Search results for: smoke visualization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 698

Search results for: smoke visualization

518 A Comparative Psychological Interventional Study of Nicotine Dependence in Schizophrenic Patients

Authors: S. Madhusudhan, G. V. Vaniprabha

Abstract:

Worldwide statistics have shown that smoking contributes significantly to mortality, with nicotine, being more addictive. Smoking causes more than 7,00,000 deaths/year in India. Compared to the general population, the prevalence of smoking is found to be much higher among people with psychotic disorders and, more so in schizophrenia. Schizophrenic patients who smoke tend to have higher frequency of heavy smoking, with rates ranging from 60% to as high as 80%. Hence, smokers with psychiatric disorders suffer higher rates of morbidity and mortality secondary to smoking related illnesses.

Keywords: brief intervention, nicotine dependence, schizophrenia

Procedia PDF Downloads 356
517 Fire Safety Assessment of At-Risk Groups

Authors: Naser Kazemi Eilaki, Carolyn Ahmer, Ilona Heldal, Bjarne Christian Hagen

Abstract:

Older people and people with disabilities are recognized as at-risk groups when it comes to egress and travel from hazard zone to safe places. One's disability can negatively influence her or his escape time, and this becomes even more important when people from this target group live alone. This research deals with the fire safety of mentioned people's buildings by means of probabilistic methods. For this purpose, fire safety is addressed by modeling the egress of our target group from a hazardous zone to a safe zone. A common type of detached house with a prevalent plan has been chosen for safety analysis, and a limit state function has been developed according to the time-line evacuation model, which is based on a two-zone and smoke development model. An analytical computer model (B-Risk) is used to consider smoke development. Since most of the involved parameters in the fire development model pose uncertainty, an appropriate probability distribution function has been considered for each one of the variables with indeterministic nature. To achieve safety and reliability for the at-risk groups, the fire safety index method has been chosen to define the probability of failure (causalities) and safety index (beta index). An improved harmony search meta-heuristic optimization algorithm has been used to define the beta index. Sensitivity analysis has been done to define the most important and effective parameters for the fire safety of the at-risk group. Results showed an area of openings and intervals to egress exits are more important in buildings, and the safety of people would improve with increasing dimensions of occupant space (building). Fire growth is more critical compared to other parameters in the home without a detector and fire distinguishing system, but in a home equipped with these facilities, it is less important. Type of disabilities has a great effect on the safety level of people who live in the same home layout, and people with visual impairment encounter more risk of capturing compared to visual and movement disabilities.

Keywords: fire safety, at-risk groups, zone model, egress time, uncertainty

Procedia PDF Downloads 72
516 Compass Bar: A Visualization Technique for Out-of-View-Objects in Head-Mounted Displays

Authors: Alessandro Evangelista, Vito M. Manghisi, Michele Gattullo, Enricoandrea Laviola

Abstract:

In this work, we propose a custom visualization technique for Out-Of-View-Objects in Virtual and Augmented Reality applications using Head Mounted Displays. In the last two decades, Augmented Reality (AR) and Virtual Reality (VR) technologies experienced a remarkable growth of applications for navigation, interaction, and collaboration in different types of environments, real or virtual. Both environments can be potentially very complex, as they can include many virtual objects located in different places. Given the natural limitation of the human Field of View (about 210° horizontal and 150° vertical), humans cannot perceive objects outside this angular range. Moreover, despite recent technological advances in AR e VR Head-Mounted Displays (HMDs), these devices still suffer from a limited Field of View, especially regarding Optical See-Through displays, thus greatly amplifying the challenge of visualizing out-of-view objects. This problem is not negligible when the user needs to be aware of the number and the position of the out-of-view objects in the environment. For instance, during a maintenance operation on a construction site where virtual objects serve to improve the dangers' awareness. Providing such information can enhance the comprehension of the scene, enable fast navigation and focused search, and improve users' safety. In our research, we investigated how to represent out-of-view-objects in HMD User Interfaces (UI). Inspired by commercial video games such as Call of Duty Modern Warfare, we designed a customized Compass. By exploiting the Unity 3D graphics engine, we implemented our custom solution that can be used both in AR and VR environments. The Compass Bar consists of a graduated bar (in degrees) at the top center of the UI. The values of the bar range from -180 (far left) to +180 (far right), the zero is placed in front of the user. Two vertical lines on the bar show the amplitude of the user's field of view. Every virtual object within the scene is represented onto the compass bar as a specific color-coded proxy icon (a circular ring with a colored dot at its center). To provide the user with information about the distance, we implemented a specific algorithm that increases the size of the inner dot as the user approaches the virtual object (i.e., when the user reaches the object, the dot fills the ring). This visualization technique for out-of-view objects has some advantages. It allows users to be quickly aware of the number and the position of the virtual objects in the environment. For instance, if the compass bar displays the proxy icon at about +90, users will immediately know that the virtual object is to their right and so on. Furthermore, by having qualitative information about the distance, users can optimize their speed, thus gaining effectiveness in their work. Given the small size and position of the Compass Bar, our solution also helps lessening the occlusion problem thus increasing user acceptance and engagement. As soon as the lockdown measures will allow, we will carry out user-tests comparing this solution with other state-of-the-art existing ones such as 3D Radar, SidebARs and EyeSee360.

Keywords: augmented reality, situation awareness, virtual reality, visualization design

Procedia PDF Downloads 99
515 Can 3D Virtual Prototyping Conquers the Apparel Industry?

Authors: Evridiki Papachristou, Nikolaos Bilalis

Abstract:

Imagine an apparel industry where fashion design does not begin with a paper-and-pen drawing which is then translated into pattern and later to a 3D model where the designer tries out different fabrics, colours and contrasts. Instead, imagine a fashion designer in the future who produces that initial fashion drawing in a three-dimensional space and won’t leave that environment until the product is done, communicating his/her ideas with the entire development team in true to life 3D. Three-dimensional (3D) technology - while well established in many other industrial sectors like automotive, aerospace, architecture and industrial design, has only just started to open up a whole range of new opportunities for apparel designers. The paper will discuss the process of 3D simulation technology enhanced by high quality visualization of data and its capability to ensure a massive competitiveness in the market. Secondly, it will underline the most frequent problems & challenges that occur in the process chain when various partners in the production of textiles and apparel are working together. Finally, it will offer a perspective of how the Virtual Prototyping Technology will make the global textile and apparel industry change to a level where designs will be visualized on a computer and various scenarios modeled without even having to produce a physical prototype. This state-of-the-art 3D technology has been described as transformative and“disruptive”comparing to the process of the way apparel companies develop their fashion products today. It provides the benefit of virtual sampling not only for quick testing of design ideas, but also reducing process steps and having more visibility.A so called“digital asset” that can be used for other purposes such as merchandising or marketing.

Keywords: 3D visualization, apparel, virtual prototyping, prototyping technology

Procedia PDF Downloads 548
514 GeneNet: Temporal Graph Data Visualization for Gene Nomenclature and Relationships

Authors: Jake Gonzalez, Tommy Dang

Abstract:

This paper proposes a temporal graph approach to visualize and analyze the evolution of gene relationships and nomenclature over time. An interactive web-based tool implements this temporal graph, enabling researchers to traverse a timeline and observe coupled dynamics in network topology and naming conventions. Analysis of a real human genomic dataset reveals the emergence of densely interconnected functional modules over time, representing groups of genes involved in key biological processes. For example, the antimicrobial peptide DEFA1A3 shows increased connections to related alpha-defensins involved in infection response. Tracking degree and betweenness centrality shifts over timeline iterations also quantitatively highlight the reprioritization of certain genes’ topological importance as knowledge advances. Examination of the CNR1 gene encoding the cannabinoid receptor CB1 demonstrates changing synonymous relationships and consolidating naming patterns over time, reflecting its unique functional role discovery. The integrated framework interconnecting these topological and nomenclature dynamics provides richer contextual insights compared to isolated analysis methods. Overall, this temporal graph approach enables a more holistic study of knowledge evolution to elucidate complex biology.

Keywords: temporal graph, gene relationships, nomenclature evolution, interactive visualization, biological insights

Procedia PDF Downloads 33
513 Visualization of the Mobility Patterns of Public Bike Sharing System in Seoul

Authors: Young-Hyun Seo, Hosuk Shin, Eun-Hak Lee, Seung-Young Kho

Abstract:

This study analyzed and visualized the rental and return data of the public bike sharing system in Seoul, Ttareungyi, from September 2015 to October 2017. With the surge of system users, the number of times of collection and distribution in 2017 increased by three times compared to 2016. The city plans to deploy about 20,000 public bicycles by the end of 2017 to expand the system. Based on about 3.3 million historical data, we calculated the average trip time and the number of trips from one station to another station. The mobility patterns between stations are graphically displayed using R and Tableau. Demand for public bike sharing system is heavily influenced by day and weather. As a result of plotting the number of rentals and returns of some stations on weekdays and weekends at intervals of one hour, there was a difference in rental patterns. As a result of analysis of the rental and return patterns by time of day, there were a lot of returns at the morning peak and more rentals at the afternoon peak at the center of the city. It means that stock of bikes varies largely in the time zone and public bikes should be rebalanced timely. The result of this study can be applied as a primary data to construct the demand forecasting function of the station when establishing the rebalancing strategy of the public bicycle.

Keywords: demand forecasting, mobility patterns, public bike sharing system, visualization

Procedia PDF Downloads 165
512 Mining User-Generated Contents to Detect Service Failures with Topic Model

Authors: Kyung Bae Park, Sung Ho Ha

Abstract:

Online user-generated contents (UGC) significantly change the way customers behave (e.g., shop, travel), and a pressing need to handle the overwhelmingly plethora amount of various UGC is one of the paramount issues for management. However, a current approach (e.g., sentiment analysis) is often ineffective for leveraging textual information to detect the problems or issues that a certain management suffers from. In this paper, we employ text mining of Latent Dirichlet Allocation (LDA) on a popular online review site dedicated to complaint from users. We find that the employed LDA efficiently detects customer complaints, and a further inspection with the visualization technique is effective to categorize the problems or issues. As such, management can identify the issues at stake and prioritize them accordingly in a timely manner given the limited amount of resources. The findings provide managerial insights into how analytics on social media can help maintain and improve their reputation management. Our interdisciplinary approach also highlights several insights by applying machine learning techniques in marketing research domain. On a broader technical note, this paper illustrates the details of how to implement LDA in R program from a beginning (data collection in R) to an end (LDA analysis in R) since the instruction is still largely undocumented. In this regard, it will help lower the boundary for interdisciplinary researcher to conduct related research.

Keywords: latent dirichlet allocation, R program, text mining, topic model, user generated contents, visualization

Procedia PDF Downloads 160
511 Frontier Dynamic Tracking in the Field of Urban Plant and Habitat Research: Data Visualization and Analysis Based on Journal Literature

Authors: Shao Qi

Abstract:

The article uses the CiteSpace knowledge graph analysis tool to sort and visualize the journal literature on urban plants and habitats in the Web of Science and China National Knowledge Infrastructure databases. Based on a comprehensive interpretation of the visualization results of various data sources and the description of the intrinsic relationship between high-frequency keywords using knowledge mapping, the research hotspots, processes and evolution trends in this field are analyzed. Relevant case studies are also conducted for the hotspot contents to explore the means of landscape intervention and synthesize the understanding of research theories. The results show that (1) from 1999 to 2022, the research direction of urban plants and habitats gradually changed from focusing on plant and animal extinction and biological invasion to the field of human urban habitat creation, ecological restoration, and ecosystem services. (2) The results of keyword emergence and keyword growth trend analysis show that habitat creation research has shown a rapid and stable growth trend since 2017, and ecological restoration has gained long-term sustained attention since 2004. The hotspots of future research on urban plants and habitats in China may focus on habitat creation and ecological restoration.

Keywords: research trends, visual analysis, habitat creation, ecological restoration

Procedia PDF Downloads 38
510 3D Visualization for the Relationship of the Urban Rule and Building Form by Using CityEngine

Authors: Chin Ku, Han liang Lin

Abstract:

The purpose of this study is to visualize how the rule related to urban design influences the building form by 3D modeling software CityEngine. In order to make the goal of urban design clearly connect to urban form, urban planner or designer should understand how the rule affects the form, especially the building form. In Taiwan, the rule pertained to urban design includes traditional zoning, urban design review and building codes. However, zoning cannot precisely expect the outcome of building form and lack of thinking about public realm and 3D form. In addition to that, urban design review is based on case by case, do not have a comprehensive regulation plan and the building code is just for general regulation. Therefore, rule cannot make the urban form reach the vision or goal of the urban design. Consequently, another kind of zoning called Form-based code (FBC) has arisen. This study uses the component of FBC which pertained to urban fabric such as street width, block and plot size, etc., to be the variants of building form, and find out the relationship between the rule and building form. There are three stages of this research, it will start from a field survey of Taichung City in Taiwan to induce the rule-building form relationship by using cluster analysis and descriptive Statistics. Second, visualize the relationship through the parameterized and codified process in CityEngine which is the procedural modeling, and can analyze, monitor and visualize the 3D world. Last, compare the CityEngine result with real world to examine how extent do this model represent the real world appearance.

Keywords: 3D visualization, CityEngine, form-based code, urban form

Procedia PDF Downloads 519
509 A Small Graphic Lie. The Photographic Quality of Pierre Bourdieu’s Correspondance Analysis

Authors: Lene Granzau Juel-Jacobsen

Abstract:

The problem of beautification is an obvious concern of photography, claiming reference to reality, but it also lies at the very heart of social theory. As we become accustomed to sophisticated visualizations of statistical data in pace with the development of software programs, we should not only be inclined to ask new types of research questions, but we also need to confront social theories based on such visualization techniques with new types of questions. Correspondence Analysis, GIS analysis, Social Network Analysis, and Perceptual Maps are current examples of visualization techniques popular within the social sciences and neighboring disciplines. This article discusses correspondence analysis, arguing that the graphic plot of correspondence analysis is to be interpreted much similarly to a photograph. It refers no more evidently or univocally to reality than a photograph, representing social life no more truthfully than a photograph documents. Pierre Bourdieu’s theoretical corpus, especially his theory of fields, relies heavily on correspondence analysis. While much attention has been directed towards critiquing the somewhat vague conceptualization of habitus, limited focus has been placed on the equally problematic concepts of social space and field. Based on a re-reading of the Distinction, the article argues that the concepts rely on ‘a small graphic lie’ very similar to a photograph. Like any other piece of art, as Bourdieu himself recognized, the graphic display is a politically and morally loaded representation technique. However, the correspondence analysis does not necessarily serve the purpose he intended. In fact, it tends towards the pitfalls he strove to overcome.

Keywords: datavisualization, correspondance analysis, bourdieu, Field, visual representation

Procedia PDF Downloads 37
508 Intracellular Sphingosine-1-Phosphate Receptor 3 Contributes to Lung Tumor Cell Proliferation

Authors: Michela Terlizzi, Chiara Colarusso, Aldo Pinto, Rosalinda Sorrentino

Abstract:

Sphingosine-1-phosphate (S1P) is a membrane-derived bioactive phospholipid exerting a multitude of effects on respiratory cell physiology and pathology through five S1P receptors (S1PR1-5). Higher levels of S1P have been registered in a broad range of respiratory diseases, including inflammatory disorders and cancer, although its exact role is still elusive. Based on our previous study in which we found that S1P/S1PR3 is involved in an inflammatory pattern via the activation of Toll-like Receptor 9 (TLR9), highly expressed on lung cancer cells, the main goal of the current study was to better understand the involvement of S1P/S1PR3 pathway/signaling during lung carcinogenesis, taking advantage of a mouse model of first-hand smoke exposure and of carcinogen-induced lung cancer. We used human samples of Non-Small Cell Lung Cancer (NSCLC), a mouse model of first-hand smoking, and of Benzo(a)pyrene (BaP)-induced tumor-bearing mice and A549 lung adenocarcinoma cells. We found that the intranuclear, but not the membrane, localization of S1PR3 was associated to the proliferation of lung adenocarcinoma cells, the mechanism that was correlated to human and mouse samples of smoke-exposure and carcinogen-induced lung cancer, which were characterized by higher utilization of S1P. Indeed, the inhibition of the membrane S1PR3 did not alter tumor cell proliferation after TLR9 activation. Instead, according to the nuclear localization of sphingosine kinase (SPHK) II, the enzyme responsible for the catalysis of the S1P last step synthesis, the inhibition of the kinase completely blocked the endogenous S1P-induced tumor cell proliferation. These results prove that the endogenous TLR9-induced S1P can on one side favor pro-inflammatory mechanisms in the tumor microenvironment via the activation of cell surface receptors, but on the other tumor progression via the nuclear S1PR3/SPHK II axis, highlighting a novel molecular mechanism that identifies S1P as one of the crucial mediators for lung carcinogenesis-associated inflammatory processes and that could provide differential therapeutic approaches especially in non-responsive lung cancer patients.

Keywords: sphingosine-1-phosphate (S1P), S1P Receptor 3 (S1PR3), smoking-mice, lung inflammation, lung cancer

Procedia PDF Downloads 171
507 Design and Preliminary Evaluation of Benzoxazolone-Based Agents for Targeting Mitochondrial-Located Translocator Protein

Authors: Nidhi Chadha, A. K. Tiwari, Marilyn D. Milton, Anil K. Mishra

Abstract:

Translocator protein (18 kDa) TSPO is highly expressed during microglia activation in neuroinflammation. Although a number of PET ligands have been developed for the visualization of activated microglia, one of the advantageous approaches is to develop potential optical imaging (OI) probe. Our study involves computational screening, synthesis and evaluation of TSPO ligand through various imaging modalities namely PET/SPECT/Optical. The initial computational screening involves pharmacophore modeling from the library designing having oxo-benzooxazol-3-yl-N-phenyl-acetamide groups and synthesis for visualization of efficacy of these compounds as multimodal imaging probes. Structure modeling of monomer, Ala147Thr mutated, parallel and anti-parallel TSPO dimers was performed and docking analysis was performed for distinct binding sites. Computational analysis showed pattern of variable binding profile of known diagnostic ligands and NBMP via interactions with conserved residues along with TSPO’s natural polymorphism of Ala147→Thr, which showed alteration in the binding affinity due to considerable changes in tertiary structure. Preliminary in vitro binding studies shows binding affinity in the range of 1-5 nm and selectivity was also certified by blocking studies. In summary, this skeleton was found to be potential probe for TSPO imaging due to ease in synthesis, appropriate lipophilicity and reach to specific region of brain.

Keywords: TSPO, molecular modeling, imaging, docking

Procedia PDF Downloads 428
506 Cognitive Model of Analogy Based on Operation of the Brain Cells: Glial, Axons and Neurons

Authors: Ozgu Hafizoglu

Abstract:

Analogy is an essential tool of human cognition that enables connecting diffuse and diverse systems with attributional, deep structural, casual relations that are essential to learning, to innovation in artificial worlds, and to discovery in science. Cognitive Model of Analogy (CMA) leads and creates information pattern transfer within and between domains and disciplines in science. This paper demonstrates the Cognitive Model of Analogy (CMA) as an evolutionary approach to scientific research. The model puts forward the challenges of deep uncertainty about the future, emphasizing the need for flexibility of the system in order to enable reasoning methodology to adapt to changing conditions. In this paper, the model of analogical reasoning is created based on brain cells, their fractal, and operational forms within the system itself. Visualization techniques are used to show correspondences. Distinct phases of the problem-solving processes are divided thusly: encoding, mapping, inference, and response. The system is revealed relevant to brain activation considering each of these phases with an emphasis on achieving a better visualization of the brain cells: glial cells, axons, axon terminals, and neurons, relative to matching conditions of analogical reasoning and relational information. It’s found that encoding, mapping, inference, and response processes in four-term analogical reasoning are corresponding with the fractal and operational forms of brain cells: glial, axons, and neurons.

Keywords: analogy, analogical reasoning, cognitive model, brain and glials

Procedia PDF Downloads 159
505 Using Artificial Intelligence Technology to Build the User-Oriented Platform for Integrated Archival Service

Authors: Lai Wenfang

Abstract:

Tthis study will describe how to use artificial intelligence (AI) technology to build the user-oriented platform for integrated archival service. The platform will be launched in 2020 by the National Archives Administration (NAA) in Taiwan. With the progression of information communication technology (ICT) the NAA has built many systems to provide archival service. In order to cope with new challenges, such as new ICT, artificial intelligence or blockchain etc. the NAA will try to use the natural language processing (NLP) and machine learning (ML) skill to build a training model and propose suggestions based on the data sent to the platform. NAA expects the platform not only can automatically inform the sending agencies’ staffs which records catalogues are against the transfer or destroy rules, but also can use the model to find the details hidden in the catalogues and suggest NAA’s staff whether the records should be or not to be, to shorten the auditing time. The platform keeps all the users’ browse trails; so that the platform can predict what kinds of archives user could be interested and recommend the search terms by visualization, moreover, inform them the new coming archives. In addition, according to the Archives Act, the NAA’s staff must spend a lot of time to mark or remove the personal data, classified data, etc. before archives provided. To upgrade the archives access service process, the platform will use some text recognition pattern to black out automatically, the staff only need to adjust the error and upload the correct one, when the platform has learned the accuracy will be getting higher. In short, the purpose of the platform is to deduct the government digital transformation and implement the vision of a service-oriented smart government.

Keywords: artificial intelligence, natural language processing, machine learning, visualization

Procedia PDF Downloads 141
504 The Impact of Introspective Models on Software Engineering

Authors: Rajneekant Bachan, Dhanush Vijay

Abstract:

The visualization of operating systems has refined the Turing machine, and current trends suggest that the emulation of 32 bit architectures will soon emerge. After years of technical research into Web services, we demonstrate the synthesis of gigabit switches, which embodies the robust principles of theory. Loam, our new algorithm for forward-error correction, is the solution to all of these challenges.

Keywords: software engineering, architectures, introspective models, operating systems

Procedia PDF Downloads 496
503 Study of Ether Species Effects on Physicochemical Properties of Palm Oil Ether Monoesters as Novel Biodiesels

Authors: Hejun Guo, Shenghua Liu

Abstract:

Five palm oil ether monoesters utilized as novel biodiesels were synthesized and structurally identified in the paper. Investigation was made on the effect of ether species on physicochemical properties of the palm oil ether monoesters. The results showed that density, kinematic viscosity, smoke point, and solidifying point increase linearly with their CH2 group number in certain relationships. Cetane number is enhanced whereas heat value decreases linearly with CH2 group number. In addition, the influencing regularities of volumetric content of the palm oil ether monoesters on the fuel properties were also studied when the ether monoesters are used as diesel fuel additives.

Keywords: biodiesel, palm oil ether monoester, ether species, physicochemical property

Procedia PDF Downloads 229
502 C-eXpress: A Web-Based Analysis Platform for Comparative Functional Genomics and Proteomics in Human Cancer Cell Line, NCI-60 as an Example

Authors: Chi-Ching Lee, Po-Jung Huang, Kuo-Yang Huang, Petrus Tang

Abstract:

Background: Recent advances in high-throughput research technologies such as new-generation sequencing and multi-dimensional liquid chromatography makes it possible to dissect the complete transcriptome and proteome in a single run for the first time. However, it is almost impossible for many laboratories to handle and analysis these “BIG” data without the support from a bioinformatics team. We aimed to provide a web-based analysis platform for users with only limited knowledge on bio-computing to study the functional genomics and proteomics. Method: We use NCI-60 as an example dataset to demonstrate the power of the web-based analysis platform and data delivering system: C-eXpress takes a simple text file that contain the standard NCBI gene or protein ID and expression levels (rpkm or fold) as input file to generate a distribution map of gene/protein expression levels in a heatmap diagram organized by color gradients. The diagram is hyper-linked to a dynamic html table that allows the users to filter the datasets based on various gene features. A dynamic summary chart is generated automatically after each filtering process. Results: We implemented an integrated database that contain pre-defined annotations such as gene/protein properties (ID, name, length, MW, pI); pathways based on KEGG and GO biological process; subcellular localization based on GO cellular component; functional classification based on GO molecular function, kinase, peptidase and transporter. Multiple ways of sorting of column and rows is also provided for comparative analysis and visualization of multiple samples.

Keywords: cancer, visualization, database, functional annotation

Procedia PDF Downloads 586
501 A Rapid Prototyping Tool for Suspended Biofilm Growth Media

Authors: Erifyli Tsagkari, Stephanie Connelly, Zhaowei Liu, Andrew McBride, William Sloan

Abstract:

Biofilms play an essential role in treating water in biofiltration systems. The biofilm morphology and function are inextricably linked to the hydrodynamics of flow through a filter, and yet engineers rarely explicitly engineer this interaction. We develop a system that links computer simulation and 3-D printing to optimize and rapidly prototype filter media to optimize biofilm function with the hypothesis that biofilm function is intimately linked to the flow passing through the filter. A computational model that numerically solves the incompressible time-dependent Navier Stokes equations coupled to a model for biofilm growth and function is developed. The model is imbedded in an optimization algorithm that allows the model domain to adapt until criteria on biofilm functioning are met. This is applied to optimize the shape of filter media in a simple flow channel to promote biofilm formation. The computer code links directly to a 3-D printer, and this allows us to prototype the design rapidly. Its validity is tested in flow visualization experiments and by microscopy. As proof of concept, the code was constrained to explore a small range of potential filter media, where the medium acts as an obstacle in the flow that sheds a von Karman vortex street that was found to enhance the deposition of bacteria on surfaces downstream. The flow visualization and microscopy in the 3-D printed realization of the flow channel validated the predictions of the model and hence its potential as a design tool. Overall, it is shown that the combination of our computational model and the 3-D printing can be effectively used as a design tool to prototype filter media to optimize biofilm formation.

Keywords: biofilm, biofilter, computational model, von karman vortices, 3-D printing.

Procedia PDF Downloads 113
500 A Wearable Fluorescence Imaging Device for Intraoperative Identification of Human Brain Tumors

Authors: Guoqiang Yu, Mehrana Mohtasebi, Jinghong Sun, Thomas Pittman

Abstract:

Malignant glioma (MG) is the most common type of primary malignant brain tumor. Surgical resection of MG remains the cornerstone of therapy, and the extent of resection correlates with patient survival. A limiting factor for resection, however, is the difficulty in differentiating the tumor from normal tissue during surgery. Fluorescence imaging is an emerging technique for real-time intraoperative visualization of MGs and their boundaries. However, most clinical-grade neurosurgical operative microscopes with fluorescence imaging ability are hampered by low adoption rates due to high cost, limited portability, limited operation flexibility, and lack of skilled professionals with technical knowledge. To overcome the limitations, we innovatively integrated miniaturized light sources, flippable filters, and a recording camera to the surgical eye loupes to generate a wearable fluorescence eye loupe (FLoupe) device for intraoperative imaging of fluorescent MGs. Two FLoupe prototypes were constructed for imaging of Fluorescein and 5-aminolevulinic acid (5-ALA), respectively. The wearable FLoupe devices were tested on tumor-simulating phantoms and patients with MGs. Comparable results were observed against the standard neurosurgical operative microscope (PENTERO® 900) with fluorescence kits. The affordable and wearable FLoupe devices enable visualization of both color and fluorescence images with the same quality as the large and expensive stationary operative microscopes. The wearable FLoupe device allows for a greater range of movement, less obstruction, and faster/easier operation. Thus, it reduces surgery time and is more easily adapted to the surgical environment than unwieldy neurosurgical operative microscopes.

Keywords: fluorescence guided surgery, malignant glioma, neurosurgical operative microscope, wearable fluorescence imaging device

Procedia PDF Downloads 26
499 The Development and Testing of a Small Scale Dry Electrostatic Precipitator for the Removal of Particulate Matter

Authors: Derek Wardle, Tarik Al-Shemmeri, Neil Packer

Abstract:

This paper presents a small tube/wire type electrostatic precipitator (ESP). In the ESPs present form, particle charging and collecting voltages and airflow rates were individually varied throughout 200 ambient temperature test runs ranging from 10 to 30 kV in increments on 5 kV and 0.5 m/s to 1.5 m/s, respectively. It was repeatedly observed that, at input air velocities of between 0.5 and 0.9 m/s and voltage settings of 20 kV to 30 kV, the collection efficiency remained above 95%. The outcomes of preliminary tests at combustion flue temperatures are, at present, inconclusive although indications are that there is little or no drop in comparable performance during ideal test conditions. A limited set of similar tests was carried out during which the collecting electrode was grounded, having been disconnected from the static generator. The collecting efficiency fell significantly, and for that reason, this approach was not pursued further. The collecting efficiencies during ambient temperature tests were determined by mass balance between incoming and outgoing dry PM. The efficiencies of combustion temperature runs are determined by analysing the difference in opacity of the flue gas at inlet and outlet compared to a reference light source. In addition, an array of Leit tabs (carbon coated, electrically conductive adhesive discs) was placed at inlet and outlet for a number of four-day continuous ambient temperature runs. Analysis of the discs’ contamination was carried out using scanning electron microscopy and ImageJ computer software that confirmed collection efficiencies of over 99% which gave unequivocal support to all the previous tests. The average efficiency for these runs was 99.409%. Emissions collected from a woody biomass combustion unit, classified to a diameter of 100 µm, were used in all ambient temperature trials test runs apart from two which collected airborne dust from within the laboratory. Sawdust and wood pellets were chosen for laboratory and field combustion trials. Video recordings were made of three ambient temperature test runs in which the smoke from a wood smoke generator was drawn through the precipitator. Although these runs were visual indicators only, with no objective other than to display, they provided a strong argument for the device’s claimed efficiency, as no emissions were visible at exit when energised.  The theoretical performance of ESPs, when applied to the geometry and configuration of the tested model, was compared to the actual performance and was shown to be in good agreement with it.

Keywords: electrostatic precipitators, air quality, particulates emissions, electron microscopy, image j

Procedia PDF Downloads 227
498 Numerical Study of Fire Propagation in Confined and Open Area

Authors: Hadj Miloua, Abbes Azzi

Abstract:

The objective of the present paper is to understand, predict and modeled the fire behavior in confined and open area in different conditions and diverse fuels such as liquid pool fire and the vegetative materials. The distinctive problems are a ventilated road tunnel used for urban transport, by the characterization installations of ventilation and his influence in the mode of smoke dispersion and the flame shape. A general investigation is relatively traditional, based on the modeling and simulation the scenario of the pool fire interacted with wind ventilation by the use of numerical software fire dynamic simulator FDS ver.5 to simulate the fire in ventilated tunnel. The second simulation by WFDS.5 is Wildland fire which is always occurs in forest and rangeland fire environments and will thus have an impact on people, property and resources.

Keywords: fire, road tunnel, simulation, vegetation, wildland

Procedia PDF Downloads 482
497 A Multi-Output Network with U-Net Enhanced Class Activation Map and Robust Classification Performance for Medical Imaging Analysis

Authors: Jaiden Xuan Schraut, Leon Liu, Yiqiao Yin

Abstract:

Computer vision in medical diagnosis has achieved a high level of success in diagnosing diseases with high accuracy. However, conventional classifiers that produce an image to-label result provides insufficient information for medical professionals to judge and raise concerns over the trust and reliability of a model with results that cannot be explained. In order to gain local insight into cancerous regions, separate tasks such as imaging segmentation need to be implemented to aid the doctors in treating patients, which doubles the training time and costs which renders the diagnosis system inefficient and difficult to be accepted by the public. To tackle this issue and drive AI-first medical solutions further, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional convolutional neural networks (CNN) module for auxiliary classification output. Class activation maps are a method of providing insight into a convolutional neural network’s feature maps that leads to its classification but in the case of lung diseases, the region of interest is enhanced by U-net-assisted Class Activation Map (CAM) visualization. Therefore, our proposed model combines image segmentation models and classifiers to crop out only the lung region of a chest X-ray’s class activation map to provide a visualization that improves the explainability and is able to generate classification results simultaneously which builds trust for AI-led diagnosis systems. The proposed U-Net model achieves 97.61% accuracy and a dice coefficient of 0.97 on testing data from the COVID-QU-Ex Dataset which includes both diseased and healthy lungs.

Keywords: multi-output network model, U-net, class activation map, image classification, medical imaging analysis

Procedia PDF Downloads 161
496 FlameCens: Visualization of Expressive Deviations in Music Performance

Authors: Y. Trantafyllou, C. Alexandraki

Abstract:

Music interpretation accounts to the way musicians shape their performance by deliberately deviating from composers’ intentions, which are commonly communicated via some form of music transcription, such as a music score. For transcribed and non-improvised music, music expression is manifested by introducing subtle deviations in tempo, dynamics and articulation during the evolution of performance. This paper presents an application, named FlameCens, which, given two recordings of the same piece of music, presumably performed by different musicians, allow visualising deviations in tempo and dynamics during playback. The application may also compare a certain performance to the music score of that piece (i.e. MIDI file), which may be thought of as an expression-neutral representation of that piece, hence depicting the expressive queues employed by certain performers. FlameCens uses the Dynamic Time Warping algorithm to compare two audio sequences, based on CENS (Chroma Energy distribution Normalized Statistics) audio features. Expressive deviations are illustrated in a moving flame, which is generated by an animation of particles. The length of the flame is mapped to deviations in dynamics, while the slope of the flame is mapped to tempo deviations so that faster tempo changes the slope to the right and slower tempo changes the slope to the left. Constant slope signifies no tempo deviation. The detected deviations in tempo and dynamics can be additionally recorded in a text file, which allows for offline investigation. Moreover, in the case of monophonic music, the color of particles is used to convey the pitch of the notes during performance. FlameCens has been implemented in Python and it is openly available via GitHub. The application has been experimentally validated for different music genres including classical, contemporary, jazz and popular music. These experiments revealed that FlameCens can be a valuable tool for music specialists (i.e. musicians or musicologists) to investigate the expressive performance strategies employed by different musicians, as well as for music audience to enhance their listening experience.

Keywords: audio synchronization, computational music analysis, expressive music performance, information visualization

Procedia PDF Downloads 104
495 Performance Evaluation of Karanja Oil Based Biodiesel Engine Using Modified Genetic Algorithm

Authors: G. Bhushan, S. Dhingra, K. K. Dubey

Abstract:

This paper presents the evaluation of performance (BSFC and BTE), combustion (Pmax) and emission (CO, NOx, HC and smoke opacity) parameters of karanja biodiesel in a single cylinder, four stroke, direct injection diesel engine by considering significant engine input parameters (blending ratio, compression ratio and load torque). Multi-objective optimization of performance, combustion and emission parameters is also carried out in a karanja biodiesel engine using hybrid RSM-NSGA-II technique. The pareto optimum solutions are predicted by running the hybrid RSM-NSGA-II technique. Each pareto optimal solution is having its own importance. Confirmation tests are also conducted at randomly selected few pareto solutions to check the authenticity of the results.

Keywords: genetic algorithm, rsm, biodiesel, karanja

Procedia PDF Downloads 281
494 Monotone Rational Trigonometric Interpolation

Authors: Uzma Bashir, Jamaludin Md. Ali

Abstract:

This study is concerned with the visualization of monotone data using a piece-wise C1 rational trigonometric interpolating scheme. Four positive shape parameters are incorporated in the structure of rational trigonometric spline. Conditions on two of these parameters are derived to attain the monotonicity of monotone data and other two are left-free. Figures are used widely to exhibit that the proposed scheme produces graphically smooth monotone curves.

Keywords: trigonometric splines, monotone data, shape preserving, C1 monotone interpolant

Procedia PDF Downloads 243
493 Three-Dimensional Computer Graphical Demonstration of Calcified Tissue and Its Clinical Significance

Authors: Itsuo Yokoyama, Rikako Kikuti, Miti Sekikawa, Tosinori Asai, Sarai Tsuyoshi

Abstract:

Introduction: Vascular access for hemodialysis therapy is often difficult, even for experienced medical personnel. Ultrasound guided needle placement have been performed occasionally but is not always helpful in certain cases with complicated vascular anatomy. Obtaining precise anatomical knowledge of the vascular structure is important to prevent access-related complications. With augmented reality (AR) device such as AR glasses, the virtual vascular structure is shown superimposed on the actual patient vessels, thus enabling the operator to maneuver catheter placement easily with free both hands. We herein report our method of AR guided vascular access method in dialysis treatment Methods: Three dimensional (3D) object of the arm with arteriovenous fistula is computer graphically created with 3D software from the data obtained by computer tomography, ultrasound echogram, and image scanner. The 3D vascular object thus created is viewed on the screen of the AR digital display device (such as AR glass or iPad). The picture of the vascular anatomical structure becomes visible, which is superimposed over the real patient’s arm, thereby the needle insertion be performed under the guidance of AR visualization with ease. By this method, technical difficulty in catheter placement for dialysis can be lessened and performed safely. Considerations: Virtual reality technology has been applied in various fields and medical use is not an exception. Yet AR devices have not been widely used among medical professions. Visualization of the virtual vascular object can be achieved by creation of accurate three dimensional object with the help of computer graphical technique. Although our experience is limited, this method is applicable with relative easiness and our accumulating evidence has suggested that our method of vascular access with the use of AR can be promising.

Keywords: abdominal-aorta, calcification, extraskeletal, dialysis, computer graphics, 3DCG, CT, calcium, phosphorus

Procedia PDF Downloads 98
492 Combustion Characteristics of Bioethanol-Biodiesel-Diesel Fuel Blends Used in a Common Rail Diesel Engine

Authors: Hasan Aydogan

Abstract:

The changes in the performance, emission and combustion characteristics of bioethanol-safflower biodiesel and diesel fuel blends used in a common rail diesel engine were investigated in this experimental study. E20B20D60 (20% bioethanol, 20% biodiesel, 60% diesel fuel by volume), E30B20D50, E50B20D30 and diesel fuel (D) were used as fuel. The tests were performed at full throttle valve opening and variable engine speeds. The results of the tests showed decreases in engine power, engine torque, carbon monoxide (CO), hydrocarbon (HC) and smoke density values with the use of bioethanol-biodiesel and diesel fuel blends, whereas, increases were observed in nitrogen oxide (NOx) and brake specific fuel consumption (BSFC) values. When combustion characteristics were examined, it was seen that the values were close to one another.

Keywords: bioethanol, biodiesel, safflower, combustion characteristics

Procedia PDF Downloads 495
491 Legal Judgment Prediction through Indictments via Data Visualization in Chinese

Authors: Kuo-Chun Chien, Chia-Hui Chang, Ren-Der Sun

Abstract:

Legal Judgment Prediction (LJP) is a subtask for legal AI. Its main purpose is to use the facts of a case to predict the judgment result. In Taiwan's criminal procedure, when prosecutors complete the investigation of the case, they will decide whether to prosecute the suspect and which article of criminal law should be used based on the facts and evidence of the case. In this study, we collected 305,240 indictments from the public inquiry system of the procuratorate of the Ministry of Justice, which included 169 charges and 317 articles from 21 laws. We take the crime facts in the indictments as the main input to jointly learn the prediction model for law source, article, and charge simultaneously based on the pre-trained Bert model. For single article cases where the frequency of the charge and article are greater than 50, the prediction performance of law sources, articles, and charges reach 97.66, 92.22, and 60.52 macro-f1, respectively. To understand the big performance gap between articles and charges, we used a bipartite graph to visualize the relationship between the articles and charges, and found that the reason for the poor prediction performance was actually due to the wording precision. Some charges use the simplest words, while others may include the perpetrator or the result to make the charges more specific. For example, Article 284 of the Criminal Law may be indicted as “negligent injury”, "negligent death”, "business injury", "driving business injury", or "non-driving business injury". As another example, Article 10 of the Drug Hazard Control Regulations can be charged as “Drug Control Regulations” or “Drug Hazard Control Regulations”. In order to solve the above problems and more accurately predict the article and charge, we plan to include the article content or charge names in the input, and use the sentence-pair classification method for question-answer problems in the BERT model to improve the performance. We will also consider a sequence-to-sequence approach to charge prediction.

Keywords: legal judgment prediction, deep learning, natural language processing, BERT, data visualization

Procedia PDF Downloads 95
490 Effects of Narghile Smoking in Tongue, Trachea and Lung

Authors: Sarah F. M. Pilati, Carolina S. Flausino, Guilherme F. Hoffmeister, Davi R. Tames, Telmo J. Mezadri

Abstract:

The effects that may be related to narghile smoking in the tissues of the oral cavity, trachea and lung and associated inflammation has been the question raised lately. The objective of this study was to identify histopathological changes and the presence of inflammation through the exposure of mice to narghile smoking through a whole-body study. The animals were divided in 4 groups with 5 animals in each group, being: one control group, one with 7 days of exposure, 15 days and the last one with 30 days. The animals were exposed to the conventional hookah smoke from Mizo brand with 0.5% percentage of unwashed tobacco and the EcOco brand coconut fiber having a dimension of 2cm × 2cm. The duration of the session was 30 minutes / day per 7, 15 and 30 days. The tobacco smoke concentration at which test animals were exposed was 35 ml every two seconds while the remaining 58 seconds were pure air. Afterward, the mice were sacrificed and submitted to histological evaluation through slices. It was found in the tongue of the 7-day group the presence in epithelium areas with acanthosis, hyperkeratosis and epithelial projections. In-depth, more intense inflammation was observed. All alteration processes increased significantly as the days of exposure increased. In trachea, with the 7-day group, there was a decrease in thickening of the pseudostratified epithelium and a slight decrease in lashes, giving rise to the metaplasia process, a process that was established in the 31-day sampling when the epithelium became stratified. In the conjunctive tissue, it was observed the presence of defense cells and formation of new vessels, evidencing the chronic inflammatory process, which decreased in the course of the samples due to the deposition of collagen fibers as seen in the 15 and 31 days groups. Among the structures of the lung, the study focused on the bronchioles and alveoli. From the 7-day group, intra-alveolar septum thickness increased, alveolar space decreased, inflammatory infiltrate with mononuclear and defense cells and new vessels formation were observed, increasing the number of red blood cells in the region. The results showed that with the passing of the days a progressive increase of the signs of changes in the region was observed, a factor that shows that narghile smoking stimulates alterations mainly in the alveoli (place where gas exchanges occur that should not present alterations) calling attention to the harmful and aggressive effect of narghile smoking. These data also highlighted the harmful effect of smoking, since the presence of acanthosis, hyperkeratosis, epithelial projections and inflammation evidences the cellular alteration process for the tongue tissue protection. Also, the narghile smoking stimulates both epithelial and inflammatory changes in the trachea, in addition to a process of metaplasia, a factor that reinforces the harmful effect and the carcinogenic potential of the narghile smoking.

Keywords: metaplasia, inflammation, pathological constriction, hyperkeratosis

Procedia PDF Downloads 144
489 Unsupervised Learning and Similarity Comparison of Water Mass Characteristics with Gaussian Mixture Model for Visualizing Ocean Data

Authors: Jian-Heng Wu, Bor-Shen Lin

Abstract:

The temperature-salinity relationship is one of the most important characteristics used for identifying water masses in marine research. Temperature-salinity characteristics, however, may change dynamically with respect to the geographic location and is quite sensitive to the depth at the same location. When depth is taken into consideration, however, it is not easy to compare the characteristics of different water masses efficiently for a wide range of areas of the ocean. In this paper, the Gaussian mixture model was proposed to analyze the temperature-salinity-depth characteristics of water masses, based on which comparison between water masses may be conducted. Gaussian mixture model could model the distribution of a random vector and is formulated as the weighting sum for a set of multivariate normal distributions. The temperature-salinity-depth data for different locations are first used to train a set of Gaussian mixture models individually. The distance between two Gaussian mixture models can then be defined as the weighting sum of pairwise Bhattacharyya distances among the Gaussian distributions. Consequently, the distance between two water masses may be measured fast, which allows the automatic and efficient comparison of the water masses for a wide range area. The proposed approach not only can approximate the distribution of temperature, salinity, and depth directly without the prior knowledge for assuming the regression family, but may restrict the complexity by controlling the number of mixtures when the amounts of samples are unevenly distributed. In addition, it is critical for knowledge discovery in marine research to represent, manage and share the temperature-salinity-depth characteristics flexibly and responsively. The proposed approach has been applied to a real-time visualization system of ocean data, which may facilitate the comparison of water masses by aggregating the data without degrading the discriminating capabilities. This system provides an interface for querying geographic locations with similar temperature-salinity-depth characteristics interactively and for tracking specific patterns of water masses, such as the Kuroshio near Taiwan or those in the South China Sea.

Keywords: water mass, Gaussian mixture model, data visualization, system framework

Procedia PDF Downloads 105