Search results for: robotic resection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 391

Search results for: robotic resection

301 Surgical Treatment Tumors and Cysts of the Pancreas in Children

Authors: Trunov V.O., Ryabov A. B., Poddubny I.V

Abstract:

Introduction: cystic and solid pancreatic tumors have a relevant and disruptive position in many positions. The results of the treatment of children with tumors and pancreatic cysts aged 3 to 17 years for the period from 2008 to 2019 on the basis of the Morozov State Children's Clinical Hospital in Moscow were analyzed. The total number of children with solid tumors was 17, and 31 with cysts. In all children, the diagnosis was made on the basis of ultrasound, followed by CT and MRI. In most patients with solid tumors, they were located in the area of the pancreas tail - 58%, in the body area - 14%, in the area of the pancreatic head - 28%. In patients with pancreatic cysts, the distribution of patients by topography was as follows: head of the pancreas - 10%, body of the pancreas - 16%, tail of the pancreas - 68%, total cystic transformation of the Wirsung duct - 6%. In pancreatic cysts, the method of surgical treatment was based on the results of MRCP, the level of amylase in the contents of the cyst, and the localization of the cyst. Thus, pathogenetically substantiated treatment included: excision of cysts, internal drainage on an isolated loop according to Ru, the formation of pancreatojejunoanastomosis in a child with the total cystic transformation of the Wirsung duct. In patients with solid pancreatic lesions, pancretoduodenalresection, central resection of the pancreas, and distal resection from laparotomy and laparoscopic access were performed. In the postoperative period, in order to prevent pancreatitis, all children underwent antisecretory therapy, parenteral nutrition, and drainage of the omental bursa. Results: hospital stay ranged from 7 to 12 days. The duration of postoperative fermentemia in patients with solid formations lasted from 3 to 6 days. In all cases, according to the histological examination, a pseudopapillary tumor of the pancreas was revealed. In the group of children with pancreatic cysts, fermentemia was observed from 2 to 4 days, recurrence of cysts in the long term was detected in 3 children (10%). Conclusions: the treatment of cystic and solid pancreatic neoplasms is a difficult task in connection with the anatomical and functional features of the organ.

Keywords: pancreas, tumors, cysts, resection, laparoscopy, children

Procedia PDF Downloads 106
300 Innovative Strategies for Chest Wall Reconstruction Following Resection of Recurrent Breast Carcinoma

Authors: Sean Yao Zu Kong, Khong Yik Chew

Abstract:

Introduction: We described a case report of the successful use of advanced surgical techniques in a patient with recurrent breast cancer who underwent a wide resection including the hemi-sternum, clavicle, multiple ribs, and a lobe of the lung due to tumor involvement. This extensive resection exposed critical structures, requiring a creative approach to reconstruction. To address this complex chest wall reconstruction, a free fibula flap and a 4-zone rectus abdominis musculocutaneous flap were successfully utilized. The use of a free vascularized bone flap allowed for rapid osteointegration and resistance against osteoradionecrosis after adjuvant radiation, while a four-zone tram flap allowed for reconstruction of both the chest wall and breast mound. Although limited recipient vessels made free flaps challenging, the free fibula flap served as both a bony reconstruction and vascular conduit, supercharged with the distal peroneal artery and veins of the peroneal artery from the fibula graft. Our approach highlights the potential of advanced surgical techniques to improve outcomes in complex cases of chest wall reconstruction in patients with recurrent breast cancer, which is becoming increasingly relevant as breast cancer incidence rates increases. Case presentation: This report describes a successful reconstruction of a patient with recurrent breast cancer who required extensive resection, including the anterior chest wall, clavicle, and sternoclavicular joint. Challenges arose due to the loss of accessory muscles and the non-rigid rib cage, which could lead to compromised ventilation and instability. A free fibula osteocutaneous flap and a four-zone TRAM flap with vascular supercharging were utilized to achieve long-term stability and function. The patient has since fully recovered, and during the review, both flaps remained viable, and chest mound reconstruction was satisfactory. A planned nipple/areolar reconstruction was offered pending the patient’s decision after adjuvant radiotherapy. Conclusion: In conclusion, this case report highlights the successful use of innovative surgical techniques in addressing a complex case of recurrent breast cancer requiring extensive resection and radical reconstruction. Our approach, utilized a combination of a free fibula flap and a 4-zone rectus abdominis musculocutaneous flap, demonstrates the potential for advanced techniques in chest wall reconstruction to minimize complications and ensure long-term stability and function. As the incidence of breast cancer continues to rise, it is crucial that healthcare professionals explore and utilize innovative techniques to improve patient outcomes and quality of life.

Keywords: free fibula flap, rectus abdominis musculocutaneous flap, post-adjuvant radiotherapy, reconstructive surgery, malignancy

Procedia PDF Downloads 43
299 A Forearm-Wrist Rehabilitation Module for Stroke and Spinal Cord Injuries

Authors: Vahid Mehrabi, Iman Sharifi, H. A. Talebi

Abstract:

The automation of rehabilitation procedure by the implementation of robotic devices can overcome the limitation in conventional physiotherapy methods by increasing training sessions and duration of process. In this paper, the design of a simple rehabilitation robot for forearm-wrist therapy in stroke and spinal cord injuries is presented. Wrist’s biological joint motion is modeled by a gimbal-like mechanism which resembles the human arm anatomy. Presented device is an exoskeleton robot with rotation axes corresponding to human skeleton anatomy. The mechanical structure, actuator and sensor selection, system kinematics and comparison between our device range of motion and required active daily life values is illustrated.

Keywords: rehabilitation, robotic devices, physiotherapy, forearm-wrist

Procedia PDF Downloads 246
298 Roboweeder: A Robotic Weeds Killer Using Electromagnetic Waves

Authors: Yahoel Van Essen, Gordon Ho, Brett Russell, Hans-Georg Worms, Xiao Lin Long, Edward David Cooper, Avner Bachar

Abstract:

Weeds reduce farm and forest productivity, invade crops, smother pastures and some can harm livestock. Farmers need to spend a significant amount of money to control weeds by means of biological, chemical, cultural, and physical methods. To solve the global agricultural labor shortage and remove poisonous chemicals, a fully autonomous, eco-friendly, and sustainable weeding technology is developed. This takes the form of a weeding robot, ‘Roboweeder’. Roboweeder includes a four-wheel-drive self-driving vehicle, a 4-DOF robotic arm which is mounted on top of the vehicle, an electromagnetic wave generator (magnetron) which is mounted on the “wrist” of the robotic arm, 48V battery packs, and a control/communication system. Cameras are mounted on the front and two sides of the vehicle. Using image processing and recognition, distinguish types of weeds are detected before being eliminated. The electromagnetic wave technology is applied to heat the individual weeds and clusters dielectrically causing them to wilt and die. The 4-DOF robotic arm was modeled mathematically based on its structure/mechanics, each joint’s load, brushless DC motor and worm gear’ characteristics, forward kinematics, and inverse kinematics. The Proportional-Integral-Differential control algorithm is used to control the robotic arm’s motion to ensure the waveguide aperture pointing to the detected weeds. GPS and machine vision are used to traverse the farm and avoid obstacles without the need of supervision. A Roboweeder prototype has been built. Multiple test trials show that Roboweeder is able to detect, point, and kill the pre-defined weeds successfully although further improvements are needed, such as reducing the “weeds killing” time and developing a new waveguide with a smaller waveguide aperture to avoid killing crops surrounded. This technology changes the tedious, time consuming and expensive weeding processes, and allows farmers to grow more, go organic, and eliminate operational headaches. A patent of this technology is pending.

Keywords: autonomous navigation, machine vision, precision heating, sustainable and eco-friendly

Procedia PDF Downloads 199
297 Architecture Design of the Robots Operability Assessment Simulation Testbed

Authors: Sang Yeong Choi, Woo Sung Park

Abstract:

This paper presents the architecture design of the robot operability assessment simulation testbed (called "ROAST") for the resolution of robot operability problems occurred during interactions between human operators and robots. The basic idea of the ROAST architecture design is to enable the easy composition of legacy or new simulation models according to its purpose. ROAST architecture is based on IEEE1516 High Level Architecture (HLA) of defense modeling and simulation. The ROAST architecture is expected to provide the foundation framework for the easy construction of a simulation testbed to order to assess the robot operability during the robotic system design. Some of ROAST implementations and its usefulness are demonstrated through a simple illustrative example.

Keywords: robotic system, modeling and simulation, simulation architecture, operability assessment

Procedia PDF Downloads 328
296 Fluid Prescribing Post Laparotomies

Authors: Gusa Hall, Barrie Keeler, Achal Khanna

Abstract:

Introduction: NICE guidelines have highlighted the consequences of IV fluid mismanagement. The main aim of this study was to audit fluid prescribing post laparotomies to identify if fluids were prescribed in accordance to NICE guidelines. Methodology: Retrospective database search of eight specific laparotomy procedures (colectomy right and left, Hartmann’s procedure, small bowel resection, perforated ulcer, abdominal perineal resection, anterior resection, pan proctocolectomy, subtotal colectomy) highlighted 29 laparotomies between April 2019 and May 2019. Two of 29 patients had secondary procedures during the same admission, n=27 (patients). Database case notes were reviewed for date of procedure, length of admission, fluid prescribed and amount, nasal gastric tube output, daily bloods results for electrolytes sodium and potassium and operational losses. Results: n=27 based on 27 identified patients between April 2019 – May 2019, 93% (25/27) received IV fluids, only 19% (5/27) received the correct IV fluids in accordance to NICE guidelines, 93% (25/27) who received IV fluids had the correct electrolytes levels (sodium & potassium), 100% (27/27) patients received blood tests (U&E’s) for correct electrolytes levels. 0% (0/27) no documentation on operational losses. IV fluids matched nasogastric tube output in 100% (3/3) of the number of patients that had a nasogastric tube in situ. Conclusion: A PubMed database literature review on barriers to safer IV prescribing highlighted educational interventions focused on prescriber knowledge rather than how to execute the prescribing task. This audit suggests IV fluids post laparotomies are not being prescribed consistently in accordance to NICE guidelines. Surgical management plans should be clearer on IV fluids and electrolytes requirements for the following 24 hours after the plan has been initiated. In addition, further teaching and training around IV prescribing is needed together with frequent surgical audits on IV fluid prescribing post-surgery to evaluate improvements.

Keywords: audit, IV Fluid prescribing, laparotomy, NICE guidelines

Procedia PDF Downloads 91
295 Development of a Mixed-Reality Hands-Free Teleoperated Robotic Arm for Construction Applications

Authors: Damith Tennakoon, Mojgan Jadidi, Seyedreza Razavialavi

Abstract:

With recent advancements of automation in robotics, from self-driving cars to autonomous 4-legged quadrupeds, one industry that has been stagnant is the construction industry. The methodologies used in a modern-day construction site consist of arduous physical labor and the use of heavy machinery, which has not changed over the past few decades. The dangers of a modern-day construction site affect the health and safety of the workers due to performing tasks such as lifting and moving heavy objects and having to maintain unhealthy posture to complete repetitive tasks such as painting, installing drywall, and laying bricks. Further, training for heavy machinery is costly and requires a lot of time due to their complex control inputs. The main focus of this research is using immersive wearable technology and robotic arms to perform the complex and intricate skills of modern-day construction workers while alleviating the physical labor requirements to perform their day-to-day tasks. The methodology consists of mounting a stereo vision camera, the ZED Mini by Stereolabs, onto the end effector of an industrial grade robotic arm, streaming the video feed into the Virtual Reality (VR) Meta Quest 2 (Quest 2) head-mounted display (HMD). Due to the nature of stereo vision, and the similar field-of-views between the stereo camera and the Quest 2, human-vision can be replicated on the HMD. The main advantage this type of camera provides over a traditional monocular camera is it gives the user wearing the HMD a sense of the depth of the camera scene, specifically, a first-person view of the robotic arm’s end effector. Utilizing the built-in cameras of the Quest 2 HMD, open-source hand-tracking libraries from OpenXR can be implemented to track the user’s hands in real-time. A mixed-reality (XR) Unity application can be developed to localize the operator's physical hand motions with the end-effector of the robotic arm. Implementing gesture controls will enable the user to move the robotic arm and control its end-effector by moving the operator’s arm and providing gesture inputs from a distant location. Given that the end effector of the robotic arm is a gripper tool, gripping and opening the operator’s hand will translate to the gripper of the robot arm grabbing or releasing an object. This human-robot interaction approach provides many benefits within the construction industry. First, the operator’s safety will be increased substantially as they can be away from the site-location while still being able perform complex tasks such as moving heavy objects from place to place or performing repetitive tasks such as painting walls and laying bricks. The immersive interface enables precision robotic arm control and requires minimal training and knowledge of robotic arm manipulation, which lowers the cost for operator training. This human-robot interface can be extended to many applications, such as handling nuclear accident/waste cleanup, underwater repairs, deep space missions, and manufacturing and fabrication within factories. Further, the robotic arm can be mounted onto existing mobile robots to provide access to hazardous environments, including power plants, burning buildings, and high-altitude repair sites.

Keywords: construction automation, human-robot interaction, hand-tracking, mixed reality

Procedia PDF Downloads 41
294 Retraction Free Motion Approach and Its Application in Automated Robotic Edge Finishing and Inspection Processes

Authors: M. Nemer, E. I. Konukseven

Abstract:

In this paper, a motion generation algorithm for a six Degrees of Freedom (DoF) robotic hand in a static environment is presented. The purpose of developing this method is to be used in the path generation of the end-effector for edge finishing and inspection processes by utilizing the CAD model of the considered workpiece. Nonetheless, the proposed algorithm may be extended to be applicable for other similar manufacturing processes. A software package programmed in the application programming interface (API) of SolidWorks generates tool path data for the robot. The proposed method significantly simplifies the given problem, resulting in a reduction in the CPU time needed to generate the path, and offers an efficient overall solution. The ABB IRB2000 robot is chosen for executing the generated tool path.

Keywords: CAD-based tools, edge deburring, edge scanning, offline programming, path generation

Procedia PDF Downloads 261
293 The Anesthesia Considerations in Robotic Mastectomies

Authors: Amrit Vasdev, Edwin Rho, Gurinder Vasdev

Abstract:

Robotic surgery has enabled a new spectrum of minimally invasive breast reconstruction by improving visualization, surgeon posturing, and improved patient outcomes.1 The DaVinci robot system can be utilized in nipple sparing mastectomies and reconstructions. The process involves the insufflation of the subglandular space and a dissection of the mammary gland with a combination of cautery and blunt dissection. This case outlines a 35-year-old woman who has a long-standing family history of breast cancer and a diagnosis of a deleterious BRCA2 genetic mutation. She has decided to proceed with bilateral nipple sparing mastectomies with implants. Her perioperative mammogram and MRI were negative for masses, however, her left internal mammary lymph node was enlarged. She has taken oral contraceptive pills for 3-5 years and denies DES exposure, radiation therapy, human replacement therapy, or prior breast surgery. She does not smoke and rarely consumes alcohol. During the procedure, the patient received a standardized anesthetic for out-patient surgery of propofol infusion, succinylcholine, sevoflurane, and fentanyl. Aprepitant was given as an antiemetic and preoperative Tylenol and gabapentin for pain management. Concerns for the patient during the procedure included CO2 insufflation into the subcutaneous space. With CO2 insufflation, there is a potential for rapid uptake leading to severe acidosis, embolism, and subcutaneous emphysema.2To mitigate this, it is important to hyperventilate the patient and reduce both the insufflation pressure and the CO2 flow rate to the minimal acceptable by the surgeon. For intraoperative monitoring during this 6-9 hour long procedure, it has been suggested to utilize an Arterial-Line for end-tidal CO2 monitoring. However, in this case, it was not necessary as the patient had excellent cardiovascular reserve, and end-tidal CO2 was within normal limits for the duration of the procedure. A BIS monitor was also utilized to reduce anesthesia burden and to facilitate a prompt discharge from the PACU. Minimal Invasive Robotic Surgery will continue to evolve, and anesthesiologists need to be prepared for the new challenges ahead. Based on our limit number of patients, robotic mastectomy appears to be a safe alternative to open surgery with the promise of clearer tissue demarcation and better cosmetic results.

Keywords: anesthesia, mastectomies, robotic, hypercarbia

Procedia PDF Downloads 72
292 The Effect of Psychosocial, Behavioral and Disease Specific Characteristics on Health-Related Quality of Life after Primary Surgery for Colorectal Cancer: A Cross Sectional Study of a Regional Australian Population

Authors: Lakmali Anthony, Madeline Gillies

Abstract:

Background: Colorectal cancer (CRC) is usually managed with surgical resection. Many of the outcomes traditionally used to define successful operative management, such as resection margin, do not adequately reflect patients’ experience. Patient-reported outcomes (PRO), such as Health-Related Quality of life (HRQoL), provide a means by which the impact of surgery for cancer can be reported in a patient-centered way. HRQoL has previously been shown to be impacted by psychosocial, behavioral and disease-specific characteristics. This exploratory cross-sectional study aims to; (1) describe postoperative HRQoL in patients who underwent primary resection in a regional Australian hospital; (2) describe the prevalence of anxiety, depression and clinically significant fear of cancer recurrence (FCR) in this population; and (3) identify demographic, psychosocial, disease and treatment factors associated with poorer self-reported HRQoL. Methods: Consecutive patients who had resection of colorectal cancer in a single regional Australian hospital between 2015 and 2022 were eligible. Participants were asked to complete a survey instrument designed to assess HRQoL, as well as validated instruments that assess several other psychosocial PROs hypothesized to be associated with HRQoL; emotional distress, fear of cancer recurrence, social support, dispositional optimism, body image and spirituality. Demographic and disease-specific data were also collected via medical record review. Results: Forty-six patients completed the survey. Clinically significant levels of fear of recurrence as well as emotional distress, were present in this group. Many domains of HRQoL were significantly worse than an Australian reference population for CRC. Demographic and disease factors associated with poor HRQoL included smoking and ongoing adjuvant systemic therapy. The primary operation was not associated with HRQoL; however, the operative approach (laparoscopic vs. open) was associated with HRQoL for these patients. All psychosocial factors measured were associated with HRQoL, including cancer worry, emotional distress, body image and dispositional optimism. Conclusion: HRQoL is an important outcome in surgery for both research and clinical practice. This study provides an overview of the quality of life in a regional Australian population of postoperative colorectal cancer patients and the factors that affect it. Understanding HRQoL and awareness of patients particularly vulnerable to poor outcomes should be used to aid the informed consent and shared decision-making process between surgeon and patient.

Keywords: surgery, colorectal, cancer, PRO, HRQoL

Procedia PDF Downloads 39
291 18F-Fluoro-Ethyl-Tyrosine-Positron Emission Tomography in Gliomas: Comparison with Magnetic Resonance Imaging and Computed Tomography

Authors: Habib Alah Dadgar, Nasim Norouzbeigi

Abstract:

The precise definition margin of high and low-grade gliomas is crucial for treatment. We aimed to assess the feasibility of assessment of the resection legions with post-operative positron emission tomography (PET) using [18F]O-(2-[18F]-fluoroethyl)-L-tyrosine ([18F]FET). Four patients with the suspicion of high and low-grade were enrolled. Patients underwent post-operative [18F]FET-PET, pre-operative magnetic resonance imaging (MRI) and CT for clinical evaluations. In our study, three patients had negative response to recurrence and progression and one patient indicated positive response after surgery. [18F]FET-PET revealed a legion of increased radiotracer uptake in the dura in the craniotomy site for patient 1. Corresponding to the patient history, the study was negative for recurrence of brain tumor. For patient 2, there was a lesion in the right parieto-temporal with slightly increased uptake in its posterior part with SUVmax = 3.79, so the study was negative for recurrence evaluation. In patient 3 there was no abnormal uptake with negative result for recurrence of brain tumor. Intense radiotracer uptake in the left parietal lobe where in the MRI there was a lesion with no change in enhancement in the post-contrast image is indicated in patient 4. Assessment of the resection legions in high and low-grade gliomas with [18F]FET-PET seems to be useful.

Keywords: FET-PET, CT, glioma, MRI

Procedia PDF Downloads 179
290 Milling Simulations with a 3-DOF Flexible Planar Robot

Authors: Hoai Nam Huynh, Edouard Rivière-Lorphèvre, Olivier Verlinden

Abstract:

Manufacturing technologies are becoming continuously more diversified over the years. The increasing use of robots for various applications such as assembling, painting, welding has also affected the field of machining. Machining robots can deal with larger workspaces than conventional machine-tools at a lower cost and thus represent a very promising alternative for machining applications. Furthermore, their inherent structure ensures them a great flexibility of motion to reach any location on the workpiece with the desired orientation. Nevertheless, machining robots suffer from a lack of stiffness at their joints restricting their use to applications involving low cutting forces especially finishing operations. Vibratory instabilities may also happen while machining and deteriorate the precision leading to scrap parts. Some researchers are therefore concerned with the identification of optimal parameters in robotic machining. This paper continues the development of a virtual robotic machining simulator in order to find optimized cutting parameters in terms of depth of cut or feed per tooth for example. The simulation environment combines an in-house milling routine (DyStaMill) achieving the computation of cutting forces and material removal with an in-house multibody library (EasyDyn) which is used to build a dynamic model of a 3-DOF planar robot with flexible links. The position of the robot end-effector submitted to milling forces is controlled through an inverse kinematics scheme while controlling the position of its joints separately. Each joint is actuated through a servomotor for which the transfer function has been computed in order to tune the corresponding controller. The output results feature the evolution of the cutting forces when the robot structure is deformable or not and the tracking errors of the end-effector. Illustrations of the resulting machined surfaces are also presented. The consideration of the links flexibility has highlighted an increase of the cutting forces magnitude. This proof of concept will aim to enrich the database of results in robotic machining for potential improvements in production.

Keywords: control, milling, multibody, robotic, simulation

Procedia PDF Downloads 225
289 A Pilot Study of Robot Reminiscence in Dementia Care

Authors: Ryuji Yamazaki, Masahiro Kochi, Weiran Zhu, Hiroko Kase

Abstract:

In care for older adults, behavioral and psychological symptoms of dementia (BPSD) like agitation and aggression are distressing for patients and their caretakers, often resulting in premature institutionalization with increased costs of care. To improve mood and mitigate symptoms, as a non-pharmaceutical approach, emotion-oriented therapy like reminiscence work is adopted in face-to-face communication. Telecommunication support is expected to be provided by robotic media as a bridge for digital divide for those with dementia and facilitate social interaction both verbally and nonverbally. The purpose of this case study is to explore the conditions in which robotic media can effectively attract attention from older adults with dementia and promote their well-being. As a pilot study, we introduced the pillow-phone Hugvie®, a huggable humanly shaped communication medium to five residents with dementia at a care facility, to investigate how the following conditions work for the elderly when they use the medium; 1) no sound, 2) radio, non-interactive, 3) daily conversation, and 4) reminiscence work. As a result, under condition 4, reminiscence work, the five participants kept concentration in interacting with the medium for a longer duration than other conditions. In condition 4, they also showed larger amount of utterances than under other conditions. These results indicate that providing topics related to personal histories through robotic media could affect communication positively and should, therefore, be further investigated. In addition, the issue of ethical implications by using persuasive technology that affects emotions and behaviors of older adults is also discussed.

Keywords: BPSD, reminiscence, tactile telecommunication, utterances

Procedia PDF Downloads 151
288 Outcome of Anastomosis of Mechanically Prepared vs Mechanically Unprepared Bowel in Laparoscopic Anterior Resection in Surgical Units of Teaching Hospital Karapitiya ,Sri Lanka

Authors: K. P. v. R. de Silva, R. W. Senevirathna, M. M. A. J. Kumara, J. P. M. Kumarasinghe, R. L. Gunawardana, S. M. Uluwitiya, G. C. P. Jayawickrama, W. K. T. I. Madushani

Abstract:

Introduction: The limited literature supporting the utilization of mechanical bowel preparation (MBP) for patients undergoing laparoscopic anterior resection (LAR) remains a notable issue. This study was conducted to examine the clinical consequences of anastomosis in colorectal surgery with MBP compared to cases where MBP was not utilized (no-MBP) in the context of LAR. Methods: This was a retrospective comparative study conducted in the professorial surgical wards of the teaching hospital karapitiya (THK). Colorectal cancer patients(n=306) participated in the study, including 151 MBP patients and 155 no-MBP patients, where the postoperative complications and mortality rates were compared. Results: The anastomotic leakage rate was 2.6%(n=4) in the no-MBP group and 6.0%(n=9) in the MBP group (p=0.143). The postoperative paralytic ileus rate was 18.5%(n=28) and 5.8%(n=9) in the MBP group and no-MBP group, respectively, displaying a statistically significant difference (p=0.001). Wound infection, pneumonia, urinary tract infection, and cardiac complication rates also were higher in the MBP group. The overall mortality rate was 1.3%(n=3) in the no-MBP group and 2.0%(n=2) in the MBP group. Conclusions: The evidence concludes that MBP increases post-operative complications. Therefore, prophylactic MBP in LAR has not been proven to benefit patients. However, further research is necessary to understand the comparative effects of MBP versus no preparation comprehensively.

Keywords: MBP, anastomosis, LAR, paralytic ileus

Procedia PDF Downloads 54
287 Development of a Wall Climbing Robotic Ground Penetrating Radar System for Inspection of Vertical Concrete Structures

Authors: Md Omar Faruq Howlader, Tariq Pervez Sattar, Sandra Dudley

Abstract:

This paper describes the design process of a 200 MHz Ground Penetrating Radar (GPR) and a battery powered concrete vertical concrete surface climbing mobile robot. The key design feature is a miniaturized 200 MHz dipole antenna using additional radiating arms and procedure records a reduction of 40% in length compared to a conventional antenna. The antenna set is mounted in front of the robot using a servo mechanism for folding and unfolding purposes. The robot’s adhesion mechanism to climb the reinforced concrete wall is based on neodymium permanent magnets arranged in a unique combination to concentrate and maximize the magnetic flux to provide sufficient adhesion force for GPR installation. The experiments demonstrated the robot’s capability of climbing reinforced concrete wall carrying the attached prototype GPR system and perform floor-to-wall transition and vice versa. The developed GPR’s performance is validated by its capability of detecting and localizing an aluminium sheet and a reinforcement bar (rebar) of 12 mm diameter buried under a test rig built of wood to mimic the concrete structure environment. The present robotic GPR system proves the concept of feasibility of undertaking inspection procedure on large concrete structures in hazardous environments that may not be accessible to human inspectors.

Keywords: climbing robot, dipole antenna, ground penetrating radar (GPR), mobile robots, robotic GPR

Procedia PDF Downloads 247
286 Robotic Arm-Automated Spray Painting with One-Shot Object Detection and Region-Based Path Optimization

Authors: Iqraq Kamal, Akmal Razif, Sivadas Chandra Sekaran, Ahmad Syazwan Hisaburi

Abstract:

Painting plays a crucial role in the aerospace manufacturing industry, serving both protective and cosmetic purposes for components. However, the traditional manual painting method is time-consuming and labor-intensive, posing challenges for the sector in achieving higher efficiency. Additionally, the current automated robot path planning has been a bottleneck for spray painting processes, as typical manual teaching methods are time-consuming, error-prone, and skill-dependent. Therefore, it is essential to develop automated tool path planning methods to replace manual ones, reducing costs and improving product quality. Focusing on flat panel painting in aerospace manufacturing, this study aims to address issues related to unreliable part identification techniques caused by the high-mixture, low-volume nature of the industry. The proposed solution involves using a spray gun and a UR10 robotic arm with a vision system that utilizes one-shot object detection (OS2D) to identify parts accurately. Additionally, the research optimizes path planning by concentrating on the region of interest—specifically, the identified part, rather than uniformly covering the entire painting tray.

Keywords: aerospace manufacturing, one-shot object detection, automated spray painting, vision-based path optimization, deep learning, automation, robotic arm

Procedia PDF Downloads 44
285 Advancing Power Network Maintenance: The Development and Implementation of a Robotic Cable Splicing Machine

Authors: Ali Asmari, Alex Symington, Htaik Than, Austin Caradonna, John Senft

Abstract:

This paper presents the collaborative effort between ULC Technologies and Con Edison in developing a groundbreaking robotic cable splicing machine. The focus is on the machine's design, which integrates advanced robotics and automation to enhance safety and efficiency in power network maintenance. The paper details the operational steps of the machine, including cable grounding, cutting, and removal of different insulation layers, and discusses its novel technological approach. The significant benefits over traditional methods, such as improved worker safety and reduced outage times, are highlighted based on the field data collected during the validation phase of the project. The paper also explores the future potential and scalability of this technology, emphasizing its role in transforming the landscape of power network maintenance.

Keywords: cable splicing machine, power network maintenance, electric distribution, electric transmission, medium voltage cable

Procedia PDF Downloads 33
284 Design and Optimization of a 6 Degrees of Freedom Co-Manipulated Parallel Robot for Prostate Brachytherapy

Authors: Aziza Ben Halima, Julien Bert, Dimitris Visvikis

Abstract:

In this paper, we propose designing and evaluating a parallel co-manipulated robot dedicated to low-dose-rate prostate brachytherapy. We developed 6 degrees of freedom compact and lightweight robot easy to install in the operating room thanks to its parallel design. This robotic system provides a co-manipulation allowing the surgeon to keep control of the needle’s insertion and consequently to improve the acceptability of the plan for the clinic. The best dimension’s configuration was solved by calculating the geometric model and using an optimization approach. The aim was to ensure the whole coverage of the prostate volume and consider the allowed free space around the patient that includes the ultrasound probe. The final robot dimensions fit in a cube of 300 300 300 mm³. A prototype was 3D printed, and the robot workspace was measured experimentally. The results show that the proposed robotic system satisfies the medical application requirements and permits the needle to reach any point within the prostate.

Keywords: medical robotics, co-manipulation, prostate brachytherapy, optimization

Procedia PDF Downloads 175
283 Exoskeleton Response During Infant Physiological Knee Kinematics And Dynamics

Authors: Breanna Macumber, Victor A. Huayamave, Emir A. Vela, Wangdo Kim, Tamara T. Chamber, Esteban Centeno

Abstract:

Spina bifida is a type of neural tube defect that affects the nervous system and can lead to problems such as total leg paralysis. Treatment requires physical therapy and rehabilitation. Robotic exoskeletons have been used for rehabilitation to train muscle movement and assist in injury recovery; however, current models focus on the adult populations and not on the infant population. The proposed framework aims to couple a musculoskeletal infant model with a robotic exoskeleton using vacuum-powered artificial muscles to provide rehabilitation to infants affected by spina bifida. The study that drove the input values for the robotic exoskeleton used motion capture technology to collect data from the spontaneous kicking movement of a 2.4-month-old infant lying supine. OpenSim was used to develop the musculoskeletal model, and Inverse kinematics was used to estimate hip joint angles. A total of 4 kicks (A, B, C, D) were selected, and the selection was based on range, transient response, and stable response. Kicks had at least 5° of range of motion with a smooth transient response and a stable period. The robotic exoskeleton used a Vacuum-Powered Artificial Muscle (VPAM) the structure comprised of cells that were clipped in a collapsed state and unclipped when desired to simulate infant’s age. The artificial muscle works with vacuum pressure. When air is removed, the muscle contracts and when air is added, the muscle relaxes. Bench testing was performed using a 6-month-old infant mannequin. The previously developed exoskeleton worked really well with controlled ranges of motion and frequencies, which are typical of rehabilitation protocols for infants suffering with spina bifida. However, the random kicking motion in this study contained high frequency kicks and was not able to accurately replicate all the investigated kicks. Kick 'A' had a greater error when compared to the other kicks. This study has the potential to advance the infant rehabilitation field.

Keywords: musculoskeletal modeling, soft robotics, rehabilitation, pediatrics

Procedia PDF Downloads 46
282 Lego Mindstorms as a Simulation of Robotic Systems

Authors: Miroslav Popelka, Jakub Nožička

Abstract:

In this paper we deal with using Lego Mindstorms in simulation of robotic systems with respect to cost reduction. Lego Mindstorms kit contains broad variety of hardware components which are required to simulate, program and test the robotics systems in practice. Algorithm programming went in development environment supplied together with Lego kit as in programming language C# as well. Algorithm following the line, which we dealt with in this paper, uses theoretical findings from area of controlling circuits. PID controller has been chosen as controlling circuit whose individual components were experimentally adjusted for optimal motion of robot tracking the line. Data which are determined to process by algorithm are collected by sensors which scan the interface between black and white surfaces followed by robot. Based on discovered facts Lego Mindstorms can be considered for low-cost and capable kit to simulate real robotics systems.

Keywords: LEGO Mindstorms, PID controller, low-cost robotics systems, line follower, sensors, programming language C#, EV3 Home Edition Software

Procedia PDF Downloads 346
281 Osteitis in the Diabetic Foot in Algeria

Authors: Mohamed Amine Adaour, Mohamed Sadek Bachene, Mosaab Fortassi, Wafaa Siouda

Abstract:

— Foot infections are responsible for a significant number of hospitalizations and amputations in diabetic patients. The objective of our study is to analyze and evaluate the management of diabetic foot in a surgical setting. A retrospective study was conducted based on a selected case of suspected diabetic foot infections of osteitis treated at the Mohamed Boudiaf hospital in Medea.The case was reiterated as a therapeutic charge, consisting of treating first the infection of the soft tissues, then the osteitis: biopsy after at least 15 days of cessation of antibiotic therapy. Successful treatment of osteitis was defined at the end of a follow-up period of complete wound healing, lack of bone resection/amputation surgery at the initial bone site during follow-up , Instead, biopsies are prescribed in the treatment of soft tissue infection. The mean duration of treatment for soft tissue infection was 2-3 weeks, the duration of the antibiotic-free window of therapy prior to bone biopsy was 2-4 weeks. This patient received medical management without surgical resection. The success rate for treating osteitis at one year was 73%, and healing at one year was 88%.It is often limited to a sausage of the foot at the cost of repeated amputations. The best management remains prevention, which necessarily involves setting up a specialized and adapted centre.

Keywords: diabetic foot, bone biopsy, osteitis, algeria

Procedia PDF Downloads 75
280 Physiopathology of Osteitis in the Diabetic Foot

Authors: Mohamed Amine Adaour, Mohamed Sadek Bachene, Mosaab Fortassi, Wafaa Siouda

Abstract:

Foot infections are responsible for a significant number of hospitalizations and amputations in diabetic patients. The objective of our study is to analyze and evaluate the management of diabetic foot in a surgical setting. A retrospective study was conducted based on a selected case of suspected diabetic foot infections of osteitis treated at the Mohamed Boudiaf hospital in Medea. The case was reiterated as a therapeutic charge, consisting of treating first the infection of the soft tissues, then the osteitis: biopsy after at least 15 days of cessation of antibiotic therapy. Successful treatment of osteitis was defined at the end of a follow-up period of complete wound healing, lack of bone resection/amputation surgery at the initial bone site during follow-up , Instead, biopsies are prescribed in the treatment of soft tissue infection. The mean duration of treatment for soft tissue infection was 2-3 weeks, the duration of the antibiotic-free window of therapy prior to bone biopsy was 2-4 weeks. This patient received medical management without surgical resection. The success rate for treating osteitis at one year was 73%, and healing at one year was 88%.It is often limited to a sausage of the foot at the cost of repeated amputations. The best management remains prevention, which necessarily involves setting up a specialized and adapted centre.

Keywords: osteitis, antibiotic therapy, bone biopsy, diabetic foot

Procedia PDF Downloads 58
279 Osteitis in the Diabetic Foot and the Risk Factor on the Population

Authors: Mohamed Amine Adaour, Mohamed Sadek Bachene, Mosaab Fortassi, Wafaa Siouda

Abstract:

Foot infections are responsible for a significant number of hospitalizations and amputations in diabetic patients. The objective of our study is to analyze and evaluate the management of diabetic foot in a surgical setting. A retrospective study was conducted based on a selected case of suspected diabetic foot infections of osteitis treated at the Mohamed Boudiaf hospital in Medea.The case was reiterated as a therapeutic charge, consisting of treating first the infection of the soft tissues, then the osteitis: biopsy after at least 15 days of cessation of antibiotic therapy. Successful treatment of osteitis was defined at the end of a follow-up period of complete wound healing, lack of bone resection/amputation surgery at the initial bone site during follow-up , Instead, biopsies are prescribed in the treatment of soft tissue infection. The mean duration of treatment for soft tissue infection was 2-3 weeks, the duration of the antibiotic-free window of therapy prior to bone biopsy was 2-4 weeks. This patient received medical management without surgical resection. The success rate for treating osteitis at one year was 73%, and healing at one year was 88%.It is often limited to a sausage of the foot at the cost of repeated amputations. The best management remains prevention, which necessarily involves setting up a specialized and adapted centre.

Keywords: osteitis, antibiotic, biopsy, diabetic foot

Procedia PDF Downloads 65
278 Diagnostic Physiopathology of Osteitis in the Diabetic Foot

Authors: Adaour Mohamed Amine, Bachene Mohamed Sadek, Fortassi Mosaab, Siouda Wafaa

Abstract:

Foot infections are responsible for a significant number of hospitalizations and amputations in diabetic patients. The objective of our study is to analyze and evaluate the management of diabetic foot in a surgical setting. A retrospective study was conducted based on a selected case of suspected diabetic foot infections of osteitis treated at the Mohamed Boudiaf hospital in Medea. The case was reiterated as a therapeutic charge, consisting of treating first the infection of the soft tissues, then the osteitis: biopsy after at least 15 days of cessation of antibiotic therapy. Successful treatment of osteitis was defined at the end of a follow-up period of complete wound healing, lack of bone resection/amputation surgery at the initial bone site during follow-up , Instead, biopsies are prescribed in the treatment of soft tissue infection. The mean duration of treatment for soft tissue infection was 2-3 weeks, the duration of the antibiotic-free window of therapy prior to bone biopsy was 2-4 weeks. This patient received medical management without surgical resection. The success rate for treating osteitis at one year was 73% and healing at one year was 88%.It is often limited to a sausage of the foot at the cost of repeated amputations. The best management remains prevention, which necessarily involves setting up a specialized and adapted centre.

Keywords: osteitis, antibiotic therapy, bone biopsy, diabetic foot

Procedia PDF Downloads 74
277 Parametric Appraisal of Robotic Arc Welding of Mild Steel Material by Principal Component Analysis-Fuzzy with Taguchi Technique

Authors: Amruta Rout, Golak Bihari Mahanta, Gunji Bala Murali, Bibhuti Bhusan Biswal, B. B. V. L. Deepak

Abstract:

The use of industrial robots for performing welding operation is one of the chief sign of contemporary welding in these days. The weld joint parameter and weld process parameter modeling is one of the most crucial aspects of robotic welding. As weld process parameters affect the weld joint parameters differently, a multi-objective optimization technique has to be utilized to obtain optimal setting of weld process parameter. In this paper, a hybrid optimization technique, i.e., Principal Component Analysis (PCA) combined with fuzzy logic has been proposed to get optimal setting of weld process parameters like wire feed rate, welding current. Gas flow rate, welding speed and nozzle tip to plate distance. The weld joint parameters considered for optimization are the depth of penetration, yield strength, and ultimate strength. PCA is a very efficient multi-objective technique for converting the correlated and dependent parameters into uncorrelated and independent variables like the weld joint parameters. Also in this approach, no need for checking the correlation among responses as no individual weight has been assigned to responses. Fuzzy Inference Engine can efficiently consider these aspects into an internal hierarchy of it thereby overcoming various limitations of existing optimization approaches. At last Taguchi method is used to get the optimal setting of weld process parameters. Therefore, it has been concluded the hybrid technique has its own advantages which can be used for quality improvement in industrial applications.

Keywords: robotic arc welding, weld process parameters, weld joint parameters, principal component analysis, fuzzy logic, Taguchi method

Procedia PDF Downloads 154
276 User Requirements Study in Order to Improve the Quality of Social Robots for Dementia Patients

Authors: Konrad Rejdak

Abstract:

Introduction: Neurodegenerative diseases are frequently accompanied by loss and unwanted change in functional independence, social relationships, and economic circumstances. Currently, the achievements of social robots to date is being projected to improve multidimensional quality of life among people with cognitive impairment and others. Objectives: Identification of particular human needs in the context of the changes occurring in course of neurodegenerative diseases. Methods: Based on the 110 surveys performed in the Medical University of Lublin from medical staff, patients, and caregivers we made prioritization of the users' needs as high, medium, and low. The issues included in the surveys concerned four aspects: user acceptance, functional requirements, the design of the robotic assistant and preferred types of human-robot interaction. Results: We received completed questionnaires; 50 from medical staff, 30 from caregivers and 30 from potential users. Above 90% of the respondents from each of the three groups, accepted a robotic assistant as a potential caregiver. High priority functional capability of assistive technology was to handle emergencies in a private home-like recognizing life-threatening situations and reminding about medication intake. With reference to the design of the robotic assistant, the majority of the respondent would like to have an anthropomorphic appearance with a positive emotionally expressive face. The most important type of human-robot interaction was a voice-operated system and by touchscreen. Conclusion: The results from our study might contribute to a better understanding of the system and users’ requirements for the development of a service robot intended to support patients with dementia.

Keywords: assistant robot, dementia, long term care, patients

Procedia PDF Downloads 133
275 Development of a Real-Time Simulink Based Robotic System to Study Force Feedback Mechanism during Instrument-Object Interaction

Authors: Jaydip M. Desai, Antonio Valdevit, Arthur Ritter

Abstract:

Robotic surgery is used to enhance minimally invasive surgical procedure. It provides greater degree of freedom for surgical tools but lacks of haptic feedback system to provide sense of touch to the surgeon. Surgical robots work on master-slave operation, where user is a master and robotic arms are the slaves. Current, surgical robots provide precise control of the surgical tools, but heavily rely on visual feedback, which sometimes cause damage to the inner organs. The goal of this research was to design and develop a real-time simulink based robotic system to study force feedback mechanism during instrument-object interaction. Setup includes three Velmex XSlide assembly (XYZ Stage) for three dimensional movement, an end effector assembly for forceps, electronic circuit for four strain gages, two Novint Falcon 3D gaming controllers, microcontroller board with linear actuators, MATLAB and Simulink toolboxes. Strain gages were calibrated using Imada Digital Force Gauge device and tested with a hard-core wire to measure instrument-object interaction in the range of 0-35N. Designed simulink model successfully acquires 3D coordinates from two Novint Falcon controllers and transfer coordinates to the XYZ stage and forceps. Simulink model also reads strain gages signal through 10-bit analog to digital converter resolution of a microcontroller assembly in real time, converts voltage into force and feedback the output signals to the Novint Falcon controller for force feedback mechanism. Experimental setup allows user to change forward kinematics algorithms to achieve the best-desired movement of the XYZ stage and forceps. This project combines haptic technology with surgical robot to provide sense of touch to the user controlling forceps through machine-computer interface.

Keywords: surgical robot, haptic feedback, MATLAB, strain gage, simulink

Procedia PDF Downloads 508
274 Glioblastoma: Prognostic Value of Clinical, Histopathological and Immunohistochemical (p53, EGFR, VEGF, MDM2, Ki67) Parameters

Authors: Sujata Chaturvedi, Ishita Pant, Deepak Kumar Jha, Vinod Kumar Singh Gautam, Chandra Bhushan Tripathi

Abstract:

Objective: To describe clinical, histopathological and immunohistochemical profile of glioblastoma in patients and to correlate these findings with patient survival. Material and methods: 30 cases of histopathologically diagnosed glioblastomas were included in this study. These cases were analysed in detail for certain clinical and histopathological parameters. Immunohistochemical staining for p53, epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), mouse double minute 2 homolog (MDM2) and Ki67 was done and scores were calculated. Results of these findings were correlated with patient survival. Results: A retrospective analysis of the histopathology records and clinical case files was done in 30 cases of glioblastoma (WHO grade IV). The mean age of presentation was 50.6 years with a male predilection. The most common involved site was the frontal lobe. Amongst the clinical parameters, age of the patient and extent of surgical resection showed a significant correlation with the patient survival. Histopathological parameters showed no significant correlation with the patient survival, while amongst the immunohistochemical parameters expression of MDM2 showed a significant correlation with the patient survival. Conclusion: In this study incorporating clinical, histopathological and basic panel of immunohistochemistry, age of the patient, extent of the surgical resection and expression of MDM2 showed significant correlation with the patient survival.

Keywords: glioblastoma, p53, EGFR, VEGF, MDM2, Ki67

Procedia PDF Downloads 263
273 Historical Hashtags: An Investigation of the #CometLanding Tweets

Authors: Noor Farizah Ibrahim, Christopher Durugbo

Abstract:

This study aims to investigate how the Twittersphere reacted during the recent historical event of robotic landing on a comet. The news is about Philae, a robotic lander from European Space Agency (ESA), which successfully made the first-ever rendezvous and touchdown of its kind on a nucleus comet on November 12, 2014. In order to understand how Twitter is practically used in spreading messages on historical events, we conducted an analysis of one-week tweet feeds that contain the #CometLanding hashtag. We studied the trends of tweets, the diffusion of the information and the characteristics of the social network created. The results indicated that the use of Twitter as a platform enables online communities to engage and spread the historical event through social media network (e.g. tweets, retweets, mentions and replies). In addition, it was found that comprehensible and understandable hashtags could influence users to follow the same tweet stream compared to other laborious hashtags which were difficult to understand by users in online communities.

Keywords: diffusion of information, hashtag, social media, Twitter

Procedia PDF Downloads 297
272 Cost Effective Intraoperative Mri for Cranial and Spinal Cases Using Pre-Existing Three Side Open Mri-Adjacent to Operation Theater = Since-2005

Authors: V. K. Tewari, M. Hussain, H. K. D.Gupta

Abstract:

Aims/Background: The existing Intraoperative-MRI(IMRI) of developed countries is too costly to be utilized in any developing country. We have used the preexisting 3-side open 0.2-tesla MRI for IMRI in India so that the maximum benefit of the goal of IMRI is attained with cost effective state of the art surgeries. Material/Methods: We have operated 36-cases since 13thNov2005 via IMRI to till date. The table of MRI is used as an operating table which can be taken to the P3 level and as and when we require MRI to be done then the table can slide to P1 level so that the intraoperative monitoring can be done. The oxygen/nitrous tubes were taken out from vent made in the wall of the MRI room to outside. The small handy Boyel’s trolley was taken inside the MRI room with a small monitor. Anesthesia is been given in the MRI room itself. Usual skin markings were given with the help of scout MRI fields so the preciseness is increased. Craniotomy flap raised or the laminectomy and the dura opened in the similar fashion by same instruments as for the non IMRI case. Now corticectomy is planned after the T1 contrast image to localize and minimize the cortical resection. Staged and multiple P3 to P1 position and vice versa is planned respectively so that the resection is optimized to around 0.5 mm for radiotherapy. Immediate preclosure hematoma and edemas can be differentiated and cared for it. Results: Same MRI images as compared to highly expensive MRI of western world are achieved. Conclusion: 0.2 tesla Intraoperative MRI can be used for operative work for cranial and spinal cases easily with highly cost effectiveness.

Keywords: intraoperative MRI, 0.2 tesla intraoperative MRI, cost effective intraoperative MRI, medical and health sciences

Procedia PDF Downloads 424