Search results for: stock returns
1043 The Effect of Behavioral and Risk Factors of Investment Growth on Stock Returns
Authors: Majid Lotfi Ghahroud, Seyed Jalal Tabatabaei, Ebrahim Karami, AmirArsalan Ghergherechi, Amir Ali Saeidi
Abstract:
In this study, the relationship between investment growth and stock returns of companies listed in Tehran Stock Exchange and whether their relationship -behavioral or risk factors- are discussed. Generally, there are two perspectives; risk-based approach and behavioral approach. According to the risk-based approach due to increase investment, systemic risk and consequently the stock returns are reduced. But due to the second approach, an excessive optimism or pessimism leads to assuming stock price with high investment growth in the past, higher than its intrinsic value and the price of stocks with lower investment growth, less than its intrinsic value. The investigation period is eight years from 2007 to 2014. The sample consisted of all companies listed on the Tehran Stock Exchange. The method is a portfolio test, and the analysis is based on the t-student test (t-test). The results indicate that there is a negative relationship between investment growth and stock returns of companies and this negative correlation is stronger for firms with higher cash flow. Also, the negative relationship between asset growth and stock returns is due to behavioral factors.Keywords: behavioral theory, investment growth, risk-based theory, stock returns
Procedia PDF Downloads 1561042 Risk Management of Natural Disasters on Insurance Stock Market
Authors: Tarah Bouaricha
Abstract:
The impact of worst natural disasters is analysed in terms of insured losses which happened between 2010 and 2014 on S&P insurance index. Event study analysis is used to test whether natural disasters impact insurance index stock market price. There is no negative impact on insurance stock market price around the disasters event. To analyse the reaction of insurance stock market, normal returns (NR), abnormal returns (AR), cumulative abnormal returns (CAR), cumulative average abnormal returns (CAAR) and a parametric test on AR and on CAR are used.Keywords: study event, natural disasters, insurance, reinsurance, stock market
Procedia PDF Downloads 3941041 An Empirical Study of the Best Fitting Probability Distributions for Stock Returns Modeling
Authors: Jayanta Pokharel, Gokarna Aryal, Netra Kanaal, Chris Tsokos
Abstract:
Investment in stocks and shares aims to seek potential gains while weighing the risk of future needs, such as retirement, children's education etc. Analysis of the behavior of the stock market returns and making prediction is important for investors to mitigate risk on investment. Historically, the normal variance models have been used to describe the behavior of stock market returns. However, the returns of the financial assets are actually skewed with higher kurtosis, heavier tails, and a higher center than the normal distribution. The Laplace distribution and its family are natural candidates for modeling stock returns. The Variance-Gamma (VG) distribution is the most sought-after distributions for modeling asset returns and has been extensively discussed in financial literatures. In this paper, it explore the other Laplace family, such as Asymmetric Laplace, Skewed Laplace, Kumaraswamy Laplace (KS) together with Variance-Gamma to model the weekly returns of the S&P 500 Index and it's eleven business sector indices. The method of maximum likelihood is employed to estimate the parameters of the distributions and our empirical inquiry shows that the Kumaraswamy Laplace distribution performs much better for stock returns modeling among the choice of distributions used in this study and in practice, KS can be used as a strong alternative to VG distribution.Keywords: stock returns, variance-gamma, kumaraswamy laplace, maximum likelihood
Procedia PDF Downloads 701040 The Influence of the Company's Financial Performance and Macroeconomic Factors to Stock Return
Authors: Angrita Denziana, Haninun, Hepiana Patmarina, Ferdinan Fatah
Abstract:
The aims of the study are to determine the effect of the company's financial performance with Return on Asset (ROA) and Return on Equity (ROE) indicators. The macroeconomic factors with the indicators of Indonesia interest rate (SBI) and exchange rate on stock returns of non-financial companies listed in IDX. The results of this study indicate that the variable of ROA has negative effect on stock returns, ROE has a positive effect on stock returns, and the variable interest rate and exchange rate of SBI has positive effect on stock returns. From the analysis data by using regression model, independent variables ROA, ROE, SBI interest rate and the exchange rate very significant (p value < 0.01). Thus, all the above variable can be used as the basis for investment decision making for investment in Indonesia Stock Exchange (IDX) mainly for shares in the non- financial companies.Keywords: ROA, ROE, interest rate, exchange rate, stock return
Procedia PDF Downloads 4291039 Exposing Investor Sentiment In Stock Returns
Authors: Qiang Bu
Abstract:
This paper compares the explanatory power of sentiment level and sentiment shock. The preliminary test results show that sentiment shock plays a more significant role in explaining stocks returns, including the raw return and abnormal return. We also find that sentiment shock beta has a higher statistical significance than sentiment beta. These finding sheds new light on the relationship between investor sentiment and stock returns.Keywords: sentiment level, sentiment shock, explanatory power, abnormal stock return, beta
Procedia PDF Downloads 1361038 Application of Generalized Autoregressive Score Model to Stock Returns
Authors: Katleho Daniel Makatjane, Diteboho Lawrence Xaba, Ntebogang Dinah Moroke
Abstract:
The current study investigates the behaviour of time-varying parameters that are based on the score function of the predictive model density at time t. The mechanism to update the parameters over time is the scaled score of the likelihood function. The results revealed that there is high persistence of time-varying, as the location parameter is higher and the skewness parameter implied the departure of scale parameter from the normality with the unconditional parameter as 1.5. The results also revealed that there is a perseverance of the leptokurtic behaviour in stock returns which implies the returns are heavily tailed. Prior to model estimation, the White Neural Network test exposed that the stock price can be modelled by a GAS model. Finally, we proposed further researches specifically to model the existence of time-varying parameters with a more detailed model that encounters the heavy tail distribution of the series and computes the risk measure associated with the returns.Keywords: generalized autoregressive score model, South Africa, stock returns, time-varying
Procedia PDF Downloads 5001037 The Effect of COVID-19 Transmission, Lockdown Measures, and Vaccination on Stock Market Returns
Authors: Belhouchet Selma, Ben Amar Anis
Abstract:
We examine the impact of COVID-19 transmission, containment measures, and vaccination growth on daily stock market returns for the G7 countries (Canada, France, Germany, Italy, Japan, the United Kingdom, and the United States) from January 22, 2020, to August 31, 2021, more than a year and a half after COVID-19. For this objective, we use panel pooled ordinary least squares regressions. Our findings indicate that the spread of the pandemic has a negative impact on the daily performance of the world's seven main stock markets. Government measures to improve stock market returns are no longer successful. Furthermore, our findings demonstrate that immunization efforts in G7 nations do not increase stock market performance in these countries. A variety of robustness tests back up our conclusions. Our findings have far-reaching implications for investors, governments, and regulators not only in the G7 countries but also in all developed countries and all countries globally.Keywords: COVID-19, G7 stock market, containment measures, vaccination
Procedia PDF Downloads 1001036 Unveiling the Black Swan of the Inflation-Adjusted Real Excess Returns-Risk Nexus: Evidence From Pakistan Stock Exchange
Authors: Mohammad Azam
Abstract:
The purpose of this study is to investigate risk and real excess portfolio returns using inflation adjusted risk-free rates, a measuring technique that focuses on the momentum augmented Fama-French six-factor model and use monthly data from 1994 to 2022. With the exception of profitability, the data show that market, size, value, momentum, and investment factors are all strongly associated to excess portfolio stock returns using ordinary lease square regression technique. According to the Gibbons, Ross, and Shanken test, the momentum augmented Fama-French six-factor model outperforms the market. This technique discovery may be utilised by academics and professionals to acquire an in-depth knowledge of the Pakistan Stock Exchange across a broad stock pattern for investing decisions and portfolio construction.Keywords: real excess portfolio returns, momentum augmented fama & french five-factor model, GRS-test, pakistan stock exchange
Procedia PDF Downloads 1021035 Price to Earnings Growth (PEG) Predicting Future Returns Better than the Price to Earnings (PE) Ratio
Authors: Lindrianasari Stefanie, Aminah Khairudin
Abstract:
This study aims to provide empirical evidence regarding the ability of Price to Earnings Ratio and PEG Ratio in predicting future stock returns issuers. The samples used in this study are stocks that go into LQ45. The main contribution is to assign empirical evidence if the PEG Ratio can provide optimum return compared to Price to Earnings Ratio. This study used a sample of the entire company into the group LQ45 with the period of observation. The data used is limited to the financial statements of a company incorporated in LQ45 period July 2013-July 2014, using the financial statements and the position of the company's closing stock price at the end of 2010 as a reference benchmark for the growth of the company's stock price compared to the closing price of 2013. This study found that the method of PEG Ratio can outperform the method of PE ratio in predicting future returns on the stock portfolio of LQ45.Keywords: price to earnings growth, price to earnings ratio, future returns, stock price
Procedia PDF Downloads 4111034 On the Influence of the Covid-19 Pandemic on Tunisian Stock Market: By Sector Analysis
Authors: Nadia Sghaier
Abstract:
In this paper, we examine the influence of the COVID-19 pandemic on the performance of the Tunisian stock market and 12 sectors over a recent period from 23 March 2020 to 18 August 2021, including several waves and the introduction of vaccination. The empirical study is conducted using cointegration techniques which allows for long and short-run relationships. The obtained results indicate that both daily growth in confirmed cases and deaths have a negative and significant effect on the stock market returns. In particular, this effect differs across sectors. It seems more pronounced in financial, consumer goods and industrials sectors. These findings have important implications for investors to predict the behavior of the stock market or sectors returns and to implement hedging strategies during the COVID-19 pandemic.Keywords: Tunisian stock market, sectors, COVID-19 pandemic, cointegration techniques
Procedia PDF Downloads 2001033 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia
Authors: Carol Anne Hargreaves
Abstract:
A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.Keywords: machine learning, stock market trading, logistic regression, cluster analysis, factor analysis, decision trees, neural networks, automated stock investment system
Procedia PDF Downloads 1561032 Forecast Dispersion, Investor Sentiment and the Cross Section of Stock Returns
Authors: Guoyu Lin
Abstract:
This paper explores the role investor sentiment plays in the relationship between analyst forecast dispersion and stock returns. With short sale constraints, stock prices are determined by the optimistic investors. During the high sentiment periods when investors suffer more from psychological bias, there are more optimistic investors. This is the first paper to document that following the high sentiment periods, stocks with the most analyst forecast dispersion are overpriced, earning significantly negative returns, while those with the least analyst forecast dispersion are not overpriced as the degree of belief dispersion is low. However, following the low sentiment periods, both are not overpriced. A portfolio which longs the least dispersed stocks and shorts the most dispersed stocks yields significantly positive returns only following the high sentiment periods. My findings can potentially reconcile the puzzling risk effect and mispricing effect in the literature. The risk (mispricing) effect suggests a positive (negative) relation between analyst forecast dispersion and future stock returns. Presumably, the magnitude of the mispricing effect depends on the proportion of irrational investors and their bias, which is positively related to investor sentiment. During the high sentiment period, the mispricing effect takes over and the overall effect is negative. During the low sentiment period, the percentage of irrational investors is mediate, and the mispricing effect and the risk effect counter each other, leading to insignificant relation.Keywords: analyst forecast dispersion, short-sale constraints, investor sentiment, stock returns
Procedia PDF Downloads 1411031 Investor Psychology, Housing Prices, and Stock Market Response to Policy Decisions During the Covid-19 Recession in the United States
Authors: Ly Nguyen, Vidit Munshi
Abstract:
During the Covid-19 recession, the United States government has implemented several instruments to mitigate the impacts and revitalize the economy. This paper explores the effects of the various government policy decisions on stock returns, housing prices, and investor psychology during the pandemic in the United States. A numerous previous literature studies on this subject, yet very few focus on the context similar to what we are currently experiencing. Our monthly data covering the period from January 2019 through July 2021 were collected from Datastream. Utilizing the VAR model, we document a dynamic relationship between the market and policy actions throughout the period. In particular, the movements of Unemployment, Stock returns, and Housing prices are strongly sensitive to changes in government policies. Our results also indicate that changes in production level, stock returns, and interest rates decisions influence how investors perceived future market risk and expectations. We do not find any significant nexus between monetary and fiscal policy. Our findings imply that information on government policy and stock market performance provide useful feedback to one another in order to make better decisions in the current and future pandemic. Understanding how the market responds to a shift in government practices has important implications for authorities in implementing policy to avoid assets bubbles and market overreactions. The paper also provides useful implications for investors in evaluating the effectiveness of different policies and diversifying portfolios to minimize systematic risk and maximize returns.Keywords: Covid-19 recession, United States, government policies, investor psychology, housing prices, stock market returns
Procedia PDF Downloads 1711030 Forecasting for Financial Stock Returns Using a Quantile Function Model
Authors: Yuzhi Cai
Abstract:
In this paper, we introduce a newly developed quantile function model that can be used for estimating conditional distributions of financial returns and for obtaining multi-step ahead out-of-sample predictive distributions of financial returns. Since we forecast the whole conditional distributions, any predictive quantity of interest about the future financial returns can be obtained simply as a by-product of the method. We also show an application of the model to the daily closing prices of Dow Jones Industrial Average (DJIA) series over the period from 2 January 2004 - 8 October 2010. We obtained the predictive distributions up to 15 days ahead for the DJIA returns, which were further compared with the actually observed returns and those predicted from an AR-GARCH model. The results show that the new model can capture the main features of financial returns and provide a better fitted model together with improved mean forecasts compared with conventional methods. We hope this talk will help audience to see that this new model has the potential to be very useful in practice.Keywords: DJIA, financial returns, predictive distribution, quantile function model
Procedia PDF Downloads 3661029 Whether Asset Growth is Systematic Risk: Evidence from Thailand
Authors: Thitima Chaiyakul
Abstract:
The number of previous literature regarding to the effect of asset growth and equity returns is small. Furthermore, those literature are mainly focus in the developed markets. According to my knowledge, there is no published paper examining the effect of asset growth and equity returns in the Stock Exchange of Thailand in different industry groups. The main objective in this research is the testing the effect of asset growth to equity returns in different industry groups. This study employs the data of the listed companies in the Stock Exchange of Thailand during January 1996 and December 2014. The data of financial industry are exclude from this study due to the different meaning of accounting terms. The results show the supported evidence that the asset growth positively affects the equity returns at a statistically significance level of at least 5% in Agro& Food Industry, Industrials, and Services Industry Groups. These results are inconsistent with the previous research testing in developed markets. Nevertheless, the statistically significances of the effect of asset growth to equity returns appear in some cases. In summary, the asset growth is a non-systematic risk and it is a mispricing factor.Keywords: asset growth, asset pricing, equity returns, Thailand
Procedia PDF Downloads 3471028 The Value Relevance of Components of Other Comprehensive Income When Net Income Is Disaggregated
Authors: Taisier A. Zoubi, Feras Salama, Mahmud Hossain, Yass A. Alkafaji
Abstract:
The purpose of this study is to examine the equity pricing of other comprehensive income when earnings are disaggregated into several components. Our findings indicate that other comprehensive income can better explain variation in stock returns when net income is reported in a disaggregated form. Additionally, we found that disaggregating both net income and other comprehensive income can explain more of the variation in the stock returns than the two summary components of comprehensive income. Our results survive a series of robustness checks.Keywords: market valuation, other comprehensive income, value-relevance, incremental information content
Procedia PDF Downloads 3001027 On the Impact of Oil Price Fluctuations on Stock Markets: A Multivariate Long-Memory GARCH Framework
Authors: Manel Youssef, Lotfi Belkacem
Abstract:
This paper employs multivariate long memory GARCH models to simultaneously estimate mean and conditional variance spillover effects between oil prices and different financial markets. Since different financial assets are traded based on these market sector returns, it’s important for financial market participants to understand the volatility transmission mechanism over time and across these series in order to make optimal portfolio allocation decisions. We examine weekly returns from January 1, 2003 to November 30, 2012 and find evidence of significant transmission of shocks and volatilities between oil prices and some of the examined financial markets. The findings support the idea of cross-market hedging and sharing of common information by investors.Keywords: oil prices, stock indices returns, oil volatility, contagion, DCC-multivariate (FI) GARCH
Procedia PDF Downloads 5321026 Numerical Simulation of Wishart Diffusion Processes
Authors: Raphael Naryongo, Philip Ngare, Anthony Waititu
Abstract:
This paper deals with numerical simulation of Wishart processes for a single asset risky pricing model whose volatility is described by Wishart affine diffusion processes. The multi-factor specification of volatility will make the model more flexible enough to fit the stock market data for short or long maturities for better returns. The Wishart process is a stochastic process which is a positive semi-definite matrix-valued generalization of the square root process. The aim of the study is to model the log asset stock returns under the double Wishart stochastic volatility model. The solution of the log-asset return dynamics for Bi-Wishart processes will be obtained through Euler-Maruyama discretization schemes. The numerical results on the asset returns are compared to the existing models returns such as Heston stochastic volatility model and double Heston stochastic volatility modelKeywords: euler schemes, log-asset return, infinitesimal generator, wishart diffusion affine processes
Procedia PDF Downloads 3771025 Clustering of Extremes in Financial Returns: A Comparison between Developed and Emerging Markets
Authors: Sara Ali Alokley, Mansour Saleh Albarrak
Abstract:
This paper investigates the dependency or clustering of extremes in the financial returns data by estimating the extremal index value θ∈[0,1]. The smaller the value of θ the more clustering we have. Here we apply the method of Ferro and Segers (2003) to estimate the extremal index for a range of threshold values. We compare the dependency structure of extremes in the developed and emerging markets. We use the financial returns of the stock market index in the developed markets of US, UK, France, Germany and Japan and the emerging markets of Brazil, Russia, India, China and Saudi Arabia. We expect that more clustering occurs in the emerging markets. This study will help to understand the dependency structure of the financial returns data.Keywords: clustring, extremes, returns, dependency, extermal index
Procedia PDF Downloads 4041024 Management as a Proxy for Firm Quality
Authors: Petar Dobrev
Abstract:
There is no agreed-upon definition of firm quality. While profitability and stock performance often qualify as popular proxies of quality, in this project, we aim to identify quality without relying on a firm’s financial statements or stock returns as selection criteria. Instead, we use firm-level data on management practices across small to medium-sized U.S. manufacturing firms from the World Management Survey (WMS) to measure firm quality. Each firm in the WMS dataset is assigned a mean management score from 0 to 5, with higher scores identifying better-managed firms. This management score serves as our proxy for firm quality and is the sole criteria we use to separate firms into portfolios comprised of high-quality and low-quality firms. We define high-quality (low-quality) firms as those firms with a management score of one standard deviation above (below) the mean. To study whether this proxy for firm quality can identify better-performing firms, we link this data to Compustat and The Center for Research in Security Prices (CRSP) to obtain firm-level data on financial performance and monthly stock returns, respectively. We find that from 1999 to 2019 (our sample data period), firms in the high-quality portfolio are consistently more profitable — higher operating profitability and return on equity compared to low-quality firms. In addition, high-quality firms also exhibit a lower risk of bankruptcy — a higher Altman Z-score. Next, we test whether the stocks of the firms in the high-quality portfolio earn superior risk-adjusted excess returns. We regress the monthly excess returns on each portfolio on the Fama-French 3-factor, 4-factor, and 5-factor models, the betting-against-beta factor, and the quality-minus-junk factor. We find no statistically significant differences in excess returns between both portfolios, suggesting that stocks of high-quality (well managed) firms do not earn superior risk-adjusted returns compared to low-quality (poorly managed) firms. In short, our proxy for firm quality, the WMS management score, can identify firms with superior financial performance (higher profitability and reduced risk of bankruptcy). However, our management proxy cannot identify stocks that earn superior risk-adjusted returns, suggesting no statistically significant relationship between managerial quality and stock performance.Keywords: excess stock returns, management, profitability, quality
Procedia PDF Downloads 931023 The Impact of Financial News and Press Freedom on Abnormal Returns around Earnings Announcements in Greater China
Authors: Yu-Chen Wei, Yang-Cheng Lu, I-Chi Lin
Abstract:
This study examines the impacts of news sentiment and press freedom on abnormal returns during the earnings announcement in greater China including the Shanghai, Shenzhen and Taiwan stock markets. The news sentiment ratio is calculated by using the content analysis of semantic orientation. The empirical results show that news released prior to the event date may decrease the cumulative abnormal returns prior to the earnings announcement regardless of whether it is released in China or Taiwan. By contrast, companies with optimistic financial news may increase the cumulative abnormal returns during the announcement date. Furthermore, the difference in terms of press freedom is considered in greater China to compare the impact of press freedom on abnormal returns. The findings show that, the freer the press is, the more negatively significant will be the impact of news on the abnormal returns, which means that the press freedom may decrease the ability of the news to impact the abnormal returns. The intuition is that investors may receive alternative news related to each company in the market with greater press freedom, which proves the efficiency of the market and reduces the possible excess returns.Keywords: news, press freedom, Greater China, earnings announcement, abnormal returns
Procedia PDF Downloads 3931022 The Impact of Macroeconomic Factors on Tehran Stock Exchange Index during Economic and Oil Sanctions between January 2006 and December 2012
Authors: Hamed Movahedizadeh, Annuar Md Nassir, Mehdi Karimimalayer, Navid Samimi Sedeh, Ehsan Bagherpour
Abstract:
The aim of this paper is to evaluate Tehran’s Stock Exchange (TSE) performance regarding with impact of four macroeconomic factors including world crude Oil Price (OP), World Gold Price (GP), Consumer Price Index (CPI) and total Supplied Oil by Iran (SO) from January 2006 to December 2012 that Iran faced with economic and oil sanctions. Iran's exports of crude oil and lease condensate reduced to roughly 1.5 million barrels per day (bbl/d) in 2012, compared to 2.5 million bbl/d in 2011 due to hard sanctions. Monthly data are collected and subjected to a battery of tests through ordinary least square by EViews7. This study found that gold price and oil price are positively correlated with stock returns while total oil supplied and consumer price index have negative relationship with stock index, however, consumer price index tends to become insignificant in stock index. While gold price and consumer price index have short run relationship with TSE index at 10% of significance level this amount for oil price is significant at 5% and there is no significant short run relationship between supplied oil and Tehran stock returns. Moreover, this study found that all macroeconomic factors have long-run relationship with Tehran Stock Exchange Index.Keywords: consumer price index, gold price, macroeconomic, oil price, sanction, stock market, supplied oil
Procedia PDF Downloads 4881021 Day of the Week Patterns and the Financial Trends' Role: Evidence from the Greek Stock Market during the Euro Era
Authors: Nikolaos Konstantopoulos, Aristeidis Samitas, Vasileiou Evangelos
Abstract:
The purpose of this study is to examine if the financial trends influence not only the stock markets’ returns, but also their anomalies. We choose to study the day of the week effect (DOW) for the Greek stock market during the Euro period (2002-12), because during the specific period there are not significant structural changes and there are long term financial trends. Moreover, in order to avoid possible methodological counterarguments that usually arise in the literature, we apply several linear (OLS) and nonlinear (GARCH family) models to our sample until we reach to the conclusion that the TGARCH model fits better to our sample than any other. Our results suggest that in the Greek stock market there is a long term predisposition for positive/negative returns depending on the weekday. However, the statistical significance is influenced from the financial trend. This influence may be the reason why there are conflict findings in the literature through the time. Finally, we combine the DOW’s empirical findings from 1985-2012 and we may assume that in the Greek case there is a tendency for long lived turn of the week effect.Keywords: day of the week effect, GARCH family models, Athens stock exchange, economic growth, crisis
Procedia PDF Downloads 4091020 Assessing Artificial Neural Network Models on Forecasting the Return of Stock Market Index
Authors: Hamid Rostami Jaz, Kamran Ameri Siahooei
Abstract:
Up to now different methods have been used to forecast the index returns and the index rate. Artificial intelligence and artificial neural networks have been one of the methods of index returns forecasting. This study attempts to carry out a comparative study on the performance of different Radial Base Neural Network and Feed-Forward Perceptron Neural Network to forecast investment returns on the index. To achieve this goal, the return on investment in Tehran Stock Exchange index is evaluated and the performance of Radial Base Neural Network and Feed-Forward Perceptron Neural Network are compared. Neural networks performance test is applied based on the least square error in two approaches of in-sample and out-of-sample. The research results show the superiority of the radial base neural network in the in-sample approach and the superiority of perceptron neural network in the out-of-sample approach.Keywords: exchange index, forecasting, perceptron neural network, Tehran stock exchange
Procedia PDF Downloads 4631019 Modeling Environmental, Social, and Governance Financial Assets with Lévy Subordinated Processes and Option Pricing
Authors: Abootaleb Shirvani, Svetlozar Rachev
Abstract:
ESG stands for Environmental, Social, and Governance and is a non-financial factor that investors use to specify material risks and growth opportunities in their analysis process. ESG ratings provide a quantitative measure of socially responsible investment, and it is essential to incorporate ESG ratings when modeling the dynamics of asset returns. In this article, we propose a triple subordinated Lévy process for incorporating numeric ESG ratings into dynamic asset pricing theory to model the time series properties of the stock returns. The motivation for introducing three layers of subordinator is twofold. The first two layers of subordinator capture the skew and fat-tailed properties of the stock return distribution that cannot be explained well by the existing Lévy subordinated model. The third layer of the subordinator introduces ESG valuation and incorporates numeric ESG ratings into dynamic asset pricing theory and option pricing. We employ the triple subordinator Lévy model for developing the ESG-valued stock return model, derive the implied ESG score surfaces for Microsoft, Apple, and Amazon stock returns, and compare the shape of the ESG implied surface scores for these stocks.Keywords: ESG scores, dynamic asset pricing theory, multiple subordinated modeling, Lévy processes, option pricing
Procedia PDF Downloads 801018 The Effect of the Enterprises Being Classified as Socially Responsible on Their Stock Returns
Authors: Chih-Hsiang Chang, Chia-Ching Tsai
Abstract:
The aim of this study is to examine the stock price effect of the enterprises being classified as socially responsible. We explore the stock price response to the announcement that an enterprise is selected for the Taiwan Corporate Sustainability Awards. Empirical results indicate that the announcements of the Taiwan Corporate Sustainability Awards provide useful informational content to stock market. We find the evidence of insignificantly positive short-term and significantly positive long-term price reaction to the enterprises being classified as socially responsible. This study concludes that investors in the Taiwan stock market tend to view an enterprise being selected for the Taiwan Corporate Sustainability Awards as one with superior quality and long-term price potential.Keywords: corporate social responsibility, stock price effect, Taiwan stock market, investments
Procedia PDF Downloads 1531017 Existence of Systemic Risk in Turkish Banking Sector: An Evidence from Return Distributions
Authors: İlhami Karahanoglu, Oguz Ceylan
Abstract:
As its well-known definitions; systemic risk refers to whole economic system down-turn movement even collapse together in very severe cases. In fact, it points out the contagion effects of the defaults. Such a risk is can be depicted with the famous Chinese game of falling domino stones. During and after the Bear & Sterns and Lehman Brothers cases, it was well understood that there is a very strong effect of systemic risk in financial services sector. In this study, we concentrate on the existence of systemic risk in Turkish Banking Sector based upon the Halkbank Case during the end month of 2013; there was a political turmoil in Turkey in which the close relatives of the upper politicians were involved in illegal trading activities. In that operation, the CEO of Halkbank was also arrested and in investigation, Halkbank was considered as part of such illegal actions. That operation had an impact on Halkbanks stock value. The Halkbank stock value during that time interval decreased remarkably, the distributional profile of stock return changed and became more volatile as well as more skewed. In this study, the daily returns of 5 leading banks in Turkish banking sector were used to obtain 48 return distributions (for each month, 90-days-back stock value returns are used) of 5 banks for the period 12/2011-12/2013 (pre operation period) and 12/2013-12/2015 (post operation period). When those distributions are compared with timely manner, interestingly; the distribution of the 5 other leading banks in Turkey, public or private, had also distribution profiles which was different from the past 2011-2013 period just like Halkbank. Those 5 big banks, whose stock values are monitored with sub index in Istanbul stock exchange (BIST) as BN10, had more skewed distribution just following the Halkbank stock return movement during the post operation period, with lover mean value and as well higher volatility. In addition, the correlation between the stock value return distributions of the leading banks after Halkbank case, where the returns are more skewed to the left, increased (which is measured in monthly base before and after the operation). The dependence between those banks was stronger under the case where the stock values were falling compared with the normal market condition. Such distributional effect of stock returns between the leading banks in Turkey, which is valid for down sub-market (financial/banking sector) condition, can be evaluated as an evidence for the existence of contagious effect and systemic risk.Keywords: financial risk, systemic risk, banking sector, return distribution, dependency structure
Procedia PDF Downloads 2951016 A Comparative Analysis of Global Minimum Variance and Naïve Portfolios: Performance across Stock Market Indices and Selected Economic Regimes Using Various Risk-Return Metrics
Authors: Lynmar M. Didal, Ramises G. Manzano Jr., Jacque Bon-Isaac C. Aboy
Abstract:
This study analyzes the performance of global minimum variance and naive portfolios across different economic periods, using monthly stock returns from the Philippine Stock Exchange Index (PSEI), S&P 500, and Dow Jones Industrial Average (DOW). The performance is evaluated through the Sharpe ratio, Sortino ratio, Jensen’s Alpha, Treynor ratio, and Information ratio. Additionally, the study investigates the impact of short selling on portfolio performance. Six-time periods are defined for analysis, encompassing events such as the global financial crisis and the COVID-19 pandemic. Findings indicate that the Naive portfolio generally outperforms the GMV portfolio in the S&P 500, signifying higher returns with increased volatility. Conversely, in the PSEI and DOW, the GMV portfolio shows more efficient risk-adjusted returns. Short selling significantly impacts the GMV portfolio during mid-GFC and mid-COVID periods. The study offers insights for investors, suggesting the Naive portfolio for higher risk tolerance and the GMV portfolio as a conservative alternative.Keywords: portfolio performance, global minimum variance, naïve portfolio, risk-adjusted metrics, short-selling
Procedia PDF Downloads 931015 An Empirical Analysis of the Effects of Corporate Derivatives Use on the Underlying Stock Price Exposure: South African Evidence
Authors: Edson Vengesai
Abstract:
Derivative products have become essential instruments in portfolio diversification, price discovery, and, most importantly, risk hedging. Derivatives are complex instruments; their valuation, volatility implications, and real impact on the underlying assets' behaviour are not well understood. Little is documented empirically, with conflicting conclusions on how these instruments affect firm risk exposures. Given the growing interest in using derivatives in risk management and portfolio engineering, this study examines the practical impact of derivative usage on the underlying stock price exposure and systematic risk. The paper uses data from South African listed firms. The study employs GARCH models to understand the effect of derivative uses on conditional stock volatility. The GMM models are used to estimate the effect of derivatives use on stocks' systematic risk as measured by Beta and on the total risk of stocks as measured by the standard deviation of returns. The results provide evidence on whether derivatives use is instrumental in reducing stock returns' systematic and total risk. The results are subjected to numerous controls for robustness, including financial leverage, firm size, growth opportunities, and macroeconomic effects.Keywords: derivatives use, hedging, volatility, stock price exposure
Procedia PDF Downloads 1081014 Inflation Tail Risks and Asset Pricing
Authors: Sebastian Luber
Abstract:
The study demonstrates that tail inflation risk is priced into stock returns and credit spreads. This holds true even when controlling for current and historical inflation moments. The analysis employs inflation caps and floors to obtain the distribution of future inflation under the risk-neutral measure. Credit spreads decrease as the mean and median of future inflation rise, but they respond positively to tail risks. Conversely, stocks serve as a robust hedge against future inflation. Stock returns increase with a higher mean and median of future inflation and rising inflationary tail risk, while they decrease with rising deflationary tail risk.Keywords: asset pricing, inflation expectations, tail risk, stocks, inflation derivatives, credit
Procedia PDF Downloads 21