features, with emphasis on their foundation is presented. in the next stage foundation of one of these houses is modeled as a sample by a using a computer program, which has been developed in MATLAB environment, and by using the horizontal and vertical accelerograms of a set of selected site compatible earthquakes, a series of time history analysis (THA) are carried out to investigate the behavior of this type of houses against earthquake. Based on numerical results of THA it can be said that even without no sliding at the foundation timbers, only due to the rocking which occurs in various levels of the foundation the seismic response of the house is significantly reduced., which results in their stability subjected to earthquakes with peak ground acceleration of around 0.35g. Therefore, it can be recommended the Zegalli houses are considered as sustainable Iranian vernacular architecture, and it can be recommended that the use of these houses and their architecture and their structural merits are reconsidered by architects as well as civil and structural engineers.

Keywords: MATLAB software, rocking behavior, time history analysis, Zegalli houses

Procedia PDF Downloads 257
1299 Assessing the Effect of Underground Tunnel Diameter on Structure-Foundation-Soil Performance under the Kobe Earthquake

Authors: Masoud Mahdavi

Abstract:

Today, developed and industrial cities have all kinds of sewage and water transfer canals, subway tunnels, infrastructure facilities, etc., which have caused underground cavities to be created under the buildings. The presence of these cavities causes behavioral changes in the structural behavior that must be fully evaluated. In the present study, using Abaqus finite element software, the effect of cavities with 0.5 and 1.5 meters in diameter at a depth of 2.5 meters from the earth's surface (with a circular cross-section) on the performance of the foundation and the ground (soil) has been evaluated. For this purpose, the Kobe earthquake was applied to the models for 10 seconds. Also, pore water pressure and weight were considered on the models to get complete results. The results showed that by creating and increasing the diameter of circular cavities in the soil, three indicators; 1) von Mises stress, 2) displacement and 3) plastic strain have had oscillating, ascending and ascending processes, respectively, which shows the relationship between increasing the diameter index of underground cavities and structural indicators of structure-foundation-soil.

Keywords: underground excavations, foundation, structural substrates, Abaqus software, Kobe earthquake, time history analysis

Procedia PDF Downloads 86
1298 Barclays Bank Zambia: Considerations for Raft Foundation Design on Dolomite Land

Authors: Yashved Serhun, Kim A. Timm

Abstract:

Barclays Bank has identified the need for a head office building in Lusaka, Zambia, and construction of a 7200 m2 three-storey reinforced concrete office building with a structural steel roof is currently underway. A unique characteristic of the development is that the building footprint is positioned on dolomitic land. Dolomite rock has the tendency to react with and breakdown in the presence of slightly acidic water, including rainwater. This leads to a potential for subsidence and sinkhole formation. Subsidence and the formation of sinkholes beneath a building can be detrimental during both the construction and operational phases. This paper outlines engineering principles which were considered during the structural design of the raft foundation for the Barclays head office building. In addition, this paper includes multidisciplinary considerations and the impact of these on the structural engineering design of the raft foundation. By ensuring that the design of raft foundations on dolomitic land incorporates the requirements of all disciplines and relevant design codes during the design process, the risk associated with subsidence and sinkhole formation can be effectively mitigated during the operational phase of the building.

Keywords: dolomite, dolomitic land, raft foundation, structural engineering design

Procedia PDF Downloads 95
1297 Soil-Structure Interaction Models for the Reinforced Foundation System – A State-of-the-Art Review

Authors: Ashwini V. Chavan, Sukhanand S. Bhosale

Abstract:

Challenges of weak soil subgrade are often resolved either by stabilization or reinforcing it. However, it is also practiced to reinforce the granular fill to improve the load-settlement behavior of over weak soil strata. The inclusion of reinforcement in the engineered granular fill provided a new impetus for the development of enhanced Soil-Structure Interaction (SSI) models, also known as mechanical foundation models or lumped parameter models. Several researchers have been working in this direction to understand the mechanism of granular fill-reinforcement interaction and the response of weak soil under the application of load. These models have been developed by extending available SSI models such as the Winkler Model, Pasternak Model, Hetenyi Model, Kerr Model etc., and are helpful to visualize the load-settlement behavior of a physical system through 1-D and 2-D analysis considering beam and plate resting on the foundation respectively. Based on the literature survey, these models are categorized as ‘Reinforced Pasternak Model,’ ‘Double Beam Model,’ ‘Reinforced Timoshenko Beam Model,’ and ‘Reinforced Kerr Model.’ The present work reviews the past 30+ years of research in the field of SSI models for reinforced foundation systems, presenting the conceptual development of these models systematically and discussing their limitations. Special efforts are taken to tabulate the parameters and their significance in the load-settlement analysis, which may be helpful in future studies for the comparison and enhancement of results and findings of physical models.

Keywords: geosynthetics, mathematical modeling, reinforced foundation, soil-structure interaction, ground improvement, soft soil

Procedia PDF Downloads 96
1296 MHD Stagnation Point Flow towards a Shrinking Sheet with Suction in an Upper-Convected Maxwell (UCM) Fluid

Authors: K. Jafar, R. Nazar, A. Ishak, I. Pop

Abstract:

The present analysis considers the steady stagnation point flow and heat transfer towards a permeable sheet in an upper-convected Maxwell (UCM) electrically conducting fluid, with a constant magnetic field applied in the transverse direction to flow, and a local heat generation within the boundary layer with a heat generation rate proportional to (T-T_inf)^p. Using a similarity transformation, the governing system of partial differential equations is first transformed into a system of ordinary differential equations, which is then solved numerically using a finite-difference scheme known as the Keller-box method. Numerical results are obtained for the flow and thermal fields for various values of the shrinking/stretching parameter lambda, the magnetic parameter M, the elastic parameter K, the Prandtl number Pr, the suction parameter s, the heat generation parameter Q, and the exponent p. The results indicate the existence of dual solutions for the shrinking sheet up to a critical value lambda_c whose value depends on the value of M, K, and s. In the presence of internal heat absorbtion (Q<0), the surface heat transfer rate decreases with increasing p but increases with parameter Q and s, when the sheet is either stretched or shrunk.

Keywords: magnetohydrodynamic (MHD), boundary layer flow, UCM fluid, stagnation point, shrinking sheet

Procedia PDF Downloads 327
1295 Static Response of Homogeneous Clay Stratum to Imposed Structural Loads

Authors: Aaron Aboshio

Abstract:

Numerical study of the static response of homogeneous clay stratum considering a wide range of cohesion and subject to foundation loads is presented. The linear elastic–perfectly plastic constitutive relation with the von Mises yield criterion were utilised to develop a numerically cost effective finite element model for the soil while imposing a rigid body constrain to the foundation footing. From the analyses carried out, estimate of the bearing capacity factor, Nc as well as the ultimate load-carrying capacities of these soils, effect of cohesion on foundation settlements, stress fields and failure propagation were obtained. These are consistent with other findings in the literature and hence can be a useful guide in design of safe foundations in clay soils for buildings and other structure.

Keywords: bearing capacity factors, finite element method, safe bearing pressure, structure-soil interaction

Procedia PDF Downloads 273
1294 Non-Linear Free Vibration Analysis of Laminated Composite Beams Resting on Non-Linear Pasternak Elastic Foundation: A Homogenization Procedure

Authors: Merrimi El Bekkaye, El Bikri Khalid, Benamar Rhali

Abstract:

In the present paper, the problem of geometrically non-linear free vibration of symmetrically and asymmetrically laminated composite beams (LCB) resting on nonlinear Pasternak elastic Foundation with immovable ends is studied. A homogenization procedure has been performed to reduce the problem under consideration to that of the isotropic homogeneous beams with effective bending stiffness and axial stiffness parameters. This simple formulation is developed using the governing axial equation of the beam in which the axial inertia and damping are ignored. The theoretical model is based on Hamilton’s principle and spectral analysis. Iterative form solutions are presented to calculate the fundamental nonlinear frequency parameters which are found to be in a good agreement with the published results. On the other hand, the influence of the foundation parameters on the nonlinear frequency to the linear frequency ratio of the LCB has been studied. The non-dimensional curvatures associated to the fundamental mode are also given in the case of clamped-clamped symmetrically and asymmetrically laminated composite beams.

Keywords: large vibration amplitudes, laminated composite beam, Pasternak foundation, composite beams

Procedia PDF Downloads 502
1293 Control Flow around NACA 4415 Airfoil Using Slot and Injection

Authors: Imine Zakaria, Meftah Sidi Mohamed El Amine

Abstract:

One of the most vital aerodynamic organs of a flying machine is the wing, which allows it to fly in the air efficiently. The flow around the wing is very sensitive to changes in the angle of attack. Beyond a value, there is a phenomenon of the boundary layer separation on the upper surface, which causes instability and total degradation of aerodynamic performance called a stall. However, controlling flow around an airfoil has become a researcher concern in the aeronautics field. There are two techniques for controlling flow around a wing to improve its aerodynamic performance: passive and active controls. Blowing and suction are among the active techniques that control the boundary layer separation around an airfoil. Their objective is to give energy to the air particles in the boundary layer separation zones and to create vortex structures that will homogenize the velocity near the wall and allow control. Blowing and suction have long been used as flow control actuators around obstacles. In 1904 Prandtl applied a permanent blowing to a cylinder to delay the boundary layer separation. In the present study, several numerical investigations have been developed to predict a turbulent flow around an aerodynamic profile. CFD code was used for several angles of attack in order to validate the present work with that of the literature in the case of a clean profile. The variation of the lift coefficient CL with the momentum coefficient

Keywords: CFD, control flow, lift, slot

Procedia PDF Downloads 155
1292 Modeling of Foundation-Soil Interaction Problem by Using Reduced Soil Shear Modulus

Authors: Yesim Tumsek, Erkan Celebi

Abstract:

In order to simulate the infinite soil medium for soil-foundation interaction problem, the essential geotechnical parameter on which the foundation stiffness depends, is the value of soil shear modulus. This parameter directly affects the site and structural response of the considered model under earthquake ground motions. Strain-dependent shear modulus under cycling loads makes difficult to estimate the accurate value in computation of foundation stiffness for the successful dynamic soil-structure interaction analysis. The aim of this study is to discuss in detail how to use the appropriate value of soil shear modulus in the computational analyses and to evaluate the effect of the variation in shear modulus with strain on the impedance functions used in the sub-structure method for idealizing the soil-foundation interaction problem. Herein, the impedance functions compose of springs and dashpots to represent the frequency-dependent stiffness and damping characteristics at the soil-foundation interface. Earthquake-induced vibration energy is dissipated into soil by both radiation and hysteretic damping. Therefore, flexible-base system damping, as well as the variability in shear strengths, should be considered in the calculation of impedance functions for achievement a more realistic dynamic soil-foundation interaction model. In this study, it has been written a Matlab code for addressing these purposes. The case-study example chosen for the analysis is considered as a 4-story reinforced concrete building structure located in Istanbul consisting of shear walls and moment resisting frames with a total height of 12m from the basement level. The foundation system composes of two different sized strip footings on clayey soil with different plasticity (Herein, PI=13 and 16). In the first stage of this study, the shear modulus reduction factor was not considered in the MATLAB algorithm. The static stiffness, dynamic stiffness modifiers and embedment correction factors of two rigid rectangular foundations measuring 2m wide by 17m long below the moment frames and 7m wide by 17m long below the shear walls are obtained for translation and rocking vibrational modes. Afterwards, the dynamic impedance functions of those have been calculated for reduced shear modulus through the developed Matlab code. The embedment effect of the foundation is also considered in these analyses. It can easy to see from the analysis results that the strain induced in soil will depend on the extent of the earthquake demand. It is clearly observed that when the strain range increases, the dynamic stiffness of the foundation medium decreases dramatically. The overall response of the structure can be affected considerably because of the degradation in soil stiffness even for a moderate earthquake. Therefore, it is very important to arrive at the corrected dynamic shear modulus for earthquake analysis including soil-structure interaction.

Keywords: clay soil, impedance functions, soil-foundation interaction, sub-structure approach, reduced shear modulus

Procedia PDF Downloads 246
1291 Management of First Trimester Miscarriage

Authors: Madeleine Cox

Abstract:

Objective; analyse patient choices in management of first trimester miscarriage, rates of complications including repeat procedure. Design: all first trimester miscarriages from a tertiary institution on the Gold Coast in a 6 month time frame (July to December 2021) were reviewed, including choice of management, histopathology, any representations or admissions, and potential complications. Results: a total of 224 first trimester miscarriages were identified. Of these, 183 (81%) opted to have surgical management in the first instance. Of the remaining patients, 18 (8%) opted to have medical management, and 28 (12.5%) opted to have expectant management. In total, 33(15%) patients required a repeat treatment for retained products. 1 had medical management for a small volume PROC post suction curette. A significant number of these patients initially opted for medical management but then elected to have shorter follow up than usual and went on to have retained products noted. 5 women who had small volumes of RPOC post medical or surgical management had repeat suction curette, however, had very small volumes of products on scan and on curette and may have had a good result with repeated misoprostol administration. It is important to note that whilst a common procedure, suction curettes are not without risk. 2 women had significant blood loss of 1L and 1.5L. A third women had a uterine perforation, a rare but recognised complication, she went on to require a laparoscopy which identified a small serosal bowel injury which was closed by the colorectal team. Conclusion: Management of first trimester miscarriage should be guided by patient preference. It is important to be able to provide patients with their choice of management, however, it is also important to have a good understanding of the risks of each management choice, chances of repeated procedure, appropriate time frame for follow up. Women who choose to undertake medical or expectant management should be supported through this time, with appropriate time frame between taking misoprostol and repeat scan so that the true effects can be evaluated. Patients returning for scans within 2-3 days are more likely to be booked for further surgery, however, may reflect patients who did not have adequate counselling or simply changed their mind on their preferred management options.

Keywords: miscarriage, gynaecology, obstetrics, first trimester

Procedia PDF Downloads 78
1290 Modified Evaluation of the Hydro-Mechanical Dependency of the Water Coefficient of Permeability of a Clayey Sand with a Novel Permeameter for Unsaturated Soils

Authors: G. Adelian, A. Mirzaii, S. S. Yasrobi

Abstract:

This paper represents data of an extensive experimental laboratory testing program for the measurement of the water coefficient of permeability of clayey sand in different hydraulic and mechanical boundary conditions. A novel permeameter was designed and constructed for the experimental testing program, suitable for the study of flow in unsaturated soils in different hydraulic and mechanical loading conditions. In this work, the effect of hydraulic hysteresis, net isotropic confining stress, water flow condition, and sample dimensions are evaluated on the water coefficient of permeability of understudying soil. The experimental results showed a hysteretic variation for the water coefficient of permeability versus matrix suction and degree of saturation, with higher values in drying portions of the SWCC. The measurement of the water permeability in different applied net isotropic stress also signified that the water coefficient of permeability increased within the increment of net isotropic consolidation stress. The water coefficient of permeability also appeared to be independent of different applied flow heads, water flow condition, and sample dimensions.

Keywords: water permeability, unsaturated soils, hydraulic hysteresis, void ratio, matrix suction, degree of saturation

Procedia PDF Downloads 497
1289 A Reusable Foundation Solution for Onshore Windmills

Authors: Wael Mohamed, Per-Erik Austrell, Ola Dahlblom

Abstract:

Wind farms repowering is a significant topic nowadays. Wind farms repowering means the complete dismantling of the existing turbine, tower and foundation at an existing site and replacing these units with taller and larger units. Modern wind turbines are designed to withstand approximately for 20~25 years. However, a very long design life of 100 years or more can be expected for high-quality concrete foundations. Based on that there are significant economic and environmental benefits of replacing the out-of-date wind turbine with a new turbine of better power generation capacity and reuse the foundation. The big difference in lifetime shows a potential for new foundation solution to allow wind farms to be updated with taller and larger units in order to increase the energy production. This also means a significant change in the design loads on the foundations. Therefore, the new foundation solution should be able to handle the additional overturning loads. A raft surrounded by an active stabilisation system is proposed in this study. The concept of an active stabilisation system is a novel idea using a movable load to stabilise against the overturning moment. The active stabilisation system consists of a water tank being divided into eight compartments. The system uses the water as a movable load by pumping it into two compartments to stabilise against the overturning moment. The position of the water will rely on the wind direction and a water movement system depending on a number of electric motors and pipes with electric valves is used. One of the advantages of this active foundation solution is that some cost-efficient adjustment could be done to make this foundation able to support larger and taller units. After the end of the first turbine lifetime, an option is presented here to reuse this foundation and make it able to support taller and larger units. This option is considered using extra water volume to fill four compartments instead of two compartments. This extra water volume will increase the stability moment by 41% compared to using water in two compartments. The geotechnical performance of the new foundation solution is investigated using two existing weak soil profiles in Egypt and Sweden. A comparative study of the new solution and a piled raft with long friction piles is performed using finite element simulations. The results show that using a raft surrounded by an active stabilisation system decreases the tilting compared to a piled raft with friction piles. Moreover, it is found that using a raft surrounded by an active stabilisation system decreases the foundation costs compared to a piled raft with friction piles. In term of the environmental impact, it is found that the new foundation has a beneficial impact on the CO2 emissions. It saves roughly from 296.1 tonnes-CO2 to 518.21 tonnes-CO2 from the manufacture of concrete if the new foundation solution is used for another turbine-lifetime.

Keywords: active stabilisation system, CO2 emissions, FE analysis, reusable, weak soils

Procedia PDF Downloads 192
1288 Settlement of the Foundation on the Improved Soil: A Case Study

Authors: Morteza Karami, Soheila Dayani

Abstract:

Deep Soil Mixing (DSM) is a soil improvement technique that involves mechanically mixing the soil with a binder material to improve its strength, stiffness, and durability. This technique is typically used in geotechnical engineering applications where weak or unstable soil conditions exist, such as in building foundations, embankment support, or ground improvement projects. In this study, the settlement of the foundation on the improved soil using the wet DSM technique has been analyzed for a case study. Before DSM production, the initial soil mixture has been determined based on the laboratory tests and then, the proper mix designs have been optimized based on the pilot scale tests. The results show that the spacing and depth of the DSM columns depend on the soil properties, the intended loading conditions, and other factors such as the available space and equipment limitations. Moreover, monitoring instruments installed in the pilot area verify that the settlement of the foundation has been placed in an acceptable range to ensure that the soil mixture is providing the required strength and stiffness to support the structure or load. As an important result, if the DSM columns touch or penetrate into the stiff soil layer, the settlement of the foundation can be significantly decreased. Furthermore, the DSM columns should be allowed to cure sufficiently before placing any significant loads on the structure to prevent excessive deformation or settlement.

Keywords: deep soil mixing, soil mixture, settlement, instrumentation, curing age

Procedia PDF Downloads 55
1287 Two-Dimensional Seismic Response of Concrete Gravity Dams Including Base Sliding

Authors: Djamel Ouzandja, Boualem Tiliouine

Abstract:

The safety evaluation of the concrete gravity dams subjected to seismic excitations is really very complex as the earthquake response of the concrete gravity dam depends upon its contraction joints with foundation soil. This paper presents the seismic response of concrete gravity dams considering friction contact and welded contact. Friction contact is provided using contact elements. Two-dimensional (2D) finite element model of Oued Fodda concrete gravity dam, located in Chlef at the west of Algeria, is used for this purpose. Linear and nonlinear analyses considering dam-foundation soil interaction are performed using ANSYS software. The reservoir water is modeled as added mass using the Westergaard approach. The Drucker-Prager model is preferred for dam and foundation rock in nonlinear analyses. The surface-to-surface contact elements based on the Coulomb's friction law are used to describe the friction. These contact elements use a target surface and a contact surface to form a contact pair. According to this study, the seismic analysis of concrete gravity dams including base sliding. When the friction contact is considered in joints, the base sliding displacement occurs along the dam-foundation soil contact interface. Besides, the base sliding may generally decrease the principal stresses in the dam.

Keywords: concrete gravity dam, dynamic soil-structure interaction, friction contact, sliding

Procedia PDF Downloads 381
1286 Vibration Control of a Functionally Graded Carbon Nanotube-Reinforced Composites Beam Resting on Elastic Foundation

Authors: Gholamhosein Khosravi, Mohammad Azadi, Hamidreza Ghezavati

Abstract:

In this paper, vibration of a nonlinear composite beam is analyzed and then an active controller is used to control the vibrations of the system. The beam is resting on a Winkler-Pasternak elastic foundation. The composite beam is reinforced by single walled carbon nanotubes. Using the rule of mixture, the material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTRCs) are determined. The beam is cantilever and the free end of the beam is under follower force. Piezoelectric layers are attached to the both sides of the beam to control vibrations as sensors and actuators. The governing equations of the FG-CNTRC beam are derived based on Euler-Bernoulli beam theory Lagrange- Rayleigh-Ritz method. The simulation results are presented and the effects of some parameters on stability of the beam are analyzed.

Keywords: carbon nanotubes, vibration control, piezoelectric layers, elastic foundation

Procedia PDF Downloads 239
1285 Numerical Study of Modulus of Subgrade Reaction in Eccentrically Loaded Circular Footing Resting

Authors: Seyed Abolhasan Naeini, Mohammad Hossein Zade

Abstract:

This article is an attempt to present a numerically study of the behaviour of an eccentrically loaded circular footing resting on sand to determine ‎its ultimate bearing capacity. A surface circular footing of diameter 12 cm (D) was used as ‎shallow foundation. For this purpose, three dimensional models consist of foundation, and medium sandy soil was modelled by ABAQUS software. Bearing capacity of footing was evaluated and the ‎effects of the load eccentricity on bearing capacity, its settlement, and modulus of subgrade reaction were studied. Three different values of load eccentricity with equal space from inside the core on the core boundary and outside the core boundary, which were respectively e=0.75, 1.5, and 2.25 cm, were considered. The results show that by increasing the load eccentricity, the ultimate load and the ‎modulus of subgrade reaction decreased.

Keywords: circular foundation, sand, eccentric loading, modulus of subgrade reaction

Procedia PDF Downloads 319
1284 The Persistent English Language Gap between the Direct Entry and Foundation Program University Students: Empirical Evidence from the UAE

Authors: Eda Orhun

Abstract:

This paper studies the IELTS exit scores of Emirati university students before graduation and specifically compares the IELTS exit performance of the English foundation program (FP) students to direct entry (DE) students. Direct entry (DE) students are the students who were able to directly start with the undergraduate program without the need to attend English foundation program courses as they were able to prove a sufficient level of English at the university admittance. The results clearly show that the gap that existed already between these two groups of students at the start does not seem to disappear at the end of university studies, as DE students’ IELTS exit scores are significantly higher compared to FP students. Further work of a regression analysis exhibits that GPA and CMATH scores do have a positive and significant effect on IELTS exit scores. In addition, while the College of Education students are found to have the lowest performance in every sub-section of the IELTS exam across colleges, students of the College of Humanities and Social Sciences and the College of Natural and Health Sciences seem to have the best reading skills. Another important determinant of IELTS exit scores is found to be the English level of students at inception. With these results, the study offers important policy implications regarding the public education system of the UAE and sheds light on the main roots of the problem.

Keywords: English proficiency, higher education, IELTS exit scores, English foundation program, United Arab Emirates

Procedia PDF Downloads 60
1283 Optimum Design of Piled-Raft Systems

Authors: Alaa Chasib Ghaleb, Muntadher M. Abbood

Abstract:

This paper presents a study of the problem of the optimum design of piled-raft foundation systems. The study has been carried out using a hypothetic problem and soil investigations of six sites locations in Basrah city to evaluate the adequacy of using the piled-raft foundation concept. Three dimensional finite element analysis method has been used, to perform the structural analysis. The problem is optimized using Hooke and Jeeves method with the total weight of the foundation as objective function and each of raft thickness, piles length, number of piles and piles diameter as design variables. It is found that the total and differential settlement decreases with increasing the raft thickness, the number of piles, the piles length, and the piles diameter. Finally parametric study for load values, load type and raft dimensions have been studied and the results have been discussed.

Keywords: Hooke and Jeeves, optimum design, piled-raft, foundations

Procedia PDF Downloads 204
1282 Seismic Behavior of Pile-Supported Bridges Considering Soil-Structure Interaction and Structural Non-Linearity

Authors: Muhammad Tariq A. Chaudhary

Abstract:

Soil-structure interaction (SSI) in bridges under seismic excitation is a complex phenomenon which involves coupling between the non-linear behavior of bridge pier columns and SSI in the soil-foundation part. It is a common practice in the study of SSI to model the bridge piers as linear elastic while treating the soil and foundation with a non-linear or an equivalent linear modeling approach. Consequently, the contribution of soil and foundation to the SSI phenomenon is disproportionately highlighted. The present study considered non-linear behavior of bridge piers in FEM model of a 4-span, pile-supported bridge that was designed for five different soil conditions in a moderate seismic zone. The FEM model of the bridge system was subjected to a suite of 21 actual ground motions representative of three levels of earthquake hazard (i.e. Design Basis Earthquake, Functional Evaluation Earthquake and Maximum Considered Earthquake). Results of the FEM analysis were used to delineate the influence of pier column non-linearity and SSI on critical design parameters of the bridge system. It was found that pier column non-linearity influenced the bridge lateral displacement and base shear more than SSI for majority of the analysis cases for the class of bridge investigated in the study.

Keywords: bridge, FEM model, reinforced concrete pier, pile foundation, seismic loading, soil-structure interaction

Procedia PDF Downloads 200
1281 Numerical Simulation of Footing on Reinforced Loose Sand

Authors: M. L. Burnwal, P. Raychowdhury

Abstract:

Earthquake leads to adverse effects on buildings resting on soft soils. Mitigating the response of shallow foundations on soft soil with different methods reduces settlement and provides foundation stability. Few methods such as the rocking foundation (used in Performance-based design), deep foundation, prefabricated drain, grouting, and Vibro-compaction are used to control the pore pressure and enhance the strength of the loose soils. One of the problems with these methods is that the settlement is uncontrollable, leading to differential settlement of the footings, further leading to the collapse of buildings. The present study investigates the utility of geosynthetics as a potential improvement of the subsoil to reduce the earthquake-induced settlement of structures. A steel moment-resisting frame building resting on loose liquefiable dry soil, subjected to Uttarkashi 1991 and Chamba 1995 earthquakes, is used for the soil-structure interaction (SSI) analysis. The continuum model can simultaneously simulate structure, soil, interfaces, and geogrids in the OpenSees framework. Soil is modeled with PressureDependentMultiYield (PDMY) material models with Quad element that provides stress-strain at gauss points and is calibrated to predict the behavior of Ganga sand. The model analyzed with a tied degree of freedom contact reveals that the system responses align with the shake table experimental results. An attempt is made to study the responses of footing structure and geosynthetics with unreinforced and reinforced bases with varying parameters. The result shows that geogrid reinforces shallow foundation effectively reduces the settlement by 60%.

Keywords: settlement, shallow foundation, SSI, continuum FEM

Procedia PDF Downloads 164