Search results for: structural design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15319

Search results for: structural design

14899 A Closed-Loop Design Model for Sustainable Manufacturing by Integrating Forward Design and Reverse Design

Authors: Yuan-Jye Tseng, Yi-Shiuan Chen

Abstract:

In this paper, a new concept of closed-loop design model is presented. The closed-loop design model is developed by integrating forward design and reverse design. Based on this new concept, a closed-loop design model for sustainable manufacturing by integrated evaluation of forward design, reverse design, and green manufacturing using a fuzzy analytic network process is developed. In the design stage of a product, with a given product requirement and objective, there can be different ways to design the detailed components and specifications. Therefore, there can be different design cases to achieve the same product requirement and objective. Thus, in the design evaluation stage, it is required to analyze and evaluate the different design cases. The purpose of this research is to develop a model for evaluating the design cases by integrated evaluation of forward design, reverse design, and green manufacturing models. A fuzzy analytic network process model is presented for integrated evaluation of the criteria in the three models. The comparison matrices for evaluating the criteria in the three groups are established. The total relational values among the three groups represent the total relational effects. In application, a super matrix can be created and the total relational values can be used to evaluate the design cases for decision-making to select the final design case. An example product is demonstrated in this presentation. It shows that the model is useful for integrated evaluation of forward design, reverse design, and green manufacturing to achieve a closed-loop design for sustainable manufacturing objective.

Keywords: design evaluation, forward design, reverse design, closed-loop design, supply chain management, closed-loop supply chain, fuzzy analytic network process

Procedia PDF Downloads 649
14898 Natural Fibre Composite Structural Sections for Residential Stud Wall Applications

Authors: Mike R. Bambach

Abstract:

Increasing awareness of environmental concerns is leading a drive towards more sustainable structural products for the built environment. Natural fibres such as flax, jute and hemp have recently been considered for fibre-resin composites, with a major motivation for their implementation being their notable sustainability attributes. While recent decades have seen substantial interest in the use of such natural fibres in composite materials, much of this research has focused on the materials aspects, including fibre processing techniques, composite fabrication methodologies, matrix materials and their effects on the mechanical properties. The present study experimentally investigates the compression strength of structural channel sections of flax, jute and hemp, with a particular focus on their suitability for residential stud wall applications. The section geometry is optimised for maximum strength via the introduction of complex stiffeners in the webs and flanges. Experimental results on both natural fibre composite channel sections and typical steel and timber residential wall studs are compared. The geometrically optimised natural fibre composite channels are shown to have compression capacities suitable for residential wall stud applications, identifying them as a potentially viable alternative to traditional building materials in such application, and potentially other light structural applications.

Keywords: channel sections, natural fibre composites, residential stud walls, structural composites

Procedia PDF Downloads 292
14897 Geometric Design to Improve the Temperature

Authors: H. Ghodbane, A. A. Taleb, O. Kraa

Abstract:

This paper presents geometric design of induction heating system. The objective of this design is to improve the temperature distribution in the load. The study of such a device requires the use of models or modeling representation, physical, mathematical, and numerical. This modeling is the basis of the understanding, the design, and optimization of these systems. The optimization technique is to find values of variables that maximize or minimize the objective function.

Keywords: optimization, modeling, geometric design system, temperature increase

Procedia PDF Downloads 504
14896 Influence of Foundation Size on Seismic Response of Mid-rise Buildings Considering Soil-Structure-Interaction

Authors: Quoc Van Nguyen, Behzad Fatahi, Aslan S. Hokmabadi

Abstract:

Performance based seismic design is a modern approach to earthquake-resistant design shifting emphasis from “strength” to “performance”. Soil-Structure Interaction (SSI) can influence the performance level of structures significantly. In this paper, a fifteen storey moment resisting frame sitting on a shallow foundation (footing) with different sizes is simulated numerically using ABAQUS software. The developed three dimensional numerical simulation accounts for nonlinear behaviour of the soil medium by considering the variation of soil stiffness and damping as a function of developed shear strain in the soil elements during earthquake. Elastic-perfectly plastic model is adopted to simulate piles and structural elements. Quiet boundary conditions are assigned to the numerical model and appropriate interface elements, capable of modelling sliding and separation between the foundation and soil elements, are considered. Numerical results in terms of base shear, lateral deformations, and inter-storey drifts of the structure are compared for the cases of soil-structure interaction system with different foundation sizes as well as fixed base condition (excluding SSI). It can be concluded that conventional design procedures excluding SSI may result in aggressive design. Moreover, the size of the foundation can influence the dynamic characteristics and seismic response of the building due to SSI and should therefore be given careful consideration in order to ensure a safe and cost effective seismic design.

Keywords: soil-structure-interaction, seismic response, shallow foundation, abaqus, rayleigh damping

Procedia PDF Downloads 485
14895 Use of Structural Family Therapy and Dialectical Behavior Therapy with High-Conflict Couples

Authors: Eman Tadros, Natasha Finney

Abstract:

The following case study involving a high-conflict, Children’s Services Bureau (CSB) referred couple is analyzed and reviewed through an integrated lens of structural family therapy and dialectical behavior therapy. In structural family therapy, normal family development is not characterized by a lack of problems, but instead by families’ having developed a functional structure for dealing with their problems. Whereas, in dialectical behavioral therapy normal family development can be characterized by having a supportive and validating environment, where all family members feel a sense of acceptance and validation for who they are and where they are in life. The clinical case conceptualization highlights the importance of conceptualizing how change occurs within a therapeutic setting. In the current case study, the couple did not only experience high-conflict, but there were also issues of substance use, health issues, and other complicating factors. Clinicians should view their clients holistically and tailor their treatment to fit their unique needs. In this framework, change occurs within the family unit, by accepting each member as they are, while at the same time working together to change maladaptive familial structures.

Keywords: couples, dialectical behavior therapy, high-conflict, structural family therapy

Procedia PDF Downloads 314
14894 Adequacy of Advanced Earthquake Intensity Measures for Estimation of Damage under Seismic Excitation with Arbitrary Orientation

Authors: Konstantinos G. Kostinakis, Manthos K. Papadopoulos, Asimina M. Athanatopoulou

Abstract:

An important area of research in seismic risk analysis is the evaluation of expected seismic damage of structures under a specific earthquake ground motion. Several conventional intensity measures of ground motion have been used to estimate their damage potential to structures. Yet, none of them was proved to be able to predict adequately the seismic damage of any structural system. Therefore, alternative advanced intensity measures which take into account not only ground motion characteristics but also structural information have been proposed. The adequacy of a number of advanced earthquake intensity measures in prediction of structural damage of 3D R/C buildings under seismic excitation which attacks the building with arbitrary incident angle is investigated in the present paper. To achieve this purpose, a symmetric in plan and an asymmetric 5-story R/C building are studied. The two buildings are subjected to 20 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along horizontal orthogonal axes forming 72 different angles with the structural axes. The response is computed by non-linear time history analysis. The structural damage is expressed in terms of the maximum interstory drift as well as the overall structural damage index. The values of the aforementioned seismic damage measures determined for incident angle 0° as well as their maximum values over all seismic incident angles are correlated with 9 structure-specific ground motion intensity measures. The research identified certain intensity measures which exhibited strong correlation with the seismic damage of the two buildings. However, their adequacy for estimation of the structural damage depends on the response parameter adopted. Furthermore, it was confirmed that the widely used spectral acceleration at the fundamental period of the structure is a good indicator of the expected earthquake damage level.

Keywords: damage indices, non-linear response, seismic excitation angle, structure-specific intensity measures

Procedia PDF Downloads 474
14893 Analysis of Lift Arm Failure and Its Improvement for the Use in Farm Tractor

Authors: Japinder Wadhawan, Pradeep Rajan, Alok K. Saran, Navdeep S. Sidhu, Daanvir K. Dhir

Abstract:

Currently, research focus in the development of agricultural equipment and tractor parts in India is innovation and use of alternate materials like austempered ductile iron (ADI). Three-point linkage mechanism of the tractor is susceptible to unpredictable load conditions in the field, and one of the critical components vulnerable to failure is lift arm. Conventionally, lift arm is manufactured either by forging or casting (SG Iron) and main objective of the present work is to reduce the failure occurrences in the lift arm, which is achieved by changing the manufacturing material, i.e ADI, without changing existing design. Effect of four pertinent variables of manufacturing ADI, viz. austenitizing temperature, austenitizing time, austempering temperature, austempering time, was investigated using Taguchi method for design of experiments. To analyze the effect of parameters on the mechanical properties, mean average and signal-to-noise (S/N) ratio was calculated based on the design of experiments with L9 orthogonal array and the linear graph. The best combination for achieving the desired mechanical properties of lift arm is austenitization at 860°C for 90 minutes and austempering at 350°C for 60 minutes. Results showed that the developed component is having 925 MPA tensile strength, 7.8 per cent elongation and 120 joules toughness making it more suitable material for lift arm manufacturing. The confirmatory experiment has been performed and found a good agreement between predicted and experimental value. Also, the CAD model of the existing design was developed in computer aided design software, and structural loading calculations were performed by a commercial finite element analysis package. An optimized shape of the lift arm has also been proposed resulting in light weight and cheaper product than the existing design, which can withstand the same loading conditions effectively.

Keywords: austempered ductile iron, design of experiment, finite element analysis, lift arm

Procedia PDF Downloads 213
14892 Modeling and Simulation of Honeycomb Steel Sandwich Panels under Blast Loading

Authors: Sayed M. Soleimani, Nader H. Ghareeb, Nourhan H. Shaker, Muhammad B. Siddiqui

Abstract:

Honeycomb sandwich panels have been widely used as protective structural elements against blast loading. The main advantages of these panels include their light weight due to the presence of voids, as well as their energy absorption capability. Terrorist activities have imposed new challenges to structural engineers to design protective measures for vital structures. Since blast loading is not usually considered in the load combinations during the design process of a structure, researchers around the world have been motivated to study the behavior of potential elements capable of resisting sudden loads imposed by the detonation of explosive materials. One of the best candidates for this objective is the honeycomb sandwich panel. Studying the effects of explosive materials on the panels requires costly and time-consuming experiments. Moreover, these type of experiments need permission from defense organizations which can become a hurdle. As a result, modeling and simulation using an appropriate tool can be considered as a good alternative. In this research work, the finite element package ABAQUS® is used to study the behavior of hexagonal and squared honeycomb steel sandwich panels under the explosive effects of different amounts of trinitrotoluene (TNT). The results of finite element modeling of a specific honeycomb configuration are initially validated by comparing them with the experimental results from literature. Afterwards, several configurations including different geometrical properties of the honeycomb wall are investigated and the results are compared with the original model. Finally, the effectiveness of the core shape and wall thickness are discussed, and conclusions are made.

Keywords: Abaqus, blast loading, finite element modeling, steel honeycomb sandwich panel

Procedia PDF Downloads 326
14891 Development of Visual Element Design Guidelines for Consumer Products Based on User Characteristics

Authors: Taezoon Park, Wonil Hwang

Abstract:

This study aims to build a design guideline for the effective visual display used for consumer products considering user characteristics; gender and age. Although a number of basic experiments identified the limits of human visual perception, the findings remain fragmented and many times in an unfriendly form. This study compiled a design cases along with tables aggregated from the experimental result of visual perception; brightness/contrast, useful field of view, color sensitivity. Visual design elements commonly used for consumer product, were selected and appropriate guidelines were developed based on the experimental result. Since the provided data with case example suggests a feasible design space, it will save time for a product designer to find appropriate design alternatives.

Keywords: design guideline, consumer product, visual design element, visual perception, emotional design

Procedia PDF Downloads 342
14890 Impact of Welding Distortion on the Design of Fabricated T-Girders Using Finite Element Modeling

Authors: Ahmed Hammad, Yehia Abdel-Nasser, Mohamed Shamma

Abstract:

The main configuration of ship construction consists of standard and fabricated stiffening members which are commonly used in shipbuilding such as fabricated T-sections. During the welding process, the non-uniform heating and rapid cooling lead to the inevitable presence of out-of-plane distortion and welding induced residual stresses. Because of these imperfections, the fabricated structural members may not attain their design load to be carried. The removal of these imperfections will require extra man-hours. In the present work, controlling these imperfections has been investigated at both design and fabrication stages. A typical fabricated T-girder is selected to investigate the problem of these imperfections using double-side welding. A numerical simulation based on finite element (FE) modeling has been used to investigate the effect of different parameters of the selected fabricated T-girder such as geometrical properties and welding sequences on the magnitude of welding imperfections. FE results were compared with the results of experimental model of a double-side fillet weld. The present work concludes that: Firstly, in the design stage, the optimum geometry of the fabricated T- girder is determined based on minimum steel weight and out- of- plane distortion. Secondly, in the fabrication stage, the best welding sequence is determined on the basis of minimum welding out- of- plane distortion.

Keywords: fabricated T-girder, FEM, out-of-plane distortion, section modulus, welding residual stresses

Procedia PDF Downloads 94
14889 New HCI Design Process Education

Authors: Jongwan Kim

Abstract:

Human Computer Interaction (HCI) is a subject covering the study, plan, and design of interactions between humans and computers. The prevalent use of digital mobile devices is increasing the need for education and research on HCI. This work is focused on a new education method geared towards reducing errors while developing application programs that incorporate role-changing brainstorming techniques during HCI design process. The proposed method has been applied to a capstone design course in the last spring semester. Students discovered some examples about UI design improvement and their error discovering and reducing capability was promoted. An UI design improvement, PC voice control for people with disabilities as an assistive technology examplar, will be presented. The improvement of these students' design ability will be helpful to the real field work.

Keywords: HCI, design process, error reducing education, role-changing brainstorming, assistive technology

Procedia PDF Downloads 469
14888 Evolution of Design through Documentation of Architecture Design Processes

Authors: Maniyarasan Rajendran

Abstract:

Every design has a process, and every architect deals in the ways best known to them. The design translation from the concept to completion change in accordance with their design philosophies, their tools, availability of resources, and at times the clients and the context of the design as well. The approach to understanding the design process requires formalisation of the design intents. The design process is characterised by change, with the time and the technology. The design flow is just indicative and never exhaustive. The knowledge and experience of stakeholders remain limited to the part they played in the project, and their ability to remember, and is through the Photographs. These artefacts, when circulated can hardly tell what the project is. They can never tell the narrative behind. In due course, the design processes are lost. The Design junctions are lost in the journey. Photographs acted as major source materials, along with its importance in architectural revivalism in the 19th century. From the history, we understand that it has been photographs, that act as the dominant source of evidence. The idea of recording is also followed with the idea of getting inspired from the records and documents. The design concept, the architectural firms’ philosophies, the materials used, the special needs, the numerous ‘Trial-and-error’ methods, design methodology, experience of failures and success levels, and the knowledge acquired, etc., and the various other aspects and methods go through in every project, and they deserve/ought to be recorded. The knowledge can be preserved and passed through generations, by documenting the design processes involved. This paper explores the idea of a process documentation as a tool of self-reflection, creation of architectural firm’ repository, and these implications proceed with the design evolution of the team.

Keywords: architecture, design, documentation, records

Procedia PDF Downloads 342
14887 Condition Assessment of Reinforced Concrete Bridge Deck Using Ground Penetrating Radar

Authors: Azin Shakibabarough, Mojtaba Valinejadshoubi, Ashutosh Bagchi

Abstract:

Catastrophic bridge failure happens due to the lack of inspection, lack of design and extreme events like flooding, an earthquake. Bridge Management System (BMS) is utilized to diminish such an accident with proper design and frequent inspection. Visual inspection cannot detect any subsurface defects, so using Non-Destructive Evaluation (NDE) techniques remove these barriers as far as possible. Among all NDE techniques, Ground Penetrating Radar (GPR) has been proved as a highly effective device for detecting internal defects in a reinforced concrete bridge deck. GPR is used for detecting rebar location and rebar corrosion in the reinforced concrete deck. GPR profile is composed of hyperbola series in which sound hyperbola denotes sound rebar and blur hyperbola or signal attenuation shows corroded rebar. Interpretation of GPR images is implemented by numerical analysis or visualization. Researchers recently found that interpretation through visualization is more precise than interpretation through numerical analysis, but visualization is time-consuming and a highly subjective process. Automating the interpretation of GPR image through visualization can solve these problems. After interpretation of all scans of a bridge, condition assessment is conducted based on the generated corrosion map. However, this such a condition assessment is not objective and precise. Condition assessment based on structural integrity and strength parameters can make it more objective and precise. The main purpose of this study is to present an automated interpretation method of a reinforced concrete bridge deck through a visualization technique. In the end, the combined analysis of the structural condition in a bridge is implemented.

Keywords: bridge condition assessment, ground penetrating radar, GPR, NDE techniques, visualization

Procedia PDF Downloads 122
14886 Investigating the Effect of Groundwater Level on Nailing Arrangement in Excavation Stability

Authors: G. Khamooshian, A. Abbasimoshaei

Abstract:

Different methods are used to stabilize the sticks, among which the method of knitting is commonly used. In recent years, the use of nailing for the stability of excavation has been considered much, which is providing sufficient stability and controlling the structural defects of the guardian, also reduces the cost of the operation. In addition, this method is more prominent in deep excavations than other methods. The purpose of this paper is to investigate the effect of groundwater level and soil type on the length and designing of nails. In this paper, analysis and modeling for vertical arena with constant depth and different levels of groundwater have been done. Also, by changing the soil resistance parameters and design of the nails, an optimum arrangement was made and the effect of changes in groundwater level and soil's type on the design of the nails, the maximum axial force mobilized in the nails and the confidence coefficient for the stability of the groove was examined.

Keywords: excavation, soil effects, nailing, hole analyzing

Procedia PDF Downloads 159
14885 Experimental Investigation on the Fire Performance of Corrugated Sandwich Panels made from Renewable Material

Authors: Avishek Chanda, Nam Kyeun Kim, Debes Bhattacharyya

Abstract:

The use of renewable substitutes in various semi-structural and structural applications has experienced an increase since the last few decades. Sandwich panels have been used for many decades, although research on understanding the effects of the core structures on the panels’ fire-reaction properties is limited. The current work investigates the fire-performance of a corrugated sandwich panel made from renewable, biodegradable, and sustainable material, plywood. The bench-scale fire testing apparatus, cone-calorimeter, was employed to evaluate the required fire-reaction properties of the sandwich core in a panel configuration, with three corrugated layers glued together with face-sheets under a heat irradiance of 50 kW/m2. The study helped in documenting a unique heat release trend associated with the fire performance of the 3-layered corrugated sandwich panels and in understanding the structural stability of the samples in the event of a fire. Furthermore, the total peak heat release rate was observed to be around 421 kW/m2, which is significantly low compared to many polymeric materials in the literature. The total smoke production was also perceived to be very limited compared to other structural materials, and the total heat release was also nominal. The time to ignition of 21.7 s further outlined the advantages of using the plywood component since polymeric composites, even with flame-retardant additives, tend to ignite faster. Overall, the corrugated plywood sandwich panels had significant fire-reaction properties and could have important structural applications. The possible use of structural panels made from bio-degradable material opens a new avenue for the use of similar structures in sandwich panel preparation.

Keywords: corrugated sandwich panel, fire-reaction properties, plywood, renewable material

Procedia PDF Downloads 131
14884 IT/IS Organisation Design in the Digital Age: A Literature Review

Authors: Dominik Krimpmann

Abstract:

Information technology and information systems are currently at a tipping point. The digital age fundamentally transforms a large number of industries in the ways they work. Lines between business and technology blur. Researchers have acknowledged that this is the time in which the IT/IS organisation needs to re-strategise itself. In this paper, the author provides a structured review of the IS and organisation design literature addressing the question of how the digital age changes the design categories of an IT/IS organisation design. The findings show that most papers just analyse single aspects of either IT/IS relevant information or generic organisation design elements but miss a holistic ‘big-picture’ onto an IT/IS organisation design. This paper creates a holistic IT/IS organisation design framework bringing together the IS research strand, the digital strand and the generic organisation design strand. The research identified four IT/IS organisation design categories (strategy, structure, processes and people) and discusses the importance of two additional categories (sourcing and governance). The authors findings point to a first anchor point from which further research needs to be conducted to develop a holistic IT/IS organisation design framework.

Keywords: IT/IS strategy, IT/IS organisation design, digital age, organisational effectiveness, literature review

Procedia PDF Downloads 377
14883 Structural Elucidation of Intact Rough-Type Lipopolysaccharides using Field Asymmetric Ion Mobility Spectrometry and Kendrick Mass Defect Plots

Authors: Abanoub Mikhael, Darryl Hardie, Derek Smith, Helena Petrosova, Robert Ernst, David Goodlett

Abstract:

Lipopolysaccharide (LPS) is a hallmark virulence factor of Gram-negative bacteria. It is a complex, structurally het- erogeneous mixture due to variations in number, type, and position of its simplest units: fatty acids and monosaccharides. Thus, LPS structural characterization by traditional mass spectrometry (MS) methods is challenging. Here, we describe the benefits of field asymmetric ion mobility spectrometry (FAIMS) for analysis of intact R-type lipopolysaccharide complex mixture (lipooligo- saccharide; LOS). Structural characterization was performed using Escherichia coli J5 (Rc mutant) LOS, a TLR4 agonist widely used in glycoconjugate vaccine research. FAIMS gas phase fractionation improved the (S/N) ratio and number of detected LOS species. Additionally, FAIMS allowed the separation of overlapping isobars facilitating their tandem MS characterization and un- equivocal structural assignments. In addition to FAIMS gas phase fractionation benefits, extra sorting of the structurally related LOS molecules was further accomplished using Kendrick mass defect (KMD) plots. Notably, a custom KMD base unit of [Na-H] created a highly organized KMD plot that allowed identification of interesting and novel structural differences across the different LOS ion families, i.e., ions with different acylation degrees, oligosaccharides composition, and chemical modifications. Defining the composition of a single LOS ion by tandem MS along with the organized KMD plot structural network was sufficient to deduce the composition of 181 LOS species out of 321 species present in the mixture. The combination of FAIMS and KMD plots allowed in-depth characterization of the complex LOS mixture and uncovered a wealth of novel information about its structural variations.

Keywords: lipopolysaccharide, ion mobility MS, Kendrick mass defect, Tandem mass spectrometry

Procedia PDF Downloads 36
14882 Empirical Analytical Modelling of Average Bond Stress and Anchorage of Tensile Bars in Reinforced Concrete

Authors: Maruful H. Mazumder, Raymond I. Gilbert

Abstract:

The design specifications for calculating development and lapped splice lengths of reinforcement in concrete are derived from a conventional empirical modelling approach that correlates experimental test data using a single mathematical equation. This paper describes part of a recently completed experimental research program to assess the effects of different structural parameters on the development length requirements of modern high strength steel reinforcing bars, including the case of lapped splices in large-scale reinforced concrete members. The normalized average bond stresses for the different variations of anchorage lengths are assessed according to the general form of a typical empirical analytical model of bond and anchorage. Improved analytical modelling equations are developed in the paper that better correlate the normalized bond strength parameters with the structural parameters of an empirical model of bond and anchorage.

Keywords: bond stress, development length, lapped splice length, reinforced concrete

Procedia PDF Downloads 411
14881 Analysis of the Relations between Obsessive Compulsive Symptoms and Anxiety Sensitivity in Adolescents: Structural Equation Modeling

Authors: Ismail Seçer

Abstract:

The purpose of this study is to analyze the predictive effect of anxiety sensitivity on obsessive compulsive symptoms. The sample of the study consists of 542 students selected with appropriate sampling method from the secondary and high schools in Erzurum city center. Obsessive Compulsive Inventory and Anxiety Sensitivity Index were used in the study to collect data. The data obtained through the study was analyzed with structural equation modeling. As a result of the study, it was determined that there is a significant relationship between obsessive Compulsive Disorder (OCD) and anxiety sensitivity. Anxiety sensitivity has direct and indirect meaningful effects on the latent variable of OCD in the sub-dimensions of doubting-checking, obsessing, hoarding, washing, ordering, and mental neutralizing, and also anxiety sensitivity is a significant predictor of obsessive compulsive symptoms.

Keywords: obsession, compulsion, structural equation, anxiety sensitivity

Procedia PDF Downloads 511
14880 Critical Design - Concepts, Methods and Practices for Innovative Societal Relationships

Authors: Martina Maria Keitsch

Abstract:

Critical Design (CD) confronts traditional design practice. Instead of reproducing and reinforcing contemporary perceptions of products and services, CD seeks to challenge them with the goal to stimulate debates and visions on societal innovation. CD methods comprise, among other narratives and design of critical objects. The oral presentation is based on a study that discusses concepts, methods, and applications of CD links CD to traditional design, and identifies CD benefits and challenges for design research and practice. The objective of the study is to introduce CD as an alternative for design researchers and practitioners supplementing commercially oriented design approaches. The study utilizes a literature review on CD concepts and methods based on current publications and online documents and illustrates CD practice with help of selected case studies. Findings of the study indicate that CD contribute, among others, to create new societal roles for designers, foster innovative relationships between designers and users, and encourage creativity through imaginative aesthetics.

Keywords: critical design, postmodern design theories, narratives, rhizome

Procedia PDF Downloads 142
14879 Fabrication of Nanoengineered Radiation Shielding Multifunctional Polymeric Sandwich Composites

Authors: Nasim Abuali Galehdari, Venkat Mani, Ajit D. Kelkar

Abstract:

Space Radiation has become one of the major factors in successful long duration space exploration. Exposure to space radiation not only can affect the health of astronauts but also can disrupt or damage materials and electronics. Hazards to materials include degradation of properties, such as, modulus, strength, or glass transition temperature. Electronics may experience single event effects, gate rupture, burnout of field effect transistors and noise. Presently aluminum is the major component in most of the space structures due to its lightweight and good structural properties. However, aluminum is ineffective at blocking space radiation. Therefore, most of the past research involved studying at polymers which contain large amounts of hydrogen. Again, these materials are not structural materials and would require large amounts of material to achieve the structural properties needed. One of the materials to alleviate this problem is polymeric composite materials, which has good structural properties and use polymers that contained large amounts of hydrogen. This paper presents steps involved in fabrication of multi-functional hybrid sandwich panels that can provide beneficial radiation shielding as well as structural strength. Multifunctional hybrid sandwich panels were manufactured using vacuum assisted resin transfer molding process and were subjected to radiation treatment. Study indicates that various nanoparticles including Boron Nano powder, Boron Carbide and Gadolinium nanoparticles can be successfully used to block the space radiation without sacrificing the structural integrity.

Keywords: multi-functional, polymer composites, radiation shielding, sandwich composites

Procedia PDF Downloads 258
14878 Improving Fire Resistance of Wood and Wood-Based Composites and Fire Testing Systems

Authors: Nadir Ayrilmis

Abstract:

Wood and wood-based panels are one of the oldest structural materials used in the construction industry due to their significant advantages such as good mechanical properties, low density, renewable material, low-cost, recycling, etc. However, they burn when exposed to a flame source or high temperatures. This is very important when the wood products are used as structural or hemi-structural materials in the construction industry, furniture industry, so on. For this reason, the fire resistance is demanded property for wood products. They can be impregnated with fire retardants to improve their fire resistance. The most used fire retardants, fire-retardant mechanism, and fire-testing systems, and national and international fire-durability classifications and standard requirements for fire-durability of wood and wood-based panels were given in this study.

Keywords: fire resistance, wood-based panels, cone calorimeter, wood

Procedia PDF Downloads 134
14877 Multi-Criteria Optimization of High-Temperature Reversed Starter-Generator

Authors: Flur R. Ismagilov, Irek Kh. Khayrullin, Vyacheslav E. Vavilov, Ruslan D. Karimov, Anton S. Gorbunov, Danis R. Farrakhov

Abstract:

The paper presents another structural scheme of high-temperature starter-generator with external rotor to be installed on High Pressure Shaft (HPS) of aircraft engines (AE) to implement More Electrical Engine concept. The basic materials to make this starter-generator (SG) were selected and justified. Multi-criteria optimization of the developed structural scheme was performed using a genetic algorithm and Pareto method. The optimum (in Pareto terms) active length and thickness of permanent magnets of SG were selected as a result of the optimization. Using the dimensions obtained, allowed to reduce the weight of the designed SG by 10 kg relative to a base option at constant thermal loads. Multidisciplinary computer simulation was performed on the basis of the optimum geometric dimensions, which proved performance efficiency of the design. We further plan to make a full-scale sample of SG of HPS and publish the results of its experimental research.

Keywords: high-temperature starter-generator, more electrical engine, multi-criteria optimization, permanent magnet

Procedia PDF Downloads 334
14876 Non-Violent Perspectives in Teacher Training Programs: Challenging Inequality Through Empathy and Compassion

Authors: Gaston Bacquet

Abstract:

In light of existing social and structural violence in Chilean higher education which has resulted in instances of inequality, exclusion and discrimination, this research study attempted to provide trainee teachers in Chile with non-violent tools to deal with the tensions arising from these issues. Through a participatory action research design framed within a series of non-violent, non-Western perspectives, this study provided co-participants with opportunities to discuss current problems affecting HE in Chile stemming from the aforementioned violence, to think about strategies to address these and the challenges they might encounter. The study, which involved two different groups of trainee teachers from Chilean universities, consisted of two iterations of the action research cycle (planning – acting – observing – reflecting) carried out over two 3-months periods. Findings reveal instances of forced cultural assimilation, bullying, and direct and structural violence as key issues to address, and a strong individualistic mindset trumping collective well-being as the main challenge to bring non-violent strategies into their classrooms.

Keywords: non-violence education, contemplative pedagogy, participatory action research, dialogical education

Procedia PDF Downloads 74
14875 Preparation and Characterization of Nanometric Ni-Zn Ferrite via Different Methods

Authors: Ebtesam. E. Ateia, L. M. Salah, A. H. El-Bassuony

Abstract:

The aim of the presented study was the possibility of developing a nanosized material with enhanced structural properties that was suitable for many applications. Nanostructure ferrite of composition Ni0.5 Zn0.5 Cr0.1 Fe1.9 O4 were prepared by sol–gel, co-precipitation, citrate-gel, flash and oxalate precursor methods. The Structural and micro structural analysis of the investigated samples were carried out. It was observed that the lattice parameter of cubic spinel was constant, and the positions of both tetrahedral and the octahedral bands had a fixed position. The values of the lattice parameter had a significant role in determining the stoichiometric cation distribution of the composition.The average crystalline sizes of the investigated samples were from 16.4 to 69 nm. Discussion was made on the basis of a comparison of average crystallite size of the investigated samples, indicating that the co-precipitation method was the the effective one in producing small crystallite sized samples.

Keywords: chemical preparation, ferrite, grain size, nanocomposites, sol-gel

Procedia PDF Downloads 315
14874 Prioritization of Customer Order Selection Factors by Utilizing Conjoint Analysis: A Case Study for a Structural Steel Firm

Authors: Burcu Akyildiz, Cigdem Kadaifci, Y. Ilker Topcu, Burc Ulengin

Abstract:

In today’s business environment, companies should make strategic decisions to gain sustainable competitive advantage. Order selection is a crucial issue among these decisions especially for steel production industry. When the companies allocate a high proportion of their design and production capacities to their ongoing projects, determining which customer order should be chosen among the potential orders without exceeding the remaining capacity is the major critical problem. In this study, it is aimed to identify and prioritize the evaluation factors for the customer order selection problem. Conjoint analysis is used to examine the importance level of each factor which is determined as the potential profit rate per unit of time, the compatibility of potential order with available capacity, the level of potential future order with higher profit, customer credit of future business opportunity, and the negotiability level of production schedule for the order.

Keywords: conjoint analysis, order prioritization, profit management, structural steel firm

Procedia PDF Downloads 364
14873 Structural Performance Evaluation of Segmented Wind Turbine Blade Through Finite Element Simulation

Authors: Chandrashekhar Bhat, Dilifa Jossley Noronha, Faber A. Saldana

Abstract:

Transportation of long turbine blades from one place to another is a difficult process. Hence a feasibility study of modularization of wind turbine blade was taken from structural standpoint through finite element analysis. Initially, a non-segmented blade is modeled and its structural behavior is evaluated to serve as reference. The resonant, static bending and fatigue tests are simulated in accordance with IEC61400-23 standard for comparison purpose. The non-segmented test blade is separated at suitable location based on trade off studies and the segments are joined with an innovative double strap bonded joint configuration. The adhesive joint is modeled by adopting cohesive zone modeling approach in ANSYS. The developed blade model is analyzed for its structural response through simulation. Performances of both the blades are found to be similar, which indicates that, efficient segmentation of the long blade is possible which facilitates easy transportation of the blades and on site reassembling. The location selected for segmentation and adopted joint configuration has resulted in an efficient segmented blade model which proves the methodology adopted for segmentation was quite effective. The developed segmented blade appears to be the viable alternative considering its structural response specifically in fatigue within considered assumptions.

Keywords: modularization, fatigue, cohesive zone modeling, wind turbine blade

Procedia PDF Downloads 418
14872 Study on Hydrogen Isotope Permeability of High Entropy Alloy Coating

Authors: Long Wang, Yongjin Feng, Xiaofang Luo

Abstract:

Tritium permeation through structural materials is a significant issue for fusion demonstration (DEMO) reactor blankets in terms of fuel cycle efficiency and radiological safety. Reduced activation ferritic (RAFM) steel CLF-1 is a prime candidate for the China’s CFETR blanket structural material, facing high permeability of hydrogen isotopes at reactor operational temperature. To confine tritium as much as possible in the reactor, surface modification of the steels including fabrication of tritium permeation barrier (TPB) attracts much attention. As a new alloy system, high entropy alloy (HEA) contains at least five principal elements, each of which ranges from 5 at% to 35 at%. This high mixing effect entitles HEA extraordinary comprehensive performance. So it is attractive to lead HEA into surface alloying for protective use. At present, studies on the hydrogen isotope permeability of HEA coatings is still insufficient and corresponding mechanism isn’t clear. In our study, we prepared three kinds of HEA coatings, including AlCrTaTiZr, (AlCrTaTiZr)N and (AlCrTaTiZr)O. After comprehensive characterization of SEM, XPS, AFM, XRD and TEM, the structure and composition of the HEA coatings were obtained. Deuterium permeation tests were conducted to evaluate the hydrogen isotope permeability of AlCrTaTiZr, (AlCrTaTiZr)N and (AlCrTaTiZr)O HEA coatings. Results proved that the (AlCrTaTiZr)N and (AlCrTaTiZr)O HEA coatings had better hydrogen isotope permeation resistance. Through analyzing and characterizing the hydrogen isotope permeation results of the corroded samples, an internal link between hydrogen isotope permeation behavior and structure of HEA coatings was established. The results provide valuable reference in engineering design of structural and TPB materials for future fusion device.

Keywords: high entropy alloy, hydrogen isotope permeability, tritium permeation barrier, fusion demonstration reactor

Procedia PDF Downloads 147
14871 Forecasting the Influences of Information and Communication Technology on the Structural Changes of Japanese Industrial Sectors: A Study Using Statistical Analysis

Authors: Ubaidillah Zuhdi, Shunsuke Mori, Kazuhisa Kamegai

Abstract:

The purpose of this study is to forecast the influences of Information and Communication Technology (ICT) on the structural changes of Japanese economies based on Leontief Input-Output (IO) coefficients. This study establishes a statistical analysis to predict the future interrelationships among industries. We employ the Constrained Multivariate Regression (CMR) model to analyze the historical changes of input-output coefficients. Statistical significance of the model is then tested by Likelihood Ratio Test (LRT). In our model, ICT is represented by two explanatory variables, i.e. computers (including main parts and accessories) and telecommunications equipment. A previous study, which analyzed the influences of these variables on the structural changes of Japanese industrial sectors from 1985-2005, concluded that these variables had significant influences on the changes in the business circumstances of Japanese commerce, business services and office supplies, and personal services sectors. The projected future Japanese economic structure based on the above forecast generates the differentiated direct and indirect outcomes of ICT penetration.

Keywords: forecast, ICT, industrial structural changes, statistical analysis

Procedia PDF Downloads 352
14870 Analyzing Bridge Response to Wind Loads and Optimizing Design for Wind Resistance and Stability

Authors: Abdul Haq

Abstract:

The goal of this research is to better understand how wind loads affect bridges and develop strategies for designing bridges that are more stable and resistant to wind. The effect of wind on bridges is essential to their safety and functionality, especially in areas that are prone to high wind speeds or violent wind conditions. The study looks at the aerodynamic forces and vibrations caused by wind and how they affect bridge construction. Part of the research method involves first understanding the underlying ideas influencing wind flow near bridges. Computational fluid dynamics (CFD) simulations are used to model and forecast the aerodynamic behaviour of bridges under different wind conditions. These models incorporate several factors, such as wind directionality, wind speed, turbulence intensity, and the influence of nearby structures or topography. The results provide significant new insights into the loads and pressures that wind places on different bridge elements, such as decks, pylons, and connections. Following the determination of the wind loads, the structural response of bridges is assessed. By simulating their dynamic behavior under wind-induced forces, Finite Element Analysis (FEA) is used to model the bridge's component parts. This work contributes to the understanding of which areas are at risk of experiencing excessive stresses, vibrations, or oscillations due to wind excitations. Because the bridge has inherent modes and frequencies, the study considers both static and dynamic responses. Various strategies are examined to maximize the design of bridges to withstand wind. It is possible to alter the bridge's geometry, add aerodynamic components, add dampers or tuned mass dampers to lessen vibrations, and boost structural rigidity. Through an analysis of several design modifications and their effectiveness, the study aims to offer guidelines and recommendations for wind-resistant bridge design. In addition to the numerical simulations and analyses, there are experimental studies. In order to assess the computational models and validate the practicality of proposed design strategies, scaled bridge models are tested in a wind tunnel. These investigations help to improve numerical models and prediction precision by providing valuable information on wind-induced forces, pressures, and flow patterns. Using a combination of numerical models, actual testing, and long-term performance evaluation, the project aims to offer practical insights and recommendations for building wind-resistant bridges that are secure, long-lasting, and comfortable for users.

Keywords: wind effects, aerodynamic forces, computational fluid dynamics, finite element analysis

Procedia PDF Downloads 40