Search results for: rocket propulsion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 215

Search results for: rocket propulsion

35 Tactical Urbanism and Sustainability: Tactical Experiences in the Promotion of Active Transportation

Authors: Aline Fernandes Barata, Adriana Sansão Fontes

Abstract:

The overvaluation of the use of automobile has detrimentally affected the importance of pedestrians within the city and consequently its public spaces. As a way of treating contemporary urban paradigms, Tactical Urbanism aims to recover and activate spaces through fast and easily-applied actions that demonstrate the possibility of large-scale and long-term changes in cities. Tactical interventions have represented an important practice of redefining public spaces and urban mobility. The concept of Active Transportation coheres with the idea of sustainable urban mobility, characterizing the means of transportation through human propulsion, such as walking and cycling. This paper aims to debate the potential of Tactical Urbanism in promoting Active Transportation by revealing opportunities of transformation in the urban space of contemporary cities through initiatives that promote the protection and valorization of the presence of pedestrians and cyclists in cities, and that subvert the importance of motorized vehicles. In this paper, we present the character of these actions in two different ways: when they are used as tests for permanent interventions and when they have pre-defined start and end periods. Using recent initiatives to illustrate, we aim to discuss the role of small-scale actions in promoting and incentivizing a more active, healthy, sustainable and responsive urban way of life, presenting how some of them have developed through public policies. For that, we will present some examples of tactical actions that illustrate the encouragement of Active Transportation and trials to balance the urban opportunities for pedestrians and cyclists. These include temporary closure of streets, the creation of new alternatives and more comfortable areas for walking and cycling, and the subversion of uses in public spaces where the usage of cars are predominant.

Keywords: tactical urbanism, active transportation, sustainable mobility, non-motorized means

Procedia PDF Downloads 209
34 An Experimental Study on the Temperature Reduction of Exhaust Gas at a Snorkeling of Submarine

Authors: Seok-Tae Yoon, Jae-Yeong Choi, Gyu-Mok Jeon, Yong-Jin Cho, Jong-Chun Park

Abstract:

Conventional submarines obtain propulsive force by using an electric propulsion system consisting of a diesel generator, battery, motor, and propeller. In the underwater, the submarine uses the electric power stored in the battery. After that, when a certain amount of electric power is consumed, the submarine floats near the sea water surface and recharges the electric power by using the diesel generator. The voyage carried out while charging the power is called a snorkel, and the high-temperature exhaust gas from the diesel generator forms a heat distribution on the sea water surface. The heat distribution is detected by weapon system equipped with thermo-detector and that is the main cause of reducing the survivability of the submarine. In this paper, an experimental study was carried out to establish optimal operating conditions of a submarine for reduction of infrared signature radiated from the sea water surface. For this, a hot gas generating system and a round acrylic water tank with adjustable water level were made. The control variables of the experiment were set as the mass flow rate, the temperature difference between the water and the hot gas in the water tank, and the water level difference between the air outlet and the water surface. The experimental instrumentation used a thermocouple of T-type to measure the released air temperature on the surface of the water, and a thermography system to measure the thermal energy distribution on the water surface. As a result of the experiment study, we analyzed the correlation between the final released temperature of the exhaust pipe exit in a submarine and the depth of the snorkel, and presented reasonable operating conditions for the infrared signature reduction of submarine.

Keywords: experiment study, flow rate, infrared signature, snorkeling, thermography

Procedia PDF Downloads 326
33 Creative Mathematically Modelling Videos Developed by Engineering Students

Authors: Esther Cabezas-Rivas

Abstract:

Ordinary differential equations (ODE) are a fundamental part of the curriculum for most engineering degrees, and students typically have difficulties in the subsequent abstract mathematical calculations. To enhance their motivation and profit that they are digital natives, we propose a teamwork project that includes the creation of a video. It should explain how to model mathematically a real-world problem transforming it into an ODE, which should then be solved using the tools learned in the lectures. This idea was indeed implemented with first-year students of a BSc in Engineering and Management during the period of online learning caused by the outbreak of COVID-19 in Spain. Each group of 4 students was assigned a different topic: model a hot water heater, search for the shortest path, design the quickest route for delivery, cooling a computer chip, the shape of the hanging cables of the Golden Gate, detecting land mines, rocket trajectories, etc. These topics should be worked out through two complementary channels: a written report describing the problem and a 10-15 min video on the subject. The report includes the following items: description of the problem to be modeled, detailed obtention of the ODE that models the problem, its complete solution, and interpretation in the context of the original problem. We report the outcomes of this teaching in context and active learning experience, including the feedback received by the students. They highlighted the encouragement of creativity and originality, which are skills that they do not typically relate to mathematics. Additionally, the video format (unlike a common presentation) has the advantage of allowing them to critically review and self-assess the recording, repeating some parts until the result is satisfactory. As a side effect, they felt more confident about their oral abilities. In short, students agreed that they had fun preparing the video. They recognized that it was tricky to combine deep mathematical contents with entertainment since, without the latter, it is impossible to engage people to view the video till the end. Despite this difficulty, after the activity, they claimed to understand better the material, and they enjoyed showing the videos to family and friends during and after the project.

Keywords: active learning, contextual teaching, models in differential equations, student-produced videos

Procedia PDF Downloads 125
32 Design & Development of a Static-Thrust Test-Bench for Aviation/UAV Based Piston Engines

Authors: Syed Muhammad Basit Ali, Usama Saleem, Irtiza Ali

Abstract:

Internal combustion engines have been pioneers in the aviation industry, use of piston engines for aircraft propulsion, from propeller-driven bi-planes to turbo-prop, commercial, and cargo airliners. To provide an adequate amount of thrust piston engine rotates the propeller at a specific rpm, allowing enough mass airflow. Thrust is the only forward-acting force of an aircraft that helps heavier than air bodies to fly, depending on the mathematical model and variables included in that with the correct measurement. Test-benches have been a bench-mark in the aerospace industry to analyse the results before a flight, having paramount significance in reliability and safety engineering, depending on the mathematical model and variables included in that with the correct measurement. Calculation of thrust from a piston engine also depends on environmental changes, the diameter of the propeller, and the density of air. The project would be centered on piston engines used in the aviation industry for light aircraft and UAVs. A static thrust test bench involves various units, each performing a designed purpose to monitor and display. Static thrust tests are performed on the ground, and safety concerns hold paramount importance. The execution of this study involves research, design, manufacturing, and results based on reverse engineering initiating from virtual design, analytical analysis, and simulations. The final evaluation of results gathered from various methods such as co-relation between conventional mass-spring and digital loadcell. On average, we received 17.5kg of thrust (25+ engine run-ups – around 40 hours of engine run), only 10% deviation from analytically calculated thrust –providing 90% accuracy.

Keywords: aviation, aeronautics, static thrust, test bench, aircraft maintenance

Procedia PDF Downloads 349
31 Evaluation of Possible Application of Cold Energy in Liquefied Natural Gas Complexes

Authors: А. I. Dovgyalo, S. O. Nekrasova, D. V. Sarmin, A. A. Shimanov, D. A. Uglanov

Abstract:

Usually liquefied natural gas (LNG) gasification is performed due to atmospheric heat. In order to produce a liquefied gas a sufficient amount of energy is to be consumed (about 1 kW∙h for 1 kg of LNG). This study offers a number of solutions, allowing using a cold energy of LNG. In this paper it is evaluated the application turbines installed behind the evaporator in LNG complex due to its work additional energy can be obtained and then converted into electricity. At the LNG consumption of G=1000kg/h the expansion work capacity of about 10 kW can be reached. Herewith-open Rankine cycle is realized, where a low capacity cryo-pump (about 500W) performs its normal function, providing the cycle pressure. Additionally discussed an application of Stirling engine within the LNG complex also gives a possibility to realize cold energy. Considering the fact, that efficiency coefficient of Stirling engine reaches 50 %, LNG consumption of G=1000 kg/h may result in getting a capacity of about 142 kW of such a thermal machine. The capacity of the pump, required to compensate pressure losses when LNG passes through the hydraulic channel, will make 500 W. Apart from the above-mentioned converters, it can be proposed to use thermoelectric generating packages (TGP), which are widely used now. At present, the modern thermoelectric generator line provides availability of electric capacity with coefficient of efficiency up to 15%. In the proposed complex, it is suggested to install the thermoelectric generator on the evaporator surface is such a way, that the cold end is contacted with the evaporator’s surface, and the hot one – with the atmosphere. At the LNG consumption of G=1000 kgг/h and specified coefficient of efficiency the capacity of the heat flow Qh will make about 32 kW. The derivable net electric power will be P=4,2 kW, and the number of packages will amount to about 104 pieces. The carried out calculations demonstrate the research perceptiveness in this field of propulsion plant development, as well as allow realizing the energy saving potential with the use of liquefied natural gas and other cryogenics technologies.

Keywords: cold energy, gasification, liquefied natural gas, electricity

Procedia PDF Downloads 253
30 Minimizing Ship’S Breakdown Maintenance Due to Rope Entangled In Propeller With “Si Kuman” On Mooring Boat PSC I in Surabaya

Authors: Jogi Prayogo, Dwi Qaqa Prasetyatama, Rahmad Dwi Afandi, Kunto Arief Prasetyo, Viorel Herniza Leksono

Abstract:

PT. Pertamina Trans Kontinental managed a fleet of 364 ships in 2018 - 2020. In that period, there were 8 incidents of ship damage, causing breakdown maintenance on 6 ships belonging to PT Pertamina Trans Kontinental throughout Indonesia's operational areas due to ropes entangled in propellers. The company's losses that were caused by the fouled propellers amounted to 306.35 Million Rupiah. Of the 8 incidents, Mooring Boat PSC I was taken as a pilot project for further analysis considering the location of the ship which is in Surabaya and Mooring Boat PSC I has experienced 2 incidents of rope entanglement that caused the company's losses due to the largest Breakdown Maintenance amounted to 200.99 Million Rupiah. After analyzing the rope entanglement in the ship's propeller based on the data of Mooring Boat PSC I related to the location of propellers that are often fouled in the conventional propulsion system, it was found that there is a suitable location for the implementation of SI KUMAN tool that serves to cut ropes to prevent the occurrence of rope entangled in ship propellers. The determination of SI KUMAN tool is based on the strength of the ship's material to be installed and a suitable design to prevent the occurrence of ropes being entangled in propellers. After the installation of the "SI KUMAN" tool and monitoring carried out for 1 year period (August 2020 - August 2021), it was found that SI KUMAN tool can eliminate the risk of fouled propeller incidents which previously occurred twice in one year so that the company's loss amounted to 200.99 Million Rupiah can be eliminated and SI KUMAN tool can still operate optimally.

Keywords: breakdown maintenance, mooring boat, fleet, fouled propeller, rope entangled, cut

Procedia PDF Downloads 153
29 Energy Efficient Autonomous Lower Limb Exoskeleton for Human Motion Enhancement

Authors: Nazim Mir-Nasiri, Hudyjaya Siswoyo Jo

Abstract:

The paper describes conceptual design, control strategies, and partial simulation for a new fully autonomous lower limb wearable exoskeleton system for human motion enhancement that can support its weight and increase strength and endurance. Various problems still remain to be solved where the most important is the creation of a power and cost efficient system that will allow an exoskeleton to operate for extended period without batteries being frequently recharged. The designed exoskeleton is enabling to decouple the weight/mass carrying function of the system from the forward motion function which reduces the power and size of propulsion motors and thus the overall weight, cost of the system. The decoupling takes place by blocking the motion at knee joint by placing passive air cylinder across the joint. The cylinder is actuated when the knee angle has reached the minimum allowed value to bend. The value of the minimum bending angle depends on usual walk style of the subject. The mechanism of the exoskeleton features a seat to rest the subject’s body weight at the moment of blocking the knee joint motion. The mechanical structure of each leg has six degrees of freedom: four at the hip, one at the knee, and one at the ankle. Exoskeleton legs are attached to subject legs by using flexible cuffs. The operation of all actuators depends on the amount of pressure felt by the feet pressure sensors and knee angle sensor. The sensor readings depend on actual posture of the subject and can be classified in three distinct cases: subject stands on one leg, subject stands still on both legs and subject stands on both legs but transit its weight from one leg to other. This exoskeleton is power efficient because electrical motors are smaller in size and did not participate in supporting the weight like in all other existing exoskeleton designs.

Keywords: energy efficient system, exoskeleton, motion enhancement, robotics

Procedia PDF Downloads 345
28 Numerical Studies on Bypass Thrust Augmentation Using Convective Heat Transfer in Turbofan Engine

Authors: R. Adwaith, J. Gopinath, Vasantha Kohila B., R. Chandru, Arul Prakash R.

Abstract:

The turbofan engine is a type of air breathing engine that is widely used in aircraft propulsion produces thrust mainly from the mass-flow of air bypassing the engine core. The present research has developed an effective method numerically by increasing the thrust generated from the bypass air. This thrust increase is brought about by heating the walls of the bypass valve from the combustion chamber using convective heat transfer method. It is achieved computationally by the use external heat to enhance the velocity of bypass air of turbofan engines. The bypass valves are either heated externally using multicell tube resistor which convert electricity generated by dynamos into heat or heat is transferred from the combustion chamber. This increases the temperature of the flow in the valves and thereby increase the velocity of the flow that enters the nozzle of the engine. As a result, mass-flow of air passing the core engine for producing more thrust can be significantly reduced thereby saving considerable amount of Jet fuel. Numerical analysis has been carried out on a scaled down version of a typical turbofan bypass valve, where the valve wall temperature has been increased to 700 Kelvin. It is observed from the analysis that, the exit velocity contributing to thrust has significantly increased by 10 % due to the heating of by-pass valve. The degree of optimum increase in the temperature, and the corresponding effect in the increase of jet velocity is calculated to determine the operating temperature range for efficient increase in velocity. The technique used in the research increases the thrust by using heated by-pass air without extracting much work from the fuel and thus improve the efficiency of existing turbofan engines. Dimensional analysis has been carried to prove the accuracy of the results obtained numerically.

Keywords: turbofan engine, bypass valve, multi-cell tube, convective heat transfer, thrust

Procedia PDF Downloads 335
27 Radio Regulation Development and Radio Spectrum Analysis of Earth Station in Motion Service

Authors: Fei Peng, Jun Yuan, Chen Fan, Fan Jiang, Qian Sun, Yudi Liu

Abstract:

Although Earth Station in Motion (ESIM) services are widely used and there is a huge market demand around the world, International Telecommunication Union (ITU) does not have unified conclusion for the use of ESIM yet. ESIM are Mobile Satellite Services (MSS) due to its mobile-based attributes, while multiple administrations want to use ESIM in Fixed Satellite Service (FSS). However, Radio Regulations (RR) have strict distinction between MSS and FSS. In this case, ITU has been very controversial because this kind of application will violate the RR Article and the conflict will bring risks to the global deployment. Thus, this paper illustrates the development of rules, regulations, standards concerning ESIM and the radio spectrum usage of ESIM in different regions around the world. Firstly, the basic rules, standard and definition of ITU’s Radiocommunication Sector (ITU-R) is introduced. Secondly, the World Radiocommunication Conference (WRC) agenda item on radio spectrum allocation for ESIM, e.g. in C/Ku/Ka band, is introduced and multi-view on the radio spectrum allocation is elaborated, especially on 19.7-20.2 GHz & 29.5-30.0 GHz. Then, some ITU-R Recommendations and Reports are analyzed on the specific technique to enable these ESIM to communicate with Geostationary Earth Orbit Satellite (GSO) space stations in the FSS without causing interference at levels in excess of that caused by conventional FSS earth stations. Meanwhile, the opposite opinion on not allocating EISM service in FSS frequency band is also elaborated. Finally, based on the ESIM’s future application, the ITU-R standards development trend is forecasted. In conclusion, using radio spectrum resource in an equitable, rational and efficient manner is the basic guideline of ITU. Although it is not a good approach to obstruct the revise of RR when there is a large demand for radio spectrum resource in satellite industry, still the propulsion and global demand of the whole industry may face difficulties on the unclear application in modify rules of RR.

Keywords: earth station in motion, ITU standards, radio regulations, radio spectrum, satellite communication

Procedia PDF Downloads 261
26 Aerodynamic Interference of Propellers Group with Adjustable Mutual Position

Authors: Michal Biały, Krzysztof Skiba, Zdzislaw Kaminski

Abstract:

The research results of the influence of the adjustable mutual position of the propellers for getting optimal lift force on a specially designed bench. The bench consists of frame with electric motors and with attached propellers. Engines were arranged in a matrix of two columns and three rows. The distance between the columns averages from 0 to 20”, while the engine was placed at a height of 8”, 15.5” and 23.6”. By adjusting the tilt of an electric motor, an angle of the propeller in the range of 0° to 60°, by 15° was controlled. Propellers with a diameter of 8" and pitch of 4.5” were driven by brushless model engines Roxxy BL-Outrunner 2827/26 with a power of 110W (each). Rotational speed control of electric motors were realized parallel for all propellers. The speed adjustment was realized using an aggregate of radio-controlled regulators. Electric power supplied to the engines from zero to maximum power, by the setting for every 14W, was controlled by radio system. Measurement system was placed on a laboratory scale. The lift was measured and recorded by an electronic scale. The lift force for different configurations of propellers arrangement was recorded during the test. All propellers were driven in one rotational direction and in different directions when they were in the same pairs. Propellers were driven concurrently and contra-concurrently along one of the columns and along the selected rows. During the tests, except the lift, parameters such as: rotational speed of propellers, voltage and current to the electric engines were recorded. The main aim of the research was to show the influence of aerodynamic interference between the propellers to receive lift force depending on the drive configuration of individual propellers. The research has shown that, this interference exists. The increase of the lift force for a distance between columns above 26.6” was noticed during the driving propellers in different directions. The optimum tilt angle of the propeller was 45°. Furthermore there has been also approx. 12% increase of the lift for propellers driven alternately in column and contra-concurrently in relation to the contra-rotating drive in the row.

Keywords: aerodynamic, interference, lift force, propeller, propulsion system

Procedia PDF Downloads 314
25 Reacting Numerical Simulation of Axisymmetric Trapped Vortex Combustors for Methane, Propane and Hydrogen

Authors: Heval Serhat Uluk, Sam M. Dakka, Kuldeep Singh, Richard Jefferson-Loveday

Abstract:

The carbon footprint of the aviation sector in total measured 3.8% in 2017, and it is expected to triple by 2050. New combustion approaches and fuel types are necessary to prevent this. This paper will focus on using propane, methane, and hydrogen as fuel replacements for kerosene and implement a trapped vortex combustor design to increase efficiency. Reacting simulations were conducted for axisymmetric trapped vortex combustor to investigate the static pressure drop, combustion efficiency and pattern factor for various cavity aspect ratios for 0.3, 0.6 and 1 and air mass flow rates for 14 m/s, 28 m/s and 42 m/s. Propane, methane and hydrogen are used as alternative fuels. The combustion model was anchored based on swirl flame configuration with an emphasis on high fidelity of boundary conditions with favorable results of eddy dissipation model implementation. Reynolds Averaged Navier Stokes (RANS) k-ε model turbulence model for the validation effort was used for turbulence modelling. A grid independence study was conducted for the three-dimensional model to reduce computational time. Preliminary results for 24 m/s air mass flow rate provided a close temperature profile inside the cavity relative to the experimental study. The investigation will be carried out on the effect of air mass flow rates and cavity aspect ratio on the combustion efficiency, pattern factor and static pressure drop in the combustor. A comparison study among pure methane, propane and hydrogen will be conducted to investigate their suitability for trapped vortex combustors and conclude their advantages and disadvantages as a fuel replacement. Therefore, the study will be one of the milestones to achieving 2050 zero carbon emissions or reducing carbon emissions.

Keywords: computational fluid dynamics, aerodynamic, aerospace, propulsion, trapped vortex combustor

Procedia PDF Downloads 61
24 The Effect of Acute Consumption of a Nutritional Supplement Derived from Vegetable Extracts Rich in Nitrate on Athletic Performance

Authors: Giannis Arnaoutis, Dimitra Efthymiopoulou, Maria-Foivi Nikolopoulou, Yannis Manios

Abstract:

AIM: Nitrate-containing supplements have been used extensively as ergogenic in many sports. However, extract fractions from plant-based nutritional sources high in nitrate and their effect on athletic performance, has not been systematically investigated. The purpose of the present study was to examine the possible effect of acute consumption of a “smart mixture” from beetroot and rocket on exercise capacity. MATERIAL & METHODS: 12 healthy, nonsmoking, recreationally active, males (age: 25±4 years, % fat: 15.5±5.7, Fat Free Mass: 65.8±5.6 kg, VO2 max: 45.46.1 mL . kg -1 . min -1) participated in a double-blind, placebo-controlled trial study, in a randomized and counterbalanced order. Eligibility criteria for participation in this study included normal physical examination, and absence of any metabolic, cardiovascular, or renal disease. All participants completed a time to exhaustion cycling test at 75% of their maximum power output, twice. The subjects consumed either capsules containing 360 mg of nitrate in total or placebo capsules, in the morning, under fasted state. After 3h of passive recovery the performance test followed. Blood samples were collected upon arrival of the participants and 3 hours after the consumption of the corresponding capsules. Time until exhaustion, pre- and post-test lactate concentrations, and rate of perceived exertion for the same time points were assessed. RESULTS: Paired-sample t-test analysis found a significant difference in time to exhaustion between the trial with the nitrate consumption versus placebo [16.1±3.0 Vs 13.5±2.6 min, p=0.04] respectively. No significant differences were observed for the concentrations of lactic acid as well as for the values in the Borg scale between the two trials (p>0.05). CONCLUSIONS: Based on the results of the present study, it appears that a nutritional supplement derived from vegetable extracts rich in nitrate, improves athletic performance in recreationally active young males. However, the precise mechanism is not clear and future studies are needed. Acknowledgment: This research has been co‐financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH – CREATE – INNOVATE (project code:T2EDK-00843).

Keywords: sports performance, ergogenic supplements, nitrate, extract fractions

Procedia PDF Downloads 42
23 Advancing Aviation: A Multidisciplinary Approach to Innovation, Management, and Technology Integration in the 21st Century

Authors: Fatih Frank Alparslan

Abstract:

The aviation industry is at a crucial turning point due to modern technologies, environmental concerns, and changing ways of transporting people and goods globally. The paper examines these challenges and opportunities comprehensively. It emphasizes the role of innovative management and advanced technology in shaping the future of air travel. This study begins with an overview of the current state of the aviation industry, identifying key areas where innovation and technology could be highly beneficial. It explores the latest advancements in airplane design, propulsion, and materials. These technological advancements are shown to enhance aircraft performance and environmental sustainability. The paper also discusses the use of artificial intelligence and machine learning in improving air traffic control, enhancing safety, and making flight operations more efficient. The management of these technologies is critically important. Therefore, the research delves into necessary changes in organization, culture, and operations to support innovation. It proposes a management approach that aligns with these modern technologies, underlining the importance of forward-thinking leaders who collaborate across disciplines and embrace innovative ideas. The paper addresses challenges in adopting these innovations, such as regulatory barriers, the need for industry-wide standards, and the impact of technological changes on jobs and society. It recommends that governments, aviation businesses, and educational institutions collaborate to address these challenges effectively, paving the way for a more innovative and eco-friendly aviation industry. In conclusion, the paper argues that the future of aviation relies on integrating new management practices with innovative technologies. It urges a collective effort to push beyond current capabilities, envisioning an aviation industry that is safer, more efficient, and environmentally responsible. By adopting a broad approach, this research contributes to the ongoing discussion about resolving the complex issues facing today's aviation sector, offering insights and guidance to prepare for future advancements.

Keywords: aviation innovation, technology integration, environmental sustainability, management strategies, multidisciplinary approach

Procedia PDF Downloads 15
22 The Characteristics of the Operating Parameters of the Vertical Axis Wind Turbine for the Selected Wind Speed

Authors: Zdzislaw Kaminski, Zbigniew Czyz

Abstract:

The paper discusses the results of the research into a wind turbine with a vertical axis of rotation which was performed with the open return wind tunnel, Gunt HM 170, at the laboratory of the Department of Thermodynamics, Fluid Mechanics and Propulsion Aviation Systems of Lublin University of Technology. Wind tunnel experiments are a necessary step to construct any new type of wind turbine, to validate design assumptions and numerical results. This research focused on the rotor with the blades capable of modifying their working surfaces, i.e. absorbing wind kinetic energy. The operation of this rotor is based on adjusting angular aperture α of the top and bottom parts of the blades mounted on an axis. If this angle α increases, the working surface which absorbs wind kinetic energy also increases. The study was performed on scaled and geometrically similar models with the criteria of similarity relevant for the type of research preserved. The rotors with varied angular apertures of their blades were printed for the research with a powder 3D printer, ZPrinter® 450. This paper presents the research results for the selected flow speed of 6.5 m/s for the three angular apertures of the rotor blades, i.e. 30°, 60°, 90° at varied speeds. The test stand enables the turbine rotor to be braked to achieve the required speed and airflow speed and torque to be recorded. Accordingly, the torque and power as a function of airflow were plotted. The rotor with its adjustable blades enables turbine power to be adjusted within a wide range of wind speeds. A variable angular aperture of blade working surfaces α in a wind turbine enables us to control the speed of the turbine and consequently its output power. Reducing the angular aperture of working surfaces results in reduced speed, and if a special current generator applied, electrical output power is reduced, too. Speed adjusted by changing angle α enables the maximum load acting on rotor blades to be controlled. The solution under study is a kind of safety against a damage of a turbine due to possible high wind speed.

Keywords: drive torque, renewable energy, power, wind turbine, wind tunnel

Procedia PDF Downloads 227
21 Aerothermal Analysis of the Brazilian 14-X Hypersonic Aerospace Vehicle at Mach Number 7

Authors: Felipe J. Costa, João F. A. Martos, Ronaldo L. Cardoso, Israel S. Rêgo, Marco A. S. Minucci, Antonio C. Oliveira, Paulo G. P. Toro

Abstract:

The Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, at the Institute for Advanced Studies designed the Brazilian 14-X Hypersonic Aerospace Vehicle, which is a technological demonstrator endowed with two innovative technologies: waverider technology, to obtain lift from conical shockwave during the hypersonic flight; and uses hypersonic airbreathing propulsion system called scramjet that is based on supersonic combustion, to perform flights on Earth's atmosphere at 30 km altitude at Mach numbers 7 and 10. The scramjet is an aeronautical engine without moving parts that promote compression and deceleration of freestream atmospheric air at the inlet through the conical/oblique shockwaves generated during the hypersonic flight. During high speed flight, the shock waves and the viscous forces yield the phenomenon called aerodynamic heating, where this physical meaning is the friction between the fluid filaments and the body or compression at the stagnation regions of the leading edge that converts the kinetic energy into heat within a thin layer of air which blankets the body. The temperature of this layer increases with the square of the speed. This high temperature is concentrated in the boundary-layer, where heat will flow readily from the boundary-layer to the hypersonic aerospace vehicle structure. Fay and Riddell and Eckert methods are applied to the stagnation point and to the flat plate segments in order to calculate the aerodynamic heating. On the understanding of the aerodynamic heating it is important to analyze the heat conduction transfer to the 14-X waverider internal structure. ANSYS Workbench software provides the Thermal Numerical Analysis, using Finite Element Method of the 14-X waverider unpowered scramjet at 30 km altitude at Mach number 7 and 10 in terms of temperature and heat flux. Finally, it is possible to verify if the internal temperature complies with the requirements for embedded systems, and, if is necessary to do modifications on the structure in terms of wall thickness and materials.

Keywords: aerodynamic heating, hypersonic, scramjet, thermal analysis

Procedia PDF Downloads 420
20 Analysis of Power Demand for the Common Rail Pump Drive in an Aircraft Engine

Authors: Rafal Sochaczewski, Marcin Szlachetka, Miroslaw Wendeker

Abstract:

Increasing requirements to reduce exhaust emissions and fuel consumption while increasing the power factor is increasingly becoming applicable to internal combustion engines intended for aircraft applications. As a result, intensive research work is underway to develop a diesel-powered unit for aircraft propulsion. Due to a number of advantages, such as lack of the head (lower heat loss) and timing system, opposite movement of pistons conducive to balancing the engine, the two-stroke compression-ignition engine with the opposite pistons has been developed and upgraded. Of course, such construction also has drawbacks. The main one is the necessity of using a gear connecting two crankshafts or a complicated crank system with one shaft. The peculiarity of the arrangement of pistons with sleeves, as well as the fulfillment of rigorous requirements, makes it necessary to apply the most modern technologies and constructional solutions. In the case of the fuel supply system, it was decided to use common rail system elements. The paper presents an analysis of the possibility of using a common rail pump to supply an aircraft compression-ignition engine. It is an engine with a two-stroke cycle, three cylinders, opposing pistons, and 100 kW power. Each combustion chamber is powered by two injectors controlled by electromagnetic valves. In order to assess the possibility of using a common rail pump, four high-pressure pumps were tested on a bench. They are piston pumps differing in the number and geometry of the pumping sections. The analysis included the torque on the pump drive shaft and the power needed to drive the pump depending on the rotational speed, pumping pressure and fuel dispenser settings. The research allowed to optimize the engine power supply system depending on the fuel demand and the way the pump is mounted on the engine. Acknowledgment: This work has been realized in the cooperation with The Construction Office of WSK ‘PZL-KALISZ’ S.A.’ and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish Nation-al Centre for Research and Development.

Keywords: diesel engine, fuel pump, opposing pistons, two-stroke

Procedia PDF Downloads 116
19 Development of Alternative Fuels Technologies: Compressed Natural Gas Home Refueling Station

Authors: Szymon Kuczynski, Krystian Liszka, Mariusz Laciak, Andrii Oliinyk, Adam Szurlej

Abstract:

Compressed natural gas (CNG) represents an excellent compromise between the availability of a technology that is proven and relatively easy to use in many areas of the automotive industry and incurred costs. This fuel causes a lower corrosion effect due to the lower content of products causing the potential difference on the walls of the engine system. Natural gas powered vehicles (NGVs) do not emit any substances that can contaminate water or land. The absence of carcinogenic substances in gaseous fuel extends the life of the engine. In the longer term, it contributes positively to waste management as well as waste disposal. Popularization of propulsion systems powered by natural gas CNG positively affects the reduction of heavy duty transport. For these reasons, CNG as a fuel stimulates considerable interest around the world. Over the last few years, technologies related to use of natural gas as an engine fuel have been developed and improved. These solutions have evolved from the prototype phase to the industrial scale implementation. The widespread availability of gaseous fuels has led to the development of a technology that allows the CNG fuel to be refueled directly from the urban gas network to the vehicle tank (ie. HYGEN - CNGHRS). Home refueling installations, although they have been known for many years, are becoming increasingly important in the present day. The major obstacle in the sale of this technology was, until recently, quite high capital expenditure compared to the later benefits. Home refueling systems allow refueling vehicle tank, with full control of fuel costs and refueling time. CNG Home Refueling Stations (such as HYGEN) allow gas value chain to overcome the dogma that there is a lack of refueling infrastructure allowing companies in gas value chain to participate in transportation market. Technology is based on one stage hydraulic compressor (instead of multistage mechanical compressor technology) which provides the possibility to compress low pressure gas from distribution gas network to 200 bar for its further usage as a fuel for NGVs. This boosts revenues and profits of gas companies by expanding its presence in higher margin of energy sector.

Keywords: alternative fuels, CNG (compressed natural gas), CNG stations, NGVs (natural gas vehicles), gas value chain

Procedia PDF Downloads 173
18 Extracting an Experimental Relation between SMD, Mass Flow Rate, Velocity and Pressure in Swirl Fuel Atomizers

Authors: Mohammad Hassan Ziraksaz

Abstract:

Fuel atomizers are used in a wide range of IC engines, turbojets and a variety of liquid propellant rocket engines. As the fuel spray fully develops its characters approach their ultimate amounts. Fuel spray characters such as SMD, injection pressure, mass flow rate, droplet velocity and spray cone angle play important roles to atomize the liquid fuel to finely atomized fuel droplets and finally form the fine fuel spray. Well performed, fully developed, fine spray without any defections, brings the idea of finding an experimental relation between the main effective spray characters. Extracting an experimental relation between SMD and other fuel spray physical characters in swirl fuel atomizers is the main scope of this experimental work. Droplet velocity, fuel mass flow rate, SMD and spray cone angle are the parameters which are measured. A set of twelve reverse engineering atomizers without any spray defections and a set of eight original atomizers as referenced well-performed spray are contributed in this work. More than 350 tests, mostly repeated, were performed. This work shows that although spray cone angle plays a very effective role in spray formation, after formation, it smoothly approaches to an almost constant amount while the other characters are changed to create fine droplets. Therefore, the work to find the relation between the characters is focused on SMD, droplet velocity, fuel mass flow rate, and injection pressure. The process of fuel spray formation begins in 5 Psig injection pressures, where a tiny fuel onion attaches to the injector tip and ended in 250 Psig injection pressure, were fully developed fine fuel spray forms. Injection pressure is gradually increased to observe how the spray forms. In each step, all parameters are measured and recorded carefully to provide a data bank. Various diagrams have been drawn to study the behavior of the parameters in more detail. Experiments and graphs show that the power equation can best show changes in parameters. The SMD experimental relation with pressure P, fuel mass flow rate Q ̇ and droplet velocity V extracted individually in pairs. Therefore, the proportional relation of SMD with other parameters is founded. Now it is time to find an experimental relation including all the parameters. Using obtained proportional relation, replacing the parameters with experimentally measured ones and drawing the graphs of experimental SMD versus proportion SMD (〖SMD〗_P), a correctional equation and consequently the final experimental equation is obtained. This experimental equation is specified to use for swirl fuel atomizers and the use of this experimental equation in different conditions shows about 3% error, which is expected to achieve lower error and consequently higher accuracy by increasing the number of experiments and increasing the accuracy of data collection.

Keywords: droplet velocity, experimental relation, mass flow rate, SMD, swirl fuel atomizer

Procedia PDF Downloads 142
17 An Absolute Femtosecond Rangefinder for Metrological Support in Coordinate Measurements

Authors: Denis A. Sokolov, Andrey V. Mazurkevich

Abstract:

In the modern world, there is an increasing demand for highly precise measurements in various fields, such as aircraft, shipbuilding, and rocket engineering. This has resulted in the development of appropriate measuring instruments that are capable of measuring the coordinates of objects within a range of up to 100 meters, with an accuracy of up to one micron. The calibration process for such optoelectronic measuring devices (trackers and total stations) involves comparing the measurement results from these devices to a reference measurement based on a linear or spatial basis. The reference used in such measurements could be a reference base or a reference range finder with the capability to measure angle increments (EDM). The base would serve as a set of reference points for this purpose. The concept of the EDM for replicating the unit of measurement has been implemented on a mobile platform, which allows for angular changes in the direction of laser radiation in two planes. To determine the distance to an object, a high-precision interferometer with its own design is employed. The laser radiation travels to the corner reflectors, which form a spatial reference with precisely known positions. When the femtosecond pulses from the reference arm and the measuring arm coincide, an interference signal is created, repeating at the frequency of the laser pulses. The distance between reference points determined by interference signals is calculated in accordance with recommendations from the International Bureau of Weights and Measures for the indirect measurement of time of light passage according to the definition of a meter. This distance is D/2 = c/2nF, approximately 2.5 meters, where c is the speed of light in a vacuum, n is the refractive index of a medium, and F is the frequency of femtosecond pulse repetition. The achieved uncertainty of type A measurement of the distance to reflectors 64 m (N•D/2, where N is an integer) away and spaced apart relative to each other at a distance of 1 m does not exceed 5 microns. The angular uncertainty is calculated theoretically since standard high-precision ring encoders will be used and are not a focus of research in this study. The Type B uncertainty components are not taken into account either, as the components that contribute most do not depend on the selected coordinate measuring method. This technology is being explored in the context of laboratory applications under controlled environmental conditions, where it is possible to achieve an advantage in terms of accuracy. In general, the EDM tests showed high accuracy, and theoretical calculations and experimental studies on an EDM prototype have shown that the uncertainty type A of distance measurements to reflectors can be less than 1 micrometer. The results of this research will be utilized to develop a highly accurate mobile absolute range finder designed for the calibration of high-precision laser trackers and laser rangefinders, as well as other equipment, using a 64 meter laboratory comparator as a reference.

Keywords: femtosecond laser, pulse correlation, interferometer, laser absolute range finder, coordinate measurement

Procedia PDF Downloads 25
16 Structure and Properties of Intermetallic NiAl-Based Coatings Produced by Magnetron Sputtering Technique

Authors: Tatiana S. Ogneva

Abstract:

Aluminum and nickel-based intermetallic compounds have attracted the attention of scientific community as promising materials for heat-resistant and wear-resistant coatings in such manufacturing areas as microelectronics, aircraft and rocket building and chemical industries. Magnetron sputtering makes possible to coat materials without formation of liquid phase and improves the mechanical and functional properties of nickel aluminides due to the possibility of nanoscale structure formation. The purpose of the study is the investigation of structure and properties of intermetallic coatings produced by magnetron sputtering technique. The feature of this work is the using of composite targets for sputtering, which were consisted of two semicircular sectors of cp-Ni and cp-Al. Plates of alumina, silicon, titanium and steel alloys were used as substrates. To estimate sputtering conditions on structure of intermetallic coatings, a series of samples were produced and studied in detail using scanning and transition electron microcopy and X-Ray diffraction. Besides, nanohardness and scratching tests were carried out. The varying parameters were the distance from the substrate to the target, the duration and the power of the sputtering. The thickness of the obtained intermetallic coatings varied from 0.05 to 0.5 mm depending on the sputtering conditions. The X-ray diffraction data indicated that the formation of intermetallic compounds occurred after sputtering without additional heat treatment. Sputtering at a distance not closer than 120 mm led to the formation of NiAl phase. Increase in the power of magnetron from 300 to 900 W promoted the increase of heterogeneity of the phase composition and the appearance of intermetallic phases NiAl, Ni₂Al₃, NiAl₃, and Al under the aluminum side, and NiAl, Ni₃Al, and Ni under the nickel side of the target. A similar trend is observed with increasing the distance of sputtering from 100 to 60 mm. The change in the phase composition correlates with the changing of the atomic composition of the coatings. Scanning electron microscopy revealed that the coatings have a nanoscale grain structure. In this case, the substrate material and the distance from the substrate to the magnetron have a significant effect on the structure formation process. The size of nanograins differs from 10 to 83 nm and depends not only on the sputtering modes but also on material of a substrate. Nanostructure of the material influences the level of mechanical properties. The highest level of nanohardness of the coatings deposited during 30 minutes on metallic substrates at a distance of 100 mm reached 12 GPa. It was shown that nanohardness depends on the grain size of the intermetallic compound. Scratching tests of the coatings showed a high level of adhesion of the coating to substrate without any delamination and cracking. The results of the study showed that magnetron sputtering of composite targets consisting of nickel and aluminum semicircles makes it possible to form intermetallic coatings with good mechanical properties directly in the process of sputtering without additional heat treatment.

Keywords: intermetallic coatings, magnetron sputtering, mechanical properties, structure

Procedia PDF Downloads 99
15 Experimental Analysis of Supersonic Combustion Induced by Shock Wave at the Combustion Chamber of the 14-X Scramjet Model

Authors: Ronaldo de Lima Cardoso, Thiago V. C. Marcos, Felipe J. da Costa, Antonio C. da Oliveira, Paulo G. P. Toro

Abstract:

The 14-X is a strategic project of the Brazil Air Force Command to develop a technological demonstrator of a hypersonic air-breathing propulsion system based on supersonic combustion programmed to flight in the Earth's atmosphere at 30 km of altitude and Mach number 10. The 14-X is under development at the Laboratory of Aerothermodynamics and Hypersonic Prof. Henry T. Nagamatsu of the Institute of Advanced Studies. The program began in 2007 and was planned to have three stages: development of the wave rider configuration, development of the scramjet configuration and finally the ground tests in the hypersonic shock tunnel T3. The install configuration of the model based in the scramjet of the 14-X in the test section of the hypersonic shock tunnel was made to proportionate and test the flight conditions in the inlet of the combustion chamber. Experimental studies with hypersonic shock tunnel require special techniques to data acquisition. To measure the pressure along the experimental model geometry tested we used 30 pressure transducers model 122A22 of PCB®. The piezoeletronic crystals of a piezoelectric transducer pressure when to suffer pressure variation produces electric current (PCB® PIEZOTRONIC, 2016). The reading of the signal of the pressure transducers was made by oscilloscope. After the studies had begun we observed that the pressure inside in the combustion chamber was lower than expected. One solution to improve the pressure inside the combustion chamber was install an obstacle to providing high temperature and pressure. To confirm if the combustion occurs was selected the spectroscopy emission technique. The region analyzed for the spectroscopy emission system is the edge of the obstacle installed inside the combustion chamber. The emission spectroscopy technique was used to observe the emission of the OH*, confirming or not the combustion of the mixture between atmospheric air in supersonic speed and the hydrogen fuel inside of the combustion chamber of the model. This paper shows the results of experimental studies of the supersonic combustion induced by shock wave performed at the Hypersonic Shock Tunnel T3 using the scramjet 14-X model. Also, this paper provides important data about the combustion studies using the model based on the engine of 14-X (second stage of the 14-X Program). Informing the possibility of necessaries corrections to be made in the next stages of the program or in other models to experimental study.

Keywords: 14-X, experimental study, ground tests, scramjet, supersonic combustion

Procedia PDF Downloads 354
14 Preferences of Electric Buses in Public Transport; Conclusions from Real Life Testing in Eight Swedish Municipalities

Authors: Sven Borén, Lisiana Nurhadi, Henrik Ny

Abstract:

From a theoretical perspective, electric buses can be more sustainable and can be cheaper than fossil fuelled buses in city traffic. The authors have not found other studies based on actual urban public transport in Swedish winter climate. Further on, noise measurements from buses for the European market were found old. The aims of this follow-up study was therefore to test and possibly verify in a real-life environment how energy efficient and silent electric buses are, and then conclude on if electric buses are preferable to use in public transport. The Ebusco 2.0 electric bus, fitted with a 311 kWh battery pack, was used and the tests were carried out during November 2014-April 2015 in eight municipalities in the south of Sweden. Six tests took place in urban traffic and two took place in more of a rural traffic setting. The energy use for propulsion was measured via logging of the internal system in the bus and via an external charging meter. The average energy use turned out to be 8% less (0,96 kWh/km) than assumed in the earlier theoretical study. This rate allows for a 320 km range in public urban traffic. The interior of the bus was kept warm by a diesel heater (biodiesel will probably be used in a future operational traffic situation), which used 0,67 kWh/km in January. This verified that electric buses can be up to 25% cheaper when used in public transport in cities for about eight years. The noise was found to be lower, primarily during acceleration, than for buses with combustion engines in urban bus traffic. According to our surveys, most passengers and drivers appreciated the silent and comfortable ride and preferred electric buses rather than combustion engine buses. Bus operators and passenger transport executives were also positive to start using electric buses for public transport. The operators did however point out that procurement processes need to account for eventual risks regarding this new technology, along with personnel education. The study revealed that it is possible to establish a charging infrastructure for almost all studied bus lines. However, design of a charging infrastructure for each municipality requires further investigations, including electric grid capacity analysis, smart location of charging points, and tailored schedules to allow fast charging. In conclusion, electric buses proved to be a preferable alternative for all stakeholders involved in public bus transport in the studied municipalities. However, in order to electric buses to be a prominent support for sustainable development, they need to be charged either by stand-alone units or via an expansion of the electric grid, and the electricity should be made from new renewable sources.

Keywords: sustainability, electric, bus, noise, greencharge

Procedia PDF Downloads 316
13 Thermal Stress and Computational Fluid Dynamics Analysis of Coatings for High-Temperature Corrosion

Authors: Ali Kadir, O. Anwar Beg

Abstract:

Thermal barrier coatings are among the most popular methods for providing corrosion protection in high temperature applications including aircraft engine systems, external spacecraft structures, rocket chambers etc. Many different materials are available for such coatings, of which ceramics generally perform the best. Motivated by these applications, the current investigation presents detailed finite element simulations of coating stress analysis for a 3- dimensional, 3-layered model of a test sample representing a typical gas turbine component scenario. Structural steel is selected for the main inner layer, Titanium (Ti) alloy for the middle layer and Silicon Carbide (SiC) for the outermost layer. The model dimensions are 20 mm (width), 10 mm (height) and three 1mm deep layers. ANSYS software is employed to conduct three types of analysis- static structural, thermal stress analysis and also computational fluid dynamic erosion/corrosion analysis (via ANSYS FLUENT). The specified geometry which corresponds to corrosion test samples exactly is discretized using a body-sizing meshing approach, comprising mainly of tetrahedron cells. Refinements were concentrated at the connection points between the layers to shift the focus towards the static effects dissipated between them. A detailed grid independence study is conducted to confirm the accuracy of the selected mesh densities. To recreate gas turbine scenarios; in the stress analysis simulations, static loading and thermal environment conditions of up to 1000 N and 1000 degrees Kelvin are imposed. The default solver was used to set the controls for the simulation with the fixed support being set as one side of the model while subjecting the opposite side to a tabular force of 500 and 1000 Newtons. Equivalent elastic strain, total deformation, equivalent stress and strain energy were computed for all cases. Each analysis was duplicated twice to remove one of the layers each time, to allow testing of the static and thermal effects with each of the coatings. ANSYS FLUENT simulation was conducted to study the effect of corrosion on the model under similar thermal conditions. The momentum and energy equations were solved and the viscous heating option was applied to represent improved thermal physics of heat transfer between the layers of the structures. A Discrete Phase Model (DPM) in ANSYS FLUENT was employed which allows for the injection of continuous uniform air particles onto the model, thereby enabling an option for calculating the corrosion factor caused by hot air injection (particles prescribed 5 m/s velocity and 1273.15 K). Extensive visualization of results is provided. The simulations reveal interesting features associated with coating response to realistic gas turbine loading conditions including significantly different stress concentrations with different coatings.

Keywords: thermal coating, corrosion, ANSYS FEA, CFD

Procedia PDF Downloads 118
12 Particle Separation Using Individually-Controlled Magnetic Soft Artificial Cilia

Authors: Yau-Luen Ng, Nathan Banka, Santosh Devasia

Abstract:

In this paper, a method based on soft artificial cilia is introduced to separate particles based on size and mass. In nature, cilia are used for fluid propulsion in the mammalian circulatory system, as well as for swimming and size-selective particle entrainment for feeding in microorganisms. Inspired by biological cilia, an array of artificial cilia was fabricated using Polydimethylsiloxane (PDMS) to simulate the actual motion. A row of four individually-controlled magnetic artificial cilia in a semi-circular channel are actuated by the magnetic fields from four permanent magnets. Each cilium is a slender rectangular cantilever approximately 13mm long made from a composite of PDMS and carbonyl iron particles. A time-varying magnetic force is achieved by periodically varying the out-of-plane distance from the permanent magnets to the cilia, resulting in large-amplitude deflections of the cilia that can be used to drive fluid motion. Previous results have shown that this system of individually-controlled magnetic cilia can generate effective mixing flows; the purpose of the present work is to apply the individual cilia control to a particle separation task. Based on the observed beating patterns of cilia arrays in nature, the experimental beating patterns were selected as a metachronal wave, in which a fixed phase lead or lag is imposed between adjacent cilia. Additionally, the beating frequency was varied. For each set of experimental parameters, the channel was filled with water and polyethylene microspheres introduced at the center of the cilia array. Two types of particles were used: large red microspheres with density 0.9971 g/cm³ and 850-1000 μm avg. diameter, and small blue microspheres with density 1.06 g/cm³ and diameter 30 μm. At low beating frequencies, all particles were propelled in the mean flow direction. However, the large particles were observed to reverse directions above about 4.8 Hz, whereas reversal of the small particle transport direction did not occur until 6 Hz. Between these two transition frequencies, the large and small particles can be separated as they move in opposite directions. The experimental results show that selecting an appropriate cilia beating pattern can lead to selective transport of neutrally-buoyant particles based on their size. Importantly, the separation threshold can be chosen dynamically by adjusting the actuation frequency. However, further study is required to determine the range of particle sizes that can be effectively separated for a given system geometry.

Keywords: magnetic cilia, particle separation, tunable separation, soft actutors

Procedia PDF Downloads 177
11 Operation Cycle Model of ASz62IR Radial Aircraft Engine

Authors: M. Duk, L. Grabowski, P. Magryta

Abstract:

Today's very important element relating to air transport is the environment impact issues. Nowadays there are no emissions standards for turbine and piston engines used in air transport. However, it should be noticed that the environmental effect in the form of exhaust gases from aircraft engines should be as small as possible. For this purpose, R&D centers often use special software to simulate and to estimate the negative effect of engine working process. For cooperation between the Lublin University of Technology and the Polish aviation company WSK "PZL-KALISZ" S.A., to achieve more effective operation of the ASz62IR engine, one of such tools have been used. The AVL Boost software allows to perform 1D simulations of combustion process of piston engines. ASz62IR is a nine-cylinder aircraft engine in a radial configuration. In order to analyze the impact of its working process on the environment, the mathematical model in the AVL Boost software have been made. This model contains, among others, model of the operation cycle of the cylinders. This model was based on a volume change in combustion chamber according to the reciprocating movement of a piston. The simplifications that all of the pistons move identically was assumed. The changes in cylinder volume during an operating cycle were specified. Those changes were important to determine the energy balance of a cylinder in an internal combustion engine which is fundamental for a model of the operating cycle. The calculations for cylinder thermodynamic state were based on the first law of thermodynamics. The change in the mass in the cylinder was calculated from the sum of inflowing and outflowing masses including: cylinder internal energy, heat from the fuel, heat losses, mass in cylinder, cylinder pressure and volume, blowdown enthalpy, evaporation heat etc. The model assumed that the amount of heat released in combustion process was calculated from the pace of combustion, using Vibe model. For gas exchange, it was also important to consider heat transfer in inlet and outlet channels because of much higher values there than for flow in a straight pipe. This results from high values of heat exchange coefficients and temperature coefficients near valves and valve seats. A Zapf modified model of heat exchange was used. To use the model with the flight scenarios, the impact of flight altitude on engine performance has been analyze. It was assumed that the pressure and temperature at the inlet and outlet correspond to the values resulting from the model for International Standard Atmosphere (ISA). Comparing this model of operation cycle with the others submodels of the ASz62IR engine, it could be noticed, that a full analysis of the performance of the engine, according to the ISA conditions, can be made. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under

Keywords: aviation propulsion, AVL Boost, engine model, operation cycle, aircraft engine

Procedia PDF Downloads 262
10 Nuclear Near Misses and Their Learning for Healthcare

Authors: Nick Woodier, Iain Moppett

Abstract:

Background: It is estimated that one in ten patients admitted to hospital will suffer an adverse event in their care. While the majority of these will result in low harm, patients are being significantly harmed by the processes meant to help them. Healthcare, therefore, seeks to make improvements in patient safety by taking learning from other industries that are perceived to be more mature in their management of safety events. Of particular interest to healthcare are ‘near misses,’ those events that almost happened but for an intervention. Healthcare does not have any guidance as to how best to manage and learn from near misses to reduce the chances of harm to patients. The authors, as part of a larger study of near-miss management in healthcare, sought to learn from the UK nuclear sector to develop principles for how healthcare can identify, report, and learn from near misses to improve patient safety. The nuclear sector was chosen as an exemplar due to its status as an ultra-safe industry. Methods: A Grounded Theory (GT) methodology, augmented by a scoping review, was used. Data collection included interviews, scenario discussion, field notes, and the literature. The review protocol is accessible online. The GT aimed to develop theories about how nuclear manages near misses with a focus on defining them and clarifying how best to support reporting and analysis to extract learning. Near misses related to radiation release or exposure were focused on. Results: Eightnuclear interviews contributed to the GT across nuclear power, decommissioning, weapons, and propulsion. The scoping review identified 83 articles across a range of safety-critical industries, with only six focused on nuclear. The GT identified that nuclear has a particular focus on precursors and low-level events, with regulation supporting their management. Exploration of definitions led to the recognition of the importance of several interventions in a sequence of events, but that do not solely rely on humans as these cannot be assumed to be robust barriers. Regarding reporting and analysis, no consistent methods were identified, but for learning, the role of operating experience learning groups was identified as an exemplar. The safety culture across nuclear, however, was heard to vary, which undermined reporting of near misses and other safety events. Some parts of the industry described that their focus on near misses is new and that despite potential risks existing, progress to mitigate hazards is slow. Conclusions: Healthcare often sees ‘nuclear,’ as well as other ultra-safe industries such as ‘aviation,’ as homogenous. However, the findings here suggest significant differences in safety culture and maturity across various parts of the nuclear sector. Healthcare can take learning from some aspects of management of near misses in nuclear, such as how they are defined and how learning is shared through operating experience networks. However, healthcare also needs to recognise that variability exists across industries, and comparably, it may be more mature in some areas of safety.

Keywords: culture, definitions, near miss, nuclear safety, patient safety

Procedia PDF Downloads 81
9 Energy Harvesting and Storage System for Marine Applications

Authors: Sayem Zafar, Mahmood Rahi

Abstract:

Rigorous international maritime regulations are in place to limit boat and ship hydrocarbon emissions. The global sustainability goals are reducing the fuel consumption and minimizing the emissions from the ships and boats. These maritime sustainability goals have attracted a lot of research interest. Energy harvesting and storage system is designed in this study based on hybrid renewable and conventional energy systems. This energy harvesting and storage system is designed for marine applications, such as, boats and small ships. These systems can be utilized for mobile use or off-grid remote electrification. This study analyzed the use of micro power generation for boats and small ships. The energy harvesting and storage system has two distinct systems i.e. dockside shore-based system and on-board system. The shore-based system consists of a small wind turbine, photovoltaic (PV) panels, small gas turbine, hydrogen generator and high-pressure hydrogen storage tank. This dockside system is to provide easy access to the boats and small ships for supply of hydrogen. The on-board system consists of hydrogen storage tanks and fuel cells. The wind turbine and PV panels generate electricity to operate electrolyzer. A small gas turbine is used as a supplementary power system to contribute in case the hybrid renewable energy system does not provide the required energy. The electrolyzer performs the electrolysis on distilled water to produce hydrogen. The hydrogen is stored in high-pressure tanks. The hydrogen from the high-pressure tank is filled in the low-pressure tanks on-board seagoing vessels to operate the fuel cell. The boats and small ships use the hydrogen fuel cell to provide power to electric propulsion motors and for on-board auxiliary use. For shore-based system, a small wind turbine with the total length of 4.5 m and the disk diameter of 1.8 m is used. The small wind turbine dimensions make it big enough to be used to charge batteries yet small enough to be installed on the rooftops of dockside facility. The small dimensions also make the wind turbine easily transportable. In this paper, PV, sizing and solar flux are studied parametrically. System performance is evaluated under different operating and environmental conditions. The parametric study is conducted to evaluate the energy output and storage capacity of energy storage system. Results are generated for a wide range of conditions to analyze the usability of hybrid energy harvesting and storage system. This energy harvesting method significantly improves the usability and output of the renewable energy sources. It also shows that small hybrid energy systems have promising practical applications.

Keywords: energy harvesting, fuel cell, hybrid energy system, hydrogen, wind turbine

Procedia PDF Downloads 108
8 Fuel Cells Not Only for Cars: Technological Development in Railways

Authors: Marita Pigłowska, Beata Kurc, Paweł Daszkiewicz

Abstract:

Railway vehicles are divided into two groups: traction (powered) vehicles and wagons. The traction vehicles include locomotives (line and shunting), railcars (sometimes referred to as railbuses), and multiple units (electric and diesel), consisting of several or a dozen carriages. In vehicles with diesel traction, fuel energy (petrol, diesel, or compressed gas) is converted into mechanical energy directly in the internal combustion engine or via electricity. In the latter case, the combustion engine generator produces electricity that is then used to drive the vehicle (diesel-electric drive or electric transmission). In Poland, such a solution dominates both in heavy linear and shunting locomotives. The classic diesel drive is available for the lightest shunting locomotives, railcars, and passenger diesel multiple units. Vehicles with electric traction do not have their own source of energy -they use pantographs to obtain electricity from the traction network. To determine the competitiveness of the hydrogen propulsion system, it is essential to understand how it works. The basic elements of the construction of a railway vehicle drive system that uses hydrogen as a source of traction force are fuel cells, batteries, fuel tanks, traction motors as well as main and auxiliary converters. The compressed hydrogen is stored in tanks usually located on the roof of the vehicle. This resource is supplemented with the use of specialized infrastructure while the vehicle is stationary. Hydrogen is supplied to the fuel cell, where it oxidizes. The effect of this chemical reaction is electricity and water (in two forms -liquid and water vapor). Electricity is stored in batteries (so far, lithium-ion batteries are used). Electricity stored in this way is used to drive traction motors and supply onboard equipment. The current generated by the fuel cell passes through the main converter, whose task is to adjust it to the values required by the consumers, i.e., batteries and the traction motor. The work will attempt to construct a fuel cell with unique electrodes. This research is a trend that connects industry with science. The first goal will be to obtain hydrogen on a large scale in tube furnaces, to thoroughly analyze the obtained structures (IR), and to apply the method in fuel cells. The second goal is to create low-energy energy storage and distribution station for hydrogen and electric vehicles. The scope of the research includes obtaining a carbon variety and obtaining oxide systems on a large scale using a tubular furnace and then supplying vehicles. Acknowledgments: This work is supported by the Polish Ministry of Science and Education, project "The best of the best! 4.0", number 0911/MNSW/4968 – M.P. and grant 0911/SBAD/2102—B.K.

Keywords: railway, hydrogen, fuel cells, hybrid vehicles

Procedia PDF Downloads 158
7 Design of Nano-Reinforced Carbon Fiber Reinforced Plastic Wheel for Lightweight Vehicles with Integrated Electrical Hub Motor

Authors: Davide Cocchi, Andrea Zucchelli, Luca Raimondi, Maria Brugo Tommaso

Abstract:

The increasing attention is given to the issues of environmental pollution and climate change is exponentially stimulating the development of electrically propelled vehicles powered by renewable energy, in particular, the solar one. Given the small amount of solar energy that can be stored and subsequently transformed into propulsive energy, it is necessary to develop vehicles with high mechanical, electrical and aerodynamic efficiencies along with reduced masses. The reduction of the masses is of fundamental relevance especially for the unsprung masses, that is the assembly of those elements that do not undergo a variation of their distance from the ground (wheel, suspension system, hub, upright, braking system). Therefore, the reduction of unsprung masses is fundamental in decreasing the rolling inertia and improving the drivability, comfort, and performance of the vehicle. This principle applies even more in solar propelled vehicles, equipped with an electric motor that is connected directly to the wheel hub. In this solution, the electric motor is integrated inside the wheel. Since the electric motor is part of the unsprung masses, the development of compact and lightweight solutions is of fundamental importance. The purpose of this research is the design development and optimization of a CFRP 16 wheel hub motor for solar propulsion vehicles that can carry up to four people. In addition to trying to maximize aspects of primary importance such as mass, strength, and stiffness, other innovative constructive aspects were explored. One of the main objectives has been to achieve a high geometric packing in order to ensure a reduced lateral dimension, without reducing the power exerted by the electric motor. In the final solution, it was possible to realize a wheel hub motor assembly completely comprised inside the rim width, for a total lateral overall dimension of less than 100 mm. This result was achieved by developing an innovative connection system between the wheel and the rotor with a double purpose: centering and transmission of the driving torque. This solution with appropriate interlocking noses allows the transfer of high torques and at the same time guarantees both the centering and the necessary stiffness of the transmission system. Moreover, to avoid delamination in critical areas, evaluated by means of FEM analysis using 3D Hashin damage criteria, electrospun nanofibrous mats have been interleaved between CFRP critical layers. In order to reduce rolling resistance, the rim has been designed to withstand high inflation pressure. Laboratory tests have been performed on the rim using the Digital Image Correlation technique (DIC). The wheel has been tested for fatigue bending according to E/ECE/324 R124e.

Keywords: composite laminate, delamination, DIC, lightweight vehicle, motor hub wheel, nanofiber

Procedia PDF Downloads 187
6 The Charge Exchange and Mixture Formation Model in the ASz-62IR Radial Aircraft Engine

Authors: Pawel Magryta, Tytus Tulwin, Paweł Karpiński

Abstract:

The ASz62IR engine is a radial aircraft engine with 9 cylinders. This object is produced by the Polish company WSK "PZL-KALISZ" S.A. This is engine is currently being developed by the above company and Lublin University of Technology. In order to provide an effective work of the technological development of this unit it was decided to made the simulation model. The model of ASz-62IR was developed with AVL BOOST software which is a tool dedicated to the one-dimensional modeling of internal combustion engines. This model can be used to calculate parameters of an air and fuel flow in an intake system including charging devices as well as combustion and exhaust flow to the environment. The main purpose of this model is the analysis of the charge exchange and mixture formation in this engine. For this purpose, the model consists of elements such: as air inlet, throttle system, compressor connector, charging compressor, inlet pipes and injectors, outlet pipes, fuel injection and model of fuel mixing and evaporation. The model of charge exchange and mixture formation was based on the model of mass flow rate in intake and exhaust pipes, and also on the calculation of gas properties values like gas constant or thermal capacity. This model was based on the equations to describe isentropic flow. The energy equation to describe flow under steady conditions was transformed into the mass flow equation. In the model the flow coefficient μσ was used, that varies with the stroke/valve opening and was determined in a steady flow state. The geometry of the inlet channels and other key components was mapped with reference to the technical documentation of the engine and empirical measurements of the structure elements. The volume of elements on the charge flow path between the air inlet and the exhaust outlet was measured by the CAD mapping of the structure. Taken from the technical documentation, the original characteristics of the compressor engine was entered into the model. Additionally, the model uses a general model for the transport of chemical compounds of the mixture. There are 7 compounds used, i.e. fuel, O2, N2, CO2, H2O, CO, H2. A gasoline fuel of a calorific value of 43.5 MJ/kg and an air mass fraction for stoichiometric mixture of 14.5 were used. Indirect injection into the intake manifold is used in this model. The model assumes the following simplifications: the mixture is homogenous at the beginning of combustion, accordingly, mixture stoichiometric coefficient A/F remains constant during combustion, combusted and non-combusted charges show identical pressures and temperatures although their compositions change. As a result of the simulation studies based on the model described above, the basic parameters of combustion process, charge exchange, mixture formation in cylinders were obtained. The AVL Boost software is very useful for the piston engine performance simulations. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: aviation propulsion, AVL Boost, engine model, charge exchange, mixture formation

Procedia PDF Downloads 291