Search results for: statistical machine learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11527

Search results for: statistical machine learning

11347 Comprehensive Study of Data Science

Authors: Asifa Amara, Prachi Singh, Kanishka, Debargho Pathak, Akshat Kumar, Jayakumar Eravelly

Abstract:

Today's generation is totally dependent on technology that uses data as its fuel. The present study is all about innovations and developments in data science and gives an idea about how efficiently to use the data provided. This study will help to understand the core concepts of data science. The concept of artificial intelligence was introduced by Alan Turing in which the main principle was to create an artificial system that can run independently of human-given programs and can function with the help of analyzing data to understand the requirements of the users. Data science comprises business understanding, analyzing data, ethical concerns, understanding programming languages, various fields and sources of data, skills, etc. The usage of data science has evolved over the years. In this review article, we have covered a part of data science, i.e., machine learning. Machine learning uses data science for its work. Machines learn through their experience, which helps them to do any work more efficiently. This article includes a comparative study image between human understanding and machine understanding, advantages, applications, and real-time examples of machine learning. Data science is an important game changer in the life of human beings. Since the advent of data science, we have found its benefits and how it leads to a better understanding of people, and how it cherishes individual needs. It has improved business strategies, services provided by them, forecasting, the ability to attend sustainable developments, etc. This study also focuses on a better understanding of data science which will help us to create a better world.

Keywords: data science, machine learning, data analytics, artificial intelligence

Procedia PDF Downloads 45
11346 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images

Authors: Jameela Ali Alkrimi, Abdul Rahim Ahmad, Azizah Suliman, Loay E. George

Abstract:

Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. The lack of RBCs is a condition characterized by lower than normal hemoglobin level; this condition is referred to as 'anemia'. In this study, a software was developed to isolate RBCs by using a machine learning approach to classify anemic RBCs in microscopic images. Several features of RBCs were extracted using image processing algorithms, including principal component analysis (PCA). With the proposed method, RBCs were isolated in 34 second from an image containing 18 to 27 cells. We also proposed that PCA could be performed to increase the speed and efficiency of classification. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network ANN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained for a short time period with more efficient when PCA was used.

Keywords: red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC

Procedia PDF Downloads 379
11345 Employer Learning, Statistical Discrimination and University Prestige

Authors: Paola Bordon, Breno Braga

Abstract:

This paper investigates whether firms use university prestige to statistically discriminate among college graduates. The test is based on the employer learning literature which suggests that if firms use a characteristic for statistical discrimination, this variable should become less important for earnings as a worker gains labor market experience. In this framework, we use a regression discontinuity design to estimate a 19% wage premium for recent graduates of two of the most selective universities in Chile. However, we find that this premium decreases by 3 percentage points per year of labor market experience. These results suggest that employers use college selectivity as a signal of workers' quality when they leave school. However, as workers reveal their productivity throughout their careers, they become rewarded based on their true quality rather than the prestige of their college.

Keywords: employer learning, statistical discrimination, college returns, college selectivity

Procedia PDF Downloads 552
11344 An Investigation on Engineering Students’ Perceptions Towards E-learning in the UK

Authors: Vida Razzaghifard

Abstract:

E-learning, also known as online learning, has indicated an increased growth in recent years. One of the critical factors in the successful application of e-learning in higher education is students’ perceptions towards it. The main purpose of this paper is to investigate the perceptions of engineering students about e-learning in UK. For the purpose of the present study, 145 second year Engineering students were randomly selected from the total population of 1280 participants. The participants were asked to complete a questionnaire containing 16 items. The data collected from the questionnaire were analyzed through the Statistical Package for Social Science (SPSS) software. The findings of the study revealed that the majority of participants have negative perceptions on e-learning. Most of the students had trouble interacting effectively during online classes. Furthermore, the majority of participants had negative experiences with the learning platform they used during e-learning. Suggestions were made on what could be done to improve the students’ perceptions towards e-learning.

Keywords: E-learning, higher, education, engineering education, online learning

Procedia PDF Downloads 69
11343 Loan Repayment Prediction Using Machine Learning: Model Development, Django Web Integration and Cloud Deployment

Authors: Seun Mayowa Sunday

Abstract:

Loan prediction is one of the most significant and recognised fields of research in the banking, insurance, and the financial security industries. Some prediction systems on the market include the construction of static software. However, due to the fact that static software only operates with strictly regulated rules, they cannot aid customers beyond these limitations. Application of many machine learning (ML) techniques are required for loan prediction. Four separate machine learning models, random forest (RF), decision tree (DT), k-nearest neighbour (KNN), and logistic regression, are used to create the loan prediction model. Using the anaconda navigator and the required machine learning (ML) libraries, models are created and evaluated using the appropriate measuring metrics. From the finding, the random forest performs with the highest accuracy of 80.17% which was later implemented into the Django framework. For real-time testing, the web application is deployed on the Alibabacloud which is among the top 4 biggest cloud computing provider. Hence, to the best of our knowledge, this research will serve as the first academic paper which combines the model development and the Django framework, with the deployment into the Alibaba cloud computing application.

Keywords: k-nearest neighbor, random forest, logistic regression, decision tree, django, cloud computing, alibaba cloud

Procedia PDF Downloads 100
11342 Breast Cancer Diagnosing Based on Online Sequential Extreme Learning Machine Approach

Authors: Musatafa Abbas Abbood Albadr, Masri Ayob, Sabrina Tiun, Fahad Taha Al-Dhief, Mohammad Kamrul Hasan

Abstract:

Breast Cancer (BC) is considered one of the most frequent reasons of cancer death in women between 40 to 55 ages. The BC is diagnosed by using digital images of the FNA (Fine Needle Aspirate) for both benign and malignant tumors of the breast mass. Therefore, this work proposes the Online Sequential Extreme Learning Machine (OSELM) algorithm for diagnosing BC by using the tumor features of the breast mass. The current work has used the Wisconsin Diagnosis Breast Cancer (WDBC) dataset, which contains 569 samples (i.e., 357 samples for benign class and 212 samples for malignant class). Further, numerous measurements of assessment were used in order to evaluate the proposed OSELM algorithm, such as specificity, precision, F-measure, accuracy, G-mean, MCC, and recall. According to the outcomes of the experiment, the highest performance of the proposed OSELM was accomplished with 97.66% accuracy, 98.39% recall, 95.31% precision, 97.25% specificity, 96.83% F-measure, 95.00% MCC, and 96.84% G-Mean. The proposed OSELM algorithm demonstrates promising results in diagnosing BC. Besides, the performance of the proposed OSELM algorithm was superior to all its comparatives with respect to the rate of classification.

Keywords: breast cancer, machine learning, online sequential extreme learning machine, artificial intelligence

Procedia PDF Downloads 85
11341 MIMIC: A Multi Input Micro-Influencers Classifier

Authors: Simone Leonardi, Luca Ardito

Abstract:

Micro-influencers are effective elements in the marketing strategies of companies and institutions because of their capability to create an hyper-engaged audience around a specific topic of interest. In recent years, many scientific approaches and commercial tools have handled the task of detecting this type of social media users. These strategies adopt solutions ranging from rule based machine learning models to deep neural networks and graph analysis on text, images, and account information. This work compares the existing solutions and proposes an ensemble method to generalize them with different input data and social media platforms. The deployed solution combines deep learning models on unstructured data with statistical machine learning models on structured data. We retrieve both social media accounts information and multimedia posts on Twitter and Instagram. These data are mapped into feature vectors for an eXtreme Gradient Boosting (XGBoost) classifier. Sixty different topics have been analyzed to build a rule based gold standard dataset and to compare the performances of our approach against baseline classifiers. We prove the effectiveness of our work by comparing the accuracy, precision, recall, and f1 score of our model with different configurations and architectures. We obtained an accuracy of 0.91 with our best performing model.

Keywords: deep learning, gradient boosting, image processing, micro-influencers, NLP, social media

Procedia PDF Downloads 140
11340 Human Digital Twin for Personal Conversation Automation Using Supervised Machine Learning Approaches

Authors: Aya Salama

Abstract:

Digital Twin is an emerging research topic that attracted researchers in the last decade. It is used in many fields, such as smart manufacturing and smart healthcare because it saves time and money. It is usually related to other technologies such as Data Mining, Artificial Intelligence, and Machine Learning. However, Human digital twin (HDT), in specific, is still a novel idea that still needs to prove its feasibility. HDT expands the idea of Digital Twin to human beings, which are living beings and different from the inanimate physical entities. The goal of this research was to create a Human digital twin that is responsible for real-time human replies automation by simulating human behavior. For this reason, clustering, supervised classification, topic extraction, and sentiment analysis were studied in this paper. The feasibility of the HDT for personal replies generation on social messaging applications was proved in this work. The overall accuracy of the proposed approach in this paper was 63% which is a very promising result that can open the way for researchers to expand the idea of HDT. This was achieved by using Random Forest for clustering the question data base and matching new questions. K-nearest neighbor was also applied for sentiment analysis.

Keywords: human digital twin, sentiment analysis, topic extraction, supervised machine learning, unsupervised machine learning, classification, clustering

Procedia PDF Downloads 63
11339 A Machine Learning Model for Dynamic Prediction of Chronic Kidney Disease Risk Using Laboratory Data, Non-Laboratory Data, and Metabolic Indices

Authors: Amadou Wurry Jallow, Adama N. S. Bah, Karamo Bah, Shih-Ye Wang, Kuo-Chung Chu, Chien-Yeh Hsu

Abstract:

Chronic kidney disease (CKD) is a major public health challenge with high prevalence, rising incidence, and serious adverse consequences. Developing effective risk prediction models is a cost-effective approach to predicting and preventing complications of chronic kidney disease (CKD). This study aimed to develop an accurate machine learning model that can dynamically identify individuals at risk of CKD using various kinds of diagnostic data, with or without laboratory data, at different follow-up points. Creatinine is a key component used to predict CKD. These models will enable affordable and effective screening for CKD even with incomplete patient data, such as the absence of creatinine testing. This retrospective cohort study included data on 19,429 adults provided by a private research institute and screening laboratory in Taiwan, gathered between 2001 and 2015. Univariate Cox proportional hazard regression analyses were performed to determine the variables with high prognostic values for predicting CKD. We then identified interacting variables and grouped them according to diagnostic data categories. Our models used three types of data gathered at three points in time: non-laboratory, laboratory, and metabolic indices data. Next, we used subgroups of variables within each category to train two machine learning models (Random Forest and XGBoost). Our machine learning models can dynamically discriminate individuals at risk for developing CKD. All the models performed well using all three kinds of data, with or without laboratory data. Using only non-laboratory-based data (such as age, sex, body mass index (BMI), and waist circumference), both models predict chronic kidney disease as accurately as models using laboratory and metabolic indices data. Our machine learning models have demonstrated the use of different categories of diagnostic data for CKD prediction, with or without laboratory data. The machine learning models are simple to use and flexible because they work even with incomplete data and can be applied in any clinical setting, including settings where laboratory data is difficult to obtain.

Keywords: chronic kidney disease, glomerular filtration rate, creatinine, novel metabolic indices, machine learning, risk prediction

Procedia PDF Downloads 72
11338 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design

Authors: Pegah Eshraghi, Zahra Sadat Zomorodian, Mohammad Tahsildoost

Abstract:

Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.

Keywords: early stage of design, energy, thermal comfort, validation, machine learning

Procedia PDF Downloads 49
11337 Machine Learning Methods for Flood Hazard Mapping

Authors: Stefano Zappacosta, Cristiano Bove, Maria Carmela Marinelli, Paola di Lauro, Katarina Spasenovic, Lorenzo Ostano, Giuseppe Aiello, Marco Pietrosanto

Abstract:

This paper proposes a novel neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The proposed hybrid model can be used to classify four different increasing levels of hazard. The classification capability was compared with the flood hazard mapping River Basin Plans (PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale). The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.

Keywords: flood modeling, hazard map, neural networks, hydrogeological risk, flood risk assessment

Procedia PDF Downloads 147
11336 Use of Machine Learning in Data Quality Assessment

Authors: Bruno Pinto Vieira, Marco Antonio Calijorne Soares, Armando Sérgio de Aguiar Filho

Abstract:

Nowadays, a massive amount of information has been produced by different data sources, including mobile devices and transactional systems. In this scenario, concerns arise on how to maintain or establish data quality, which is now treated as a product to be defined, measured, analyzed, and improved to meet consumers' needs, which is the one who uses these data in decision making and companies strategies. Information that reaches low levels of quality can lead to issues that can consume time and money, such as missed business opportunities, inadequate decisions, and bad risk management actions. The step of selecting, identifying, evaluating, and selecting data sources with significant quality according to the need has become a costly task for users since the sources do not provide information about their quality. Traditional data quality control methods are based on user experience or business rules limiting performance and slowing down the process with less than desirable accuracy. Using advanced machine learning algorithms, it is possible to take advantage of computational resources to overcome challenges and add value to companies and users. In this study, machine learning is applied to data quality analysis on different datasets, seeking to compare the performance of the techniques according to the dimensions of quality assessment. As a result, we could create a ranking of approaches used, besides a system that is able to carry out automatically, data quality assessment.

Keywords: machine learning, data quality, quality dimension, quality assessment

Procedia PDF Downloads 115
11335 Performance Analysis of Traffic Classification with Machine Learning

Authors: Htay Htay Yi, Zin May Aye

Abstract:

Network security is role of the ICT environment because malicious users are continually growing that realm of education, business, and then related with ICT. The network security contravention is typically described and examined centrally based on a security event management system. The firewalls, Intrusion Detection System (IDS), and Intrusion Prevention System are becoming essential to monitor or prevent of potential violations, incidents attack, and imminent threats. In this system, the firewall rules are set only for where the system policies are needed. Dataset deployed in this system are derived from the testbed environment. The traffic as in DoS and PortScan traffics are applied in the testbed with firewall and IDS implementation. The network traffics are classified as normal or attacks in the existing testbed environment based on six machine learning classification methods applied in the system. It is required to be tested to get datasets and applied for DoS and PortScan. The dataset is based on CICIDS2017 and some features have been added. This system tested 26 features from the applied dataset. The system is to reduce false positive rates and to improve accuracy in the implemented testbed design. The system also proves good performance by selecting important features and comparing existing a dataset by machine learning classifiers.

Keywords: false negative rate, intrusion detection system, machine learning methods, performance

Procedia PDF Downloads 96
11334 Machine Learning Approach for Anomaly Detection in the Simulated Iec-60870-5-104 Traffic

Authors: Stepan Grebeniuk, Ersi Hodo, Henri Ruotsalainen, Paul Tavolato

Abstract:

Substation security plays an important role in the power delivery system. During the past years, there has been an increase in number of attacks on automation networks of the substations. In spite of that, there hasn’t been enough focus dedicated to the protection of such networks. Aiming to design a specialized anomaly detection system based on machine learning, in this paper we will discuss the IEC 60870-5-104 protocol that is used for communication between substation and control station and focus on the simulation of the substation traffic. Firstly, we will simulate the communication between substation slave and server. Secondly, we will compare the system's normal behavior and its behavior under the attack, in order to extract the right features which will be needed for building an anomaly detection system. Lastly, based on the features we will suggest the anomaly detection system for the asynchronous protocol IEC 60870-5-104.

Keywords: Anomaly detection, IEC-60870-5-104, Machine learning, Man-in-the-Middle attacks, Substation security

Procedia PDF Downloads 333
11333 Managing Data from One Hundred Thousand Internet of Things Devices Globally for Mining Insights

Authors: Julian Wise

Abstract:

Newcrest Mining is one of the world’s top five gold and rare earth mining organizations by production, reserves and market capitalization in the world. This paper elaborates on the data acquisition processes employed by Newcrest in collaboration with Fortune 500 listed organization, Insight Enterprises, to standardize machine learning solutions which process data from over a hundred thousand distributed Internet of Things (IoT) devices located at mine sites globally. Through the utilization of software architecture cloud technologies and edge computing, the technological developments enable for standardized processes of machine learning applications to influence the strategic optimization of mineral processing. Target objectives of the machine learning optimizations include time savings on mineral processing, production efficiencies, risk identification, and increased production throughput. The data acquired and utilized for predictive modelling is processed through edge computing by resources collectively stored within a data lake. Being involved in the digital transformation has necessitated the standardization software architecture to manage the machine learning models submitted by vendors, to ensure effective automation and continuous improvements to the mineral process models. Operating at scale, the system processes hundreds of gigabytes of data per day from distributed mine sites across the globe, for the purposes of increased improved worker safety, and production efficiency through big data applications.

Keywords: mineral technology, big data, machine learning operations, data lake

Procedia PDF Downloads 84
11332 Supervised Learning for Cyber Threat Intelligence

Authors: Jihen Bennaceur, Wissem Zouaghi, Ali Mabrouk

Abstract:

The major aim of cyber threat intelligence (CTI) is to provide sophisticated knowledge about cybersecurity threats to ensure internal and external safeguards against modern cyberattacks. Inaccurate, incomplete, outdated, and invaluable threat intelligence is the main problem. Therefore, data analysis based on AI algorithms is one of the emergent solutions to overcome the threat of information-sharing issues. In this paper, we propose a supervised machine learning-based algorithm to improve threat information sharing by providing a sophisticated classification of cyber threats and data. Extensive simulations investigate the accuracy, precision, recall, f1-score, and support overall to validate the designed algorithm and to compare it with several supervised machine learning algorithms.

Keywords: threat information sharing, supervised learning, data classification, performance evaluation

Procedia PDF Downloads 114
11331 Combining Multiscale Patterns of Weather and Sea States into a Machine Learning Classifier for Mid-Term Prediction of Extreme Rainfall in North-Western Mediterranean Sea

Authors: Pinel Sebastien, Bourrin François, De Madron Du Rieu Xavier, Ludwig Wolfgang, Arnau Pedro

Abstract:

Heavy precipitation constitutes a major meteorological threat in the western Mediterranean. Research has investigated the relationship between the states of the Mediterranean Sea and the atmosphere with the precipitation for short temporal windows. However, at a larger temporal scale, the precursor signals of heavy rainfall in the sea and atmosphere have drawn little attention. Moreover, despite ongoing improvements in numerical weather prediction, the medium-term forecasting of rainfall events remains a difficult task. Here, we aim to investigate the influence of early-spring environmental parameters on the following autumnal heavy precipitations. Hence, we develop a machine learning model to predict extreme autumnal rainfall with a 6-month lead time over the Spanish Catalan coastal area, based on i) the sea pattern (main current-LPC and Sea Surface Temperature-SST) at the mesoscale scale, ii) 4 European weather teleconnection patterns (NAO, WeMo, SCAND, MO) at synoptic scale, and iii) the hydrological regime of the main local river (Rhône River). The accuracy of the developed model classifier is evaluated via statistical analysis based on classification accuracy, logarithmic and confusion matrix by comparing with rainfall estimates from rain gauges and satellite observations (CHIRPS-2.0). Sensitivity tests are carried out by changing the model configuration, such as sea SST, sea LPC, river regime, and synoptic atmosphere configuration. The sensitivity analysis suggests a negligible influence from the hydrological regime, unlike SST, LPC, and specific teleconnection weather patterns. At last, this study illustrates how public datasets can be integrated into a machine learning model for heavy rainfall prediction and can interest local policies for management purposes.

Keywords: extreme hazards, sensitivity analysis, heavy rainfall, machine learning, sea-atmosphere modeling, precipitation forecasting

Procedia PDF Downloads 105
11330 A Comprehensive Review of Artificial Intelligence Applications in Sustainable Building

Authors: Yazan Al-Kofahi, Jamal Alqawasmi.

Abstract:

In this study, a comprehensive literature review (SLR) was conducted, with the main goal of assessing the existing literature about how artificial intelligence (AI), machine learning (ML), deep learning (DL) models are used in sustainable architecture applications and issues including thermal comfort satisfaction, energy efficiency, cost prediction and many others issues. For this reason, the search strategy was initiated by using different databases, including Scopus, Springer and Google Scholar. The inclusion criteria were used by two research strings related to DL, ML and sustainable architecture. Moreover, the timeframe for the inclusion of the papers was open, even though most of the papers were conducted in the previous four years. As a paper filtration strategy, conferences and books were excluded from database search results. Using these inclusion and exclusion criteria, the search was conducted, and a sample of 59 papers was selected as the final included papers in the analysis. The data extraction phase was basically to extract the needed data from these papers, which were analyzed and correlated. The results of this SLR showed that there are many applications of ML and DL in Sustainable buildings, and that this topic is currently trendy. It was found that most of the papers focused their discussions on addressing Environmental Sustainability issues and factors using machine learning predictive models, with a particular emphasis on the use of Decision Tree algorithms. Moreover, it was found that the Random Forest repressor demonstrates strong performance across all feature selection groups in terms of cost prediction of the building as a machine-learning predictive model.

Keywords: machine learning, deep learning, artificial intelligence, sustainable building

Procedia PDF Downloads 30
11329 Simulation of Government Management Model to Increase Financial Productivity System Using Govpilot

Authors: Arezou Javadi

Abstract:

The use of algorithmic models dependent on software calculations and simulation of new government management assays with the help of specialized software had increased the productivity and efficiency of the government management system recently. This has caused the management approach to change from the old bitch & fix model, which has low efficiency and less usefulness, to the capable management model with higher efficiency called the partnership with resident model. By using Govpilot TM software, the relationship between people in a system and the government was examined. The method of two tailed interaction was the outsourcing of a goal in a system, which is formed in the order of goals, qualified executive people, optimal executive model, and finally, summarizing additional activities at the different statistical levels. The results showed that the participation of people in a financial implementation system with a statistical potential of P≥5% caused a significant increase in investment and initial capital in the government system with maximum implement project in a smart government.

Keywords: machine learning, financial income, statistical potential, govpilot

Procedia PDF Downloads 60
11328 Simulation of Government Management Model to Increase Financial Productivity System Using Govpilot

Authors: Arezou Javadi

Abstract:

The use of algorithmic models dependent on software calculations and simulation of new government management assays with the help of specialized software had increased the productivity and efficiency of the government management system recently. This has caused the management approach to change from the old bitch & fix model, which has low efficiency and less usefulness, to the capable management model with higher efficiency called the partnership with resident model. By using Govpilot TM software, the relationship between people in a system and the government was examined. The method of two tailed interaction was the outsourcing of a goal in a system, which is formed in the order of goals, qualified executive people, optimal executive model, and finally, summarizing additional activities at the different statistical levels. The results showed that the participation of people in a financial implementation system with a statistical potential of P≥5% caused a significant increase in investment and initial capital in the government system with maximum implement project in a smart government.

Keywords: machine learning, financial income, statistical potential, govpilot

Procedia PDF Downloads 44
11327 Comparing Deep Architectures for Selecting Optimal Machine Translation

Authors: Despoina Mouratidis, Katia Lida Kermanidis

Abstract:

Machine translation (MT) is a very important task in Natural Language Processing (NLP). MT evaluation is crucial in MT development, as it constitutes the means to assess the success of an MT system, and also helps improve its performance. Several methods have been proposed for the evaluation of (MT) systems. Some of the most popular ones in automatic MT evaluation are score-based, such as the BLEU score, and others are based on lexical similarity or syntactic similarity between the MT outputs and the reference involving higher-level information like part of speech tagging (POS). This paper presents a language-independent machine learning framework for classifying pairwise translations. This framework uses vector representations of two machine-produced translations, one from a statistical machine translation model (SMT) and one from a neural machine translation model (NMT). The vector representations consist of automatically extracted word embeddings and string-like language-independent features. These vector representations used as an input to a multi-layer neural network (NN) that models the similarity between each MT output and the reference, as well as between the two MT outputs. To evaluate the proposed approach, a professional translation and a "ground-truth" annotation are used. The parallel corpora used are English-Greek (EN-GR) and English-Italian (EN-IT), in the educational domain and of informal genres (video lecture subtitles, course forum text, etc.) that are difficult to be reliably translated. They have tested three basic deep learning (DL) architectures to this schema: (i) fully-connected dense, (ii) Convolutional Neural Network (CNN), and (iii) Long Short-Term Memory (LSTM). Experiments show that all tested architectures achieved better results when compared against those of some of the well-known basic approaches, such as Random Forest (RF) and Support Vector Machine (SVM). Better accuracy results are obtained when LSTM layers are used in our schema. In terms of a balance between the results, better accuracy results are obtained when dense layers are used. The reason for this is that the model correctly classifies more sentences of the minority class (SMT). For a more integrated analysis of the accuracy results, a qualitative linguistic analysis is carried out. In this context, problems have been identified about some figures of speech, as the metaphors, or about certain linguistic phenomena, such as per etymology: paronyms. It is quite interesting to find out why all the classifiers led to worse accuracy results in Italian as compared to Greek, taking into account that the linguistic features employed are language independent.

Keywords: machine learning, machine translation evaluation, neural network architecture, pairwise classification

Procedia PDF Downloads 103
11326 A Machine Learning Pipeline for Real-Time Activity Detection on Low Computational Power Devices for Metaverse Applications

Authors: Amit Kumar, Amanpreet Chander, Ashish Sahani

Abstract:

This paper presents our recent work on real-time human activity detection based on the media pipe pipeline and machine learning algorithms. The proposed system can detect human activities, including running, jumping, squatting, bending to the left or right, and standing still. This is a robust solution for developing a yoga, dance, metaverse, and fitness application that checks for the correction of the pose without having any additional monitor like a personal trainer. MediaPipe solution offers an open-source cross-platform which utilizes a two-step detector-tracker ML pipeline for live detection of key landmarks on our body which can be used for motion data collection. The prediction of real-time poses uses a variety of machine learning techniques and different types of analysis. Without primarily relying on powerful desktop environments for inference, our method achieves real-time performance on the majority of contemporary mobile phones, desktops/laptops, Python, or even the web. Experimental results show that our method outperforms the existing method in terms of accuracy and real-time capability, achieving an accuracy of 99.92% on testing datasets.

Keywords: human activity detection, media pipe, machine learning, metaverse applications

Procedia PDF Downloads 145
11325 Network Analysis and Sex Prediction based on a full Human Brain Connectome

Authors: Oleg Vlasovets, Fabian Schaipp, Christian L. Mueller

Abstract:

we conduct a network analysis and predict the sex of 1000 participants based on ”connectome” - pairwise Pearson’s correlation across 436 brain parcels. We solve the non-smooth convex optimization problem, known under the name of Graphical Lasso, where the solution includes a low-rank component. With this solution and machine learning model for a sex prediction, we explain the brain parcels-sex connectivity patterns.

Keywords: network analysis, neuroscience, machine learning, optimization

Procedia PDF Downloads 114
11324 Structural Reliability Analysis Using Extreme Learning Machine

Authors: Mehul Srivastava, Sharma Tushar Ravikant, Mridul Krishn Mishra

Abstract:

In structural design, the evaluation of safety and probability failure of structure is of significant importance, mainly when the variables are random. On real structures, structural reliability can be evaluated obtaining an implicit limit state function. The structural reliability limit state function is obtained depending upon the statistically independent variables. In the analysis of reliability, we considered the statistically independent random variables to be the load intensity applied and the depth or height of the beam member considered. There are many approaches for structural reliability problems. In this paper Extreme Learning Machine technique and First Order Second Moment Method is used to determine the reliability indices for the same set of variables. The reliability index obtained using ELM is compared with the reliability index obtained using FOSM. Higher the reliability index, more feasible is the method to determine the reliability.

Keywords: reliability, reliability index, statistically independent, extreme learning machine

Procedia PDF Downloads 647
11323 PaSA: A Dataset for Patent Sentiment Analysis to Highlight Patent Paragraphs

Authors: Renukswamy Chikkamath, Vishvapalsinhji Ramsinh Parmar, Christoph Hewel, Markus Endres

Abstract:

Given a patent document, identifying distinct semantic annotations is an interesting research aspect. Text annotation helps the patent practitioners such as examiners and patent attorneys to quickly identify the key arguments of any invention, successively providing a timely marking of a patent text. In the process of manual patent analysis, to attain better readability, recognising the semantic information by marking paragraphs is in practice. This semantic annotation process is laborious and time-consuming. To alleviate such a problem, we proposed a dataset to train machine learning algorithms to automate the highlighting process. The contributions of this work are: i) we developed a multi-class dataset of size 150k samples by traversing USPTO patents over a decade, ii) articulated statistics and distributions of data using imperative exploratory data analysis, iii) baseline Machine Learning models are developed to utilize the dataset to address patent paragraph highlighting task, and iv) future path to extend this work using Deep Learning and domain-specific pre-trained language models to develop a tool to highlight is provided. This work assists patent practitioners in highlighting semantic information automatically and aids in creating a sustainable and efficient patent analysis using the aptitude of machine learning.

Keywords: machine learning, patents, patent sentiment analysis, patent information retrieval

Procedia PDF Downloads 63
11322 Climate Changes in Albania and Their Effect on Cereal Yield

Authors: Lule Basha, Eralda Gjika

Abstract:

This study is focused on analyzing climate change in Albania and its potential effects on cereal yields. Initially, monthly temperature and rainfalls in Albania were studied for the period 1960-2021. Climacteric variables are important variables when trying to model cereal yield behavior, especially when significant changes in weather conditions are observed. For this purpose, in the second part of the study, linear and nonlinear models explaining cereal yield are constructed for the same period, 1960-2021. The multiple linear regression analysis and lasso regression method are applied to the data between cereal yield and each independent variable: average temperature, average rainfall, fertilizer consumption, arable land, land under cereal production, and nitrous oxide emissions. In our regression model, heteroscedasticity is not observed, data follow a normal distribution, and there is a low correlation between factors, so we do not have the problem of multicollinearity. Machine-learning methods, such as random forest, are used to predict cereal yield responses to climacteric and other variables. Random Forest showed high accuracy compared to the other statistical models in the prediction of cereal yield. We found that changes in average temperature negatively affect cereal yield. The coefficients of fertilizer consumption, arable land, and land under cereal production are positively affecting production. Our results show that the Random Forest method is an effective and versatile machine-learning method for cereal yield prediction compared to the other two methods.

Keywords: cereal yield, climate change, machine learning, multiple regression model, random forest

Procedia PDF Downloads 58
11321 Voltage Problem Location Classification Using Performance of Least Squares Support Vector Machine LS-SVM and Learning Vector Quantization LVQ

Authors: M. Khaled Abduesslam, Mohammed Ali, Basher H. Alsdai, Muhammad Nizam Inayati

Abstract:

This paper presents the voltage problem location classification using performance of Least Squares Support Vector Machine (LS-SVM) and Learning Vector Quantization (LVQ) in electrical power system for proper voltage problem location implemented by IEEE 39 bus New-England. The data was collected from the time domain simulation by using Power System Analysis Toolbox (PSAT). Outputs from simulation data such as voltage, phase angle, real power and reactive power were taken as input to estimate voltage stability at particular buses based on Power Transfer Stability Index (PTSI).The simulation data was carried out on the IEEE 39 bus test system by considering load bus increased on the system. To verify of the proposed LS-SVM its performance was compared to Learning Vector Quantization (LVQ). The results showed that LS-SVM is faster and better as compared to LVQ. The results also demonstrated that the LS-SVM was estimated by 0% misclassification whereas LVQ had 7.69% misclassification.

Keywords: IEEE 39 bus, least squares support vector machine, learning vector quantization, voltage collapse

Procedia PDF Downloads 416
11320 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector

Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh

Abstract:

A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.

Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score

Procedia PDF Downloads 106
11319 A Machine Learning Approach for Detecting and Locating Hardware Trojans

Authors: Kaiwen Zheng, Wanting Zhou, Nan Tang, Lei Li, Yuanhang He

Abstract:

The integrated circuit industry has become a cornerstone of the information society, finding widespread application in areas such as industry, communication, medicine, and aerospace. However, with the increasing complexity of integrated circuits, Hardware Trojans (HTs) implanted by attackers have become a significant threat to their security. In this paper, we proposed a hardware trojan detection method for large-scale circuits. As HTs introduce physical characteristic changes such as structure, area, and power consumption as additional redundant circuits, we proposed a machine-learning-based hardware trojan detection method based on the physical characteristics of gate-level netlists. This method transforms the hardware trojan detection problem into a machine-learning binary classification problem based on physical characteristics, greatly improving detection speed. To address the problem of imbalanced data, where the number of pure circuit samples is far less than that of HTs circuit samples, we used the SMOTETomek algorithm to expand the dataset and further improve the performance of the classifier. We used three machine learning algorithms, K-Nearest Neighbors, Random Forest, and Support Vector Machine, to train and validate benchmark circuits on Trust-Hub, and all achieved good results. In our case studies based on AES encryption circuits provided by trust-hub, the test results showed the effectiveness of the proposed method. To further validate the method’s effectiveness for detecting variant HTs, we designed variant HTs using open-source HTs. The proposed method can guarantee robust detection accuracy in the millisecond level detection time for IC, and FPGA design flows and has good detection performance for library variant HTs.

Keywords: hardware trojans, physical properties, machine learning, hardware security

Procedia PDF Downloads 106
11318 Predicting Oil Spills in Real-Time: A Machine Learning and AIS Data-Driven Approach

Authors: Tanmay Bisen, Aastha Shayla, Susham Biswas

Abstract:

Oil spills from tankers can cause significant harm to the environment and local communities, as well as have economic consequences. Early predictions of oil spills can help to minimize these impacts. Our proposed system uses machine learning and neural networks to predict potential oil spills by monitoring data from ship Automatic Identification Systems (AIS). The model analyzes ship movements, speeds, and changes in direction to identify patterns that deviate from the norm and could indicate a potential spill. Our approach not only identifies anomalies but also predicts spills before they occur, providing early detection and mitigation measures. This can prevent or minimize damage to the reputation of the company responsible and the country where the spill takes place. The model's performance on the MV Wakashio oil spill provides insight into its ability to detect and respond to real-world oil spills, highlighting areas for improvement and further research.

Keywords: Anomaly Detection, Oil Spill Prediction, Machine Learning, Image Processing, Graph Neural Network (GNN)

Procedia PDF Downloads 41