Search results for: residual lifetime
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1158

Search results for: residual lifetime

1038 Earnings vs Cash Flows: The Valuation Perspective

Authors: Megha Agarwal

Abstract:

The research paper is an effort to compare the earnings based and cash flow based methods of valuation of an enterprise. The theoretically equivalent methods based on either earnings such as Residual Earnings Model (REM), Abnormal Earnings Growth Model (AEGM), Residual Operating Income Method (ReOIM), Abnormal Operating Income Growth Model (AOIGM) and its extensions multipliers such as price/earnings ratio, price/book value ratio; or cash flow based models such as Dividend Valuation Method (DVM) and Free Cash Flow Method (FCFM) all provide different estimates of valuation of the Indian giant corporate Reliance India Limited (RIL). An ex-post analysis of published accounting and financial data for four financial years from 2008-09 to 2011-12 has been conducted. A comparison of these valuation estimates with the actual market capitalization of the company shows that the complex accounting based model AOIGM provides closest forecasts. These different estimates may be derived due to inconsistencies in discount rate, growth rates and the other forecasted variables. Although inputs for earnings based models may be available to the investor and analysts through published statements, precise estimation of free cash flows may be better undertaken by the internal management. The estimation of value from more stable parameters as residual operating income and RNOA could be considered superior to the valuations from more volatile return on equity.

Keywords: earnings, cash flows, valuation, Residual Earnings Model (REM)

Procedia PDF Downloads 343
1037 Effect of Threshold Corrections on Proton Lifetime and Emergence of Topological Defects in Grand Unified Theories

Authors: Rinku Maji, Joydeep Chakrabortty, Stephen F. King

Abstract:

The grand unified theory (GUT) rationales the arbitrariness of the standard model (SM) and explains many enigmas of nature at the outset of a single gauge group. The GUTs predict the proton decay and, the spontaneous symmetry breaking (SSB) of the higher symmetry group may lead to the formation of topological defects, which are indispensable in the context of the cosmological observations. The Super-Kamiokande (Super-K) experiment sets sacrosanct bounds on the partial lifetime (τ) of the proton decay for different channels, e.g., τ(p → e+ π0) > 1.6×10³⁴ years which is the most relevant channel to test the viability of the nonsupersymmetric GUTs. The GUTs based on the gauge groups SO(10) and E(6) are broken to the SM spontaneously through one and two intermediate gauge symmetries with the manifestation of the left-right symmetry at least at a single intermediate stage and the proton lifetime for these breaking chains has been computed. The impact of the threshold corrections, as a consequence of integrating out the heavy fields at the breaking scale alter the running of the gauge couplings, which eventually, are found to keep many GUTs off the Super-K bound. The possible topological defects arising in the course of SSB at different breaking scales for all breaking chains have been studied.

Keywords: grand unified theories, proton decay, threshold correction, topological defects

Procedia PDF Downloads 137
1036 Application of Refractometric Methodology for Simultaneous Determination of Alcohol and Residual Sugar Concentrations during Alcoholic Fermentation Bioprocess of Date Juice

Authors: Boukhiar Aissa, Halladj Fatima, Iguergaziz Nadia, Lamrani yasmina, Benamara Salem

Abstract:

Determining the alcohol content in alcoholic fermentation bioprocess is of great importance. In fact, it is a key indicator for monitoring this bioprocess. Several methodologies (chemical, spectrophotometric, chromatographic) are used to the determination of this parameter. However, these techniques are very long and they require: rigorous preparations, sometimes dangerous chemical reagents and/or expensive equipment. In the present study, the date juice is used as the substrate of alcoholic fermentation. The extracted juice undergoes an alcoholic fermentation by Saccharomyces cerevisiae. The study of the possible use of refractometry as a sole means for the in situ control of alcoholic fermentation revealed a good correlation (R2=0.98) between initial and final °Brix: °Brixf=0.377×°Brixi. In addition, the relationship between Δ°Brix and alcoholic content of the final product (A,%) has been determined: Δ°Brix/A=1.1. The obtained results allowed us to establish iso-responses abacus, which can be used for the determination of alcohol and residual sugar content, with a mean relative error (MRE) of 5.35%.

Keywords: alcoholic fermentation, date juice, refractometry, residual sugar

Procedia PDF Downloads 310
1035 Research on Detection of Web Page Visual Salience Region Based on Eye Tracker and Spectral Residual Model

Authors: Xiaoying Guo, Xiangyun Wang, Chunhua Jia

Abstract:

Web page has been one of the most important way of knowing the world. Humans catch a lot of information from it everyday. Thus, understanding where human looks when they surfing the web pages is rather important. In normal scenes, the down-top features and top-down tasks significantly affect humans’ eye movement. In this paper, we investigated if the conventional visual salience algorithm can properly predict humans’ visual attractive region when they viewing the web pages. First, we obtained the eye movement data when the participants viewing the web pages using an eye tracker. By the analysis of eye movement data, we studied the influence of visual saliency and thinking way on eye-movement pattern. The analysis result showed that thinking way affect human’ eye-movement pattern much more than visual saliency. Second, we compared the results of web page visual salience region extracted by Itti model and Spectral Residual (SR) model. The results showed that Spectral Residual (SR) model performs superior than Itti model by comparison with the heat map from eye movements. Considering the influence of mind habit on humans’ visual region of interest, we introduced one of the most important cue in mind habit-fixation position to improved the SR model. The result showed that the improved SR model can better predict the human visual region of interest in web pages.

Keywords: web page salience region, eye-tracker, spectral residual, visual salience

Procedia PDF Downloads 247
1034 Characterization of Coastal Solid Waste: Basis for the Development of Waste Collector

Authors: Arnold I. Malag

Abstract:

The study wants to establish the data on the characteristics of coastal solid waste in main Island of Masbate as a model for technology interventions. The research utilized the Google Maps to measure the coastal length and Fishbowl Method for area identification. The solid wastes gathered were classified as residual, non-biodegradable, recyclable wastes, and special wastes, based on the waste analysis and characterization manual of Philippine Environmental Governance Project. The wastes were evaluated by weight in kg., dimension in cm., and characteristics as floating or non-floating. Based on the dimension of coastal solid waste, the biodegradable, recyclable, residual and special waste have the average of 40.95 cm., 16.25 cm., 31.37 cm., and 0.725cm. respectively. The waste in the coastal areas is dominated by biodegradable, followed by residual, then recyclable and special wastes with the data of 0.566 kg/m, 0.533 kg/m, 0.114 kg/m and .0007 kg/m respectively. The 97.15% of solid wastes collected is characterized as “floating”, where in the sources are the nearest rivers and waterways and/or the nearest populated areas adjacent to the island. This accumulation of solid wastes can be minimized and controlled by utilizing a floating equipment.

Keywords: solid waste, coastal waste, waste characterization, waste collector

Procedia PDF Downloads 54
1033 Multi Tier Data Collection and Estimation, Utilizing Queue Model in Wireless Sensor Networks

Authors: Amirhossein Mohajerzadeh, Abolghasem Mohajerzadeh

Abstract:

In this paper, target parameter is estimated with desirable precision in hierarchical wireless sensor networks (WSN) while the proposed algorithm also tries to prolong network lifetime as much as possible, using efficient data collecting algorithm. Target parameter distribution function is considered unknown. Sensor nodes sense the environment and send the data to the base station called fusion center (FC) using hierarchical data collecting algorithm. FC builds underlying phenomena based on collected data. Considering the aggregation level, x, the goal is providing the essential infrastructure to find the best value for aggregation level in order to prolong network lifetime as much as possible, while desirable accuracy is guaranteed (required sample size is fully depended on desirable precision). First, the sample size calculation algorithm is discussed, second, the average queue length based on M/M[x]/1/K queue model is determined and it is used for energy consumption calculation. Nodes can decrease transmission cost by aggregating incoming data. Furthermore, the performance of the new algorithm is evaluated in terms of lifetime and estimation accuracy.

Keywords: aggregation, estimation, queuing, wireless sensor network

Procedia PDF Downloads 161
1032 Evaluation of Advanced Architectures for Commercial Refrigeration Systems Using Low Global Warming Potential Refrigerants

Authors: Fabrizio Codella, Chris Parker, Samer Saab

Abstract:

The Kigali Amendment is driving the adoption of low Global Warming Potential refrigerants in commercial refrigeration systems in over a hundred countries. Several refrigeration systems for the small and large retail stores at mild and hot ambient temperature climates have been compared for hydrofluorocarbons (HFC), hydrofluoroolefins (HFO), transcritical CO₂ and propane, in typical and advanced system architectures. The results of system performance, emissions and lifetime cost have been compared. The greatest benefits were found to be obtained by low global warming potential HFO advanced systems.

Keywords: commercial refrigeration, CO₂, emissions, HFO, lifetime cost, performance

Procedia PDF Downloads 106
1031 Thermal-Mechanical Analysis of a Bridge Deck to Determine Residual Weld Stresses

Authors: Evy Van Puymbroeck, Wim Nagy, Ken Schotte, Heng Fang, Hans De Backer

Abstract:

The knowledge of residual stresses for welded bridge components is essential to determine the effect of the residual stresses on the fatigue life behavior. The residual stresses of an orthotropic bridge deck are determined by simulating the welding process with finite element modelling. The stiffener is placed on top of the deck plate before welding. A chained thermal-mechanical analysis is set up to determine the distribution of residual stresses for the bridge deck. First, a thermal analysis is used to determine the temperatures of the orthotropic deck for different time steps during the welding process. Twin wire submerged arc welding is used to construct the orthotropic plate. A double ellipsoidal volume heat source model is used to describe the heat flow through a material for a moving heat source. The heat input is used to determine the heat flux which is applied as a thermal load during the thermal analysis. The heat flux for each element is calculated for different time steps to simulate the passage of the welding torch with the considered welding speed. This results in a time dependent heat flux that is applied as a thermal loading. Thermal material behavior is specified by assigning the properties of the material in function of the high temperatures during welding. Isotropic hardening behavior is included in the model. The thermal analysis simulates the heat introduced in the two plates of the orthotropic deck and calculates the temperatures during the welding process. After the calculation of the temperatures introduced during the welding process in the thermal analysis, a subsequent mechanical analysis is performed. For the boundary conditions of the mechanical analysis, the actual welding conditions are considered. Before welding, the stiffener is connected to the deck plate by using tack welds. These tack welds are implemented in the model. The deck plate is allowed to expand freely in an upwards direction while it rests on a firm and flat surface. This behavior is modelled by using grounded springs. Furthermore, symmetry points and lines are used to prevent the model to move freely in other directions. In the thermal analysis, a mechanical material model is used. The calculated temperatures during the thermal analysis are introduced during the mechanical analysis as a time dependent load. The connection of the elements of the two plates in the fusion zone is realized with a glued connection which is activated when the welding temperature is reached. The mechanical analysis results in a distribution of the residual stresses. The distribution of the residual stresses of the orthotropic bridge deck is compared with results from literature. Literature proposes uniform tensile yield stresses in the weld while the finite element modelling showed tensile yield stresses at a short distance from the weld root or the weld toe. The chained thermal-mechanical analysis results in a distribution of residual weld stresses for an orthotropic bridge deck. In future research, the effect of these residual stresses on the fatigue life behavior of welded bridge components can be studied.

Keywords: finite element modelling, residual stresses, thermal-mechanical analysis, welding simulation

Procedia PDF Downloads 146
1030 Experimental and Numerical Investigation of “Machining Induced Residual Stresses” during Orthogonal Machining of Alloy Steel AISI 4340

Authors: Theena Thayalan, K. N. Ramesh Babu

Abstract:

Machining induced residual stress (RS) is one of the most important surface integrity parameters that characterize the near surface layer of a mechanical component, which plays a crucial role in controlling the performance, especially its fatigue life. Since experimental determination of RS is expensive and time consuming, it would be of great benefit if they could be predicted. In such case, it would be possible to select the cutting parameters required to produce a favorable RS profile. In the present study, an effort has been made to develop a 'two dimensional finite element model (FEM)' to simulate orthogonal cutting process and to predict surface and sub-surface RS using the commercial FEA software DEFORM-2D. The developed finite element model has been validated through experimental investigation of RS. In the experimentation, the orthogonal cutting tests were carried out on AISI 4340 by varying the cutting speed (VC) and uncut chip thickness (f) at three levels and the surface & sub-surface RS has been measured using XRD and Electro polishing techniques. The comparison showed that the RS obtained using developed numerical model is in reasonable agreement with that of experimental data.

Keywords: FEM, machining, residual stress, XRF

Procedia PDF Downloads 315
1029 Density Determination by Dilution for Extra Heavy Oil Residues Obtained Using Molecular Distillation and Supercritical Fluid Extraction as Upgrading and Refining Process

Authors: Oscar Corredor, Alexander Guzman, Adan Leon

Abstract:

Density is a bulk physical property that indicates the quality of a petroleum fraction. It is also a useful property to estimate various physicochemical properties of fraction and petroleum fluids; however, the determination of density of extra heavy residual (EHR) fractions by standard methodologies, (ASTM D70) shows limitations for samples with higher densities than 1.0879 g/cm3. For this reason, a dilution methodology was developed in order to determinate density for those particular fractions, 87 (EHR) fractions were obtained as products of the fractionation of Colombian typical Vacuum Distillation Residual Fractions using molecular distillation (MD) and extraction with Solvent N-hexane in Supercritical Conditions (SFEF) pilot plants. The proposed methodology showed reliable results that can be demonstrated with the standard deviation of repeatability and reproducibility values of 0.0031 and 0.0061 g/ml respectively. In the same way, it was possible to determine densities in fractions EHR up to 1.1647g/cm3 and °API values obtained were ten times less than the water reference value.

Keywords: API, density, vacuum residual, molecular distillation, supercritical fluid extraction

Procedia PDF Downloads 247
1028 A Thermo-mechanical Finite Element Model to Predict Thermal Cycles and Residual Stresses in Directed Energy Deposition Technology

Authors: Edison A. Bonifaz

Abstract:

In this work, a numerical procedure is proposed to design dense multi-material structures using the Directed Energy Deposition (DED) process. A thermo-mechanical finite element model to predict thermal cycles and residual stresses is presented. A numerical layer build-up procedure coupled with a moving heat flux was constructed to minimize strains and residual stresses that result in the multi-layer deposition of an AISI 316 austenitic steel on an AISI 304 austenitic steel substrate. To simulate the DED process, the automated interface of the ABAQUS AM module was used to define element activation and heat input event data as a function of time and position. Of this manner, the construction of ABAQUS user-defined subroutines was not necessary. Thermal cycles and thermally induced stresses created during the multi-layer deposition metal AM pool crystallization were predicted and validated. Results were analyzed in three independent metal layers of three different experiments. The one-way heat and material deposition toolpath used in the analysis was created with a MatLab path script. An optimal combination of feedstock and heat input printing parameters suitable for fabricating multi-material dense structures in the directed energy deposition metal AM process was established. At constant power, it can be concluded that the lower the heat input, the lower the peak temperatures and residual stresses. It means that from a design point of view, the one-way heat and material deposition processing toolpath with the higher welding speed should be selected.

Keywords: event series, thermal cycles, residual stresses, multi-pass welding, abaqus am modeler

Procedia PDF Downloads 38
1027 Finite Eigenstrains in Nonlinear Elastic Solid Wedges

Authors: Ashkan Golgoon, Souhayl Sadik, Arash Yavari

Abstract:

Eigenstrains in nonlinear solids are created due to anelastic effects such as non-uniform temperature distributions, growth, remodeling, and defects. Eigenstrains understanding is indispensable, as they can generate residual stresses and strongly affect the overall response of solids. Here, we study the residual stress and deformation fields of an incompressible isotropic infinite wedge with a circumferentially-symmetric distribution of finite eigenstrains. We construct a material manifold, whose Riemannian metric explicitly depends on the eigenstrain distribution, thereby we turn the problem into a classical nonlinear elasticity problem, where we find an embedding of the Riemannian material manifold into the ambient Euclidean space. In particular, we find exact solutions for the residual stress and deformation fields of a neo-Hookean wedge having a symmetric inclusion with finite radial and circumferential eigenstrains. Moreover, we numerically solve a similar problem when a symmetric Mooney-Rivlin inhomogeneity with finite eigenstrains is placed in a neo-Hookean wedge. Generalization of the eigenstrain problem to other geometries are also discussed.

Keywords: finite eigenstrains, geometric mechanics, inclusion, inhomogeneity, nonlinear elasticity

Procedia PDF Downloads 227
1026 Residual Life Estimation Based on Multi-Phase Nonlinear Wiener Process

Authors: Hao Chen, Bo Guo, Ping Jiang

Abstract:

Residual life (RL) estimation based on multi-phase nonlinear Wiener process was studied in this paper, which is significant for complicated products with small samples. Firstly, nonlinear Wiener model with random parameter was introduced and multi-phase nonlinear Wiener model was proposed to model degradation process of products that were nonlinear and separated into different phases. Then the multi-phase RL probability density function based on the presented model was derived approximately in a closed form and parameters estimation was achieved with the method of maximum likelihood estimation (MLE). Finally, the method was applied to estimate the RL of high voltage plus capacitor. Compared with the other three different models by log-likelihood function (Log-LF) and Akaike information criterion (AIC), the results show that the proposed degradation model can capture degradation process of high voltage plus capacitors in a better way and provide a more reliable result.

Keywords: multi-phase nonlinear wiener process, residual life estimation, maximum likelihood estimation, high voltage plus capacitor

Procedia PDF Downloads 427
1025 Experimental Stress Analysis on Pipeline in Condition of Frost Heave and Thaw Settlement

Authors: Zhiqiang Cheng, Qingliang He, Lu Li, Jie Ren

Abstract:

The safety of pipelines in the condition of frost heave or thaw settlement is necessarily evaluated. A full-scale experiment pipe with the typical structure configuration in station pipeline is constructed, the residual stress is tested with X-ray residual stress device, and the residual stress field of pipe is analyzed. The evolution of pipe strain with pressure in the scope of maximum allowable operation pressure (MAOP) is investigated by both strain gauge and X-ray methods. Load caused by frost heave or thaw settlement is simulated by two ways of lifting jack. The relation of maximum stress of pipe and clearances between supporter and pipe is studied in case of frost heave. The relation of maximum stress of pipe and maximum deformation of pipe on the ground is studied in case of thaw settlement. The study methods and results are valuable for safety assessment of station pipeline according to clearances or deformation in the condition of frost heave or thaw settlement.

Keywords: frost heave, pipeline, stress analysis, thaw settlement

Procedia PDF Downloads 155
1024 Economical Transformer Selection Implementing Service Lifetime Cost

Authors: Bonginkosi A. Thango, Jacobus A. Jordaan, Agha F. Nnachi

Abstract:

In this day and age, there is a proliferate concern from all governments across the globe to barricade the environment from greenhouse gases, which absorb infrared radiation. As a result, solar photovoltaic (PV) electricity has been an expeditiously growing renewable energy source and will eventually undertake a prominent role in the global energy generation. The selection and purchasing of energy-efficient transformers that meet the operational requirements of the solar photovoltaic energy generation plants then become a part of the Independent Power Producers (IPP’s) investment plan of action. Taking these into account, this paper proposes a procedure that put into effect the intricate financial analysis necessitated to precisely evaluate the transformer service lifetime no-load and load loss factors. This procedure correctly set forth the transformer service lifetime loss factors as a result of a solar PV plant’s sporadic generation profile and related levelized costs of electricity into the computation of the transformer’s total ownership cost. The results are then critically compared with the conventional transformer total ownership cost unaccompanied by the emission costs, and demonstrate the significance of the sporadic energy generation nature of the solar PV plant on the total ownership cost. The findings indicate that the latter play a crucial role for developers and Independent Power Producers (IPP’s) in making the purchase decision during a tender bid where competing offers from different transformer manufactures are evaluated. Additionally, the susceptibility analysis of different factors engrossed in the transformer service lifetime cost is carried out; factors including the levelized cost of electricity, solar PV plant’s generation modes, and the loading profile are examined.

Keywords: solar photovoltaic plant, transformer, total ownership cost, loss factors

Procedia PDF Downloads 102
1023 Surfactant-Assisted Aqueous Extraction of Residual Oil from Palm-Pressed Mesocarp Fibre

Authors: Rabitah Zakaria, Chan M. Luan, Nor Hakimah Ramly

Abstract:

The extraction of vegetable oil using aqueous extraction process assisted by ionic extended surfactant has been investigated as an alternative to hexane extraction. However, the ionic extended surfactant has not been commercialised and its safety with respect to food processing is uncertain. Hence, food-grade non-ionic surfactants (Tween 20, Span 20, and Span 80) were proposed for the extraction of residual oil from palm-pressed mesocarp fibre. Palm-pressed mesocarp fibre contains a significant amount of residual oil ( 5-10 wt %) and its recovery is beneficial as the oil contains much higher content of vitamin E, carotenoids, and sterols compared to crude palm oil. In this study, the formulation of food-grade surfactants using a combination of high hydrophilic-lipophilic balance (HLB) surfactants and low HLB surfactants to produce micro-emulsion with very low interfacial tension (IFT) was investigated. The suitable surfactant formulation was used in the oil extraction process and the efficiency of the extraction was correlated with the IFT, droplet size and viscosity. It was found that a ternary surfactant mixture with a HLB value of 15 (82% Tween 20, 12% Span 20 and 6% Span 80) was able to produce micro-emulsion with very low IFT compared to other HLB combinations. Results suggested that the IFT and droplet size highly affect the oil recovery efficiency. Finally, optimization of the operating parameters shows that the highest extraction efficiency of 78% was achieved at 1:31 solid to liquid ratio, 2 wt % surfactant solution, temperature of 50˚C, and 50 minutes contact time.

Keywords: food-grade surfactants, aqueous extraction of residual oil, palm-pressed mesocarp fibre, interfacial tension

Procedia PDF Downloads 366
1022 INRAM-3DCNN: Multi-Scale Convolutional Neural Network Based on Residual and Attention Module Combined with Multilayer Perceptron for Hyperspectral Image Classification

Authors: Jianhong Xiang, Rui Sun, Linyu Wang

Abstract:

In recent years, due to the continuous improvement of deep learning theory, Convolutional Neural Network (CNN) has played a great superior performance in the research of Hyperspectral Image (HSI) classification. Since HSI has rich spatial-spectral information, only utilizing a single dimensional or single size convolutional kernel will limit the detailed feature information received by CNN, which limits the classification accuracy of HSI. In this paper, we design a multi-scale CNN with MLP based on residual and attention modules (INRAM-3DCNN) for the HSI classification task. We propose to use multiple 3D convolutional kernels to extract the packet feature information and fully learn the spatial-spectral features of HSI while designing residual 3D convolutional branches to avoid the decline of classification accuracy due to network degradation. Secondly, we also design the 2D Inception module with a joint channel attention mechanism to quickly extract key spatial feature information at different scales of HSI and reduce the complexity of the 3D model. Due to the high parallel processing capability and nonlinear global action of the Multilayer Perceptron (MLP), we use it in combination with the previous CNN structure for the final classification process. The experimental results on two HSI datasets show that the proposed INRAM-3DCNN method has superior classification performance and can perform the classification task excellently.

Keywords: INRAM-3DCNN, residual, channel attention, hyperspectral image classification

Procedia PDF Downloads 36
1021 The Influence of High Temperatures on HVFA Concrete Columns by NDT Methods

Authors: D. Jagath Kumari, K. Srinivasa Rao

Abstract:

Quality assurance of the structures subjected to high temperatures is now enforcing measure for the Structural Engineers. The existing relations between strength and nondestructive measurements have been established under normal conditions are not suitable to concretes that have been exposed to high temperatures. The scope of the work is to investigate the influence of high temperatures of short durations on the residual properties of reinforced HVFA concrete columns that affect the strength by non-destructive tests (NDT). Fly ash concrete is increasingly used in the design of normal strength, high strength and high performance concretes. In this paper, the authors revealed the influence of high temperatures on HVFA concrete columns. These columns are heated from 100oC to 800oC with increments of 100oC and allowed to cool to room temperature by two methods one is air cooling method and the other immediate water quenching method. All the specimens were tested identically, before heating and after heating for compressive strength and material integrity by rebound hammer and ultrasonic pulse velocity (UPV) meter respectively. HVFA concrete retained more residual strength by water quenching method than air-cooling method.

Keywords: HVFA concrete, NDT methods, residual strength, non-destructive tests

Procedia PDF Downloads 431
1020 Routing and Energy Efficiency through Data Coupled Clustering in Large Scale Wireless Sensor Networks (WSNs)

Authors: Jainendra Singh, Zaheeruddin

Abstract:

A typical wireless sensor networks (WSNs) consists of several tiny and low-power sensors which use radio frequency to perform distributed sensing tasks. The longevity of wireless sensor networks (WSNs) is a major issue that impacts the application of such networks. While routing protocols are striving to save energy by acting on sensor nodes, recent studies show that network lifetime can be enhanced by further involving sink mobility. A common approach for energy efficiency is partitioning the network into clusters with correlated data, where the representative nodes simply transmit or average measurements inside the cluster. In this paper, we propose an energy- efficient homogenous clustering (EHC) technique. In this technique, the decision of each sensor is based on their residual energy and an estimate of how many of its neighboring cluster heads (CHs) will benefit from it being a CH. We, also explore the routing algorithm in clustered WSNs. We show that the proposed schemes significantly outperform current approaches in terms of packet delay, hop count and energy consumption of WSNs.

Keywords: wireless sensor network, energy efficiency, clustering, routing

Procedia PDF Downloads 236
1019 Optrix: Energy Aware Cross Layer Routing Using Convex Optimization in Wireless Sensor Networks

Authors: Ali Shareef, Aliha Shareef, Yifeng Zhu

Abstract:

Energy minimization is of great importance in wireless sensor networks in extending the battery lifetime. One of the key activities of nodes in a WSN is communication and the routing of their data to a centralized base-station or sink. Routing using the shortest path to the sink is not the best solution since it will cause nodes along this path to fail prematurely. We propose a cross-layer energy efficient routing protocol Optrix that utilizes a convex formulation to maximize the lifetime of the network as a whole. We further propose, Optrix-BW, a novel convex formulation with bandwidth constraint that allows the channel conditions to be accounted for in routing. By considering this key channel parameter we demonstrate that Optrix-BW is capable of congestion control. Optrix is implemented in TinyOS, and we demonstrate that a relatively large topology of 40 nodes can converge to within 91% of the optimal routing solution. We describe the pitfalls and issues related with utilizing a continuous form technique such as convex optimization with discrete packet based communication systems as found in WSNs. We propose a routing controller mechanism that allows for this transformation. We compare Optrix against the Collection Tree Protocol (CTP) and we found that Optrix performs better in terms of convergence to an optimal routing solution, for load balancing and network lifetime maximization than CTP.

Keywords: wireless sensor network, Energy Efficient Routing

Procedia PDF Downloads 354
1018 Research of the Load Bearing Capacity of Inserts Embedded in CFRP under Different Loading Conditions

Authors: F. Pottmeyer, M. Weispfenning, K. A. Weidenmann

Abstract:

Continuous carbon fiber reinforced plastics (CFRP) exhibit a high application potential for lightweight structures due to their outstanding specific mechanical properties. Embedded metal elements, so-called inserts, can be used to join structural CFRP parts. Drilling of the components to be joined can be avoided using inserts. In consequence, no bearing stress is anticipated. This is a distinctive benefit of embedded inserts, since continuous CFRP have low shear and bearing strength. This paper aims at the investigation of the load bearing capacity after preinduced damages from impact tests and thermal-cycling. In addition, characterization of mechanical properties during dynamic high speed pull-out testing under different loading velocities was conducted. It has been shown that the load bearing capacity increases up to 100% for very high velocities (15 m/s) in comparison with quasi-static loading conditions (1.5 mm/min). Residual strength measurements identified the influence of thermal loading and preinduced mechanical damage. For both, the residual strength was evaluated afterwards by quasi-static pull-out tests. Taking into account the DIN EN 6038 a high decrease of force occurs at impact energy of 16 J with significant damage of the laminate. Lower impact energies of 6 J, 9 J, and 12 J do not decrease the measured residual strength, although the laminate is visibly damaged - distinguished by cracks on the rear side. To evaluate the influence of thermal loading, the specimens were placed in a climate chamber and were exposed to various numbers of temperature cycles. One cycle took 1.5 hours from -40 °C to +80 °C. It could be shown that already 10 temperature cycles decrease the load bearing capacity up to 20%. Further reduction of the residual strength with increasing number of thermal cycles was not observed. Thus, it implies that the maximum damage of the composite is already induced after 10 temperature cycles.

Keywords: composite, joining, inserts, dynamic loading, thermal loading, residual strength, impact

Procedia PDF Downloads 249
1017 Improving the Quantification Model of Internal Control Impact on Banking Risks

Authors: M. Ndaw, G. Mendy, S. Ouya

Abstract:

Risk management in banking sector is a key issue linked to financial system stability and its importance has been elevated by technological developments and emergence of new financial instruments. In this paper, we improve the model previously defined for quantifying internal control impact on banking risks by automatizing the residual criticality estimation step of FMECA. For this, we defined three equations and a maturity coefficient to obtain a mathematical model which is tested on all banking processes and type of risks. The new model allows an optimal assessment of residual criticality and improves the correlation rate that has become 98%.

Keywords: risk, control, banking, FMECA, criticality

Procedia PDF Downloads 291
1016 Energy Efficient Heterogeneous System for Wireless Sensor Networks (WSN)

Authors: José Anderson Rodrigues de Souza, Teles de Sales Bezerra, Saulo Aislan da Silva Eleuterio, Jeronimo Silva Rocha

Abstract:

Mobile devices are increasingly occupying sectors of society and one of its most important features is mobility. However, the use of mobile devices is subject to the lifetime of the batteries. Thus, the use of energy batteries has become an important issue in the study of wireless network technologies. In this context, new solutions that enable aggregate energy efficiency not only through energy saving, and principally they are evaluated from a more realistic model of energy discharge, if easy adaptation to existing protocols. This paper presents a study on the energy needed and the lifetime for Wireless Sensor Networks (WSN) using a heterogeneous network and applying the LEACH protocol.

Keywords: wireless sensor networks, energy efficiency, heterogeneous, LEACH protocol

Procedia PDF Downloads 543
1015 A Multicopy Strategy for Improved Security Wireless Sensor Network

Authors: Tuğçe Yücel

Abstract:

A Wireless Sensor Network(WSN) is a collection of sensor nodes which are deployed randomly in an area for surveillance. Efficient utilization of limited battery energy of sensors for increased network lifetime as well as data security are major design objectives for WSN. Moreover secure transmission of data sensed to a base station for further processing. Producing multiple copies of data packets and sending them on different paths is one of the strategies for this purpose, which leads to redundant energy consumption and hence reduced network lifetime. In this work we develop a restricted multi-copy multipath strategy where data move through ‘frequently’ or ‘heavily’ used sensors is copied by the sensor incident to such central nodes and sent on node-disjoint paths. We develop a mixed integer programing(MIP) model and heuristic approach present some preleminary test results.

Keywords: MIP, sensor, telecommunications, WSN

Procedia PDF Downloads 478
1014 Quality Management of Drinking Water Purification Process in the 15-Liter Container Using Design of Experiment and Process Capability Analysis

Authors: Chanchai Wimon, Polin Muangngam, Thannapat Nimsumram, Chanin Prombutra, Prasert Aengchuan, Perawat Boonpuek

Abstract:

Cleaning water containers is essential for drinking water production to prevent contamination and residual chemicals from washing liquid. Water distribution divisions in Thailand are facing a critical problem with residual contamination in 15-liter drinking water containers due to dust and residual chemicals (TDS value > 200) after normal washing. A thorough washing process is required before filling the purified water into each container. Unfortunately, the washing procedure and frequency do not align with the work instructions provided by the health department. The measured Total Dissolved Solids (TDS) value of the remaining water was found to range between 195–202, exceeding the standard TDS for excellent drinking water (50-190 ppm). This research uses the design of experiment technique in statistics to improve the washing process and reduce such contamination. Statistical data from our survey of the cleaning process is collected to identify affecting factors. Washing time and water volume are varied to test the efficiency of the washing process in reducing residual sediment in the water. The result indicates that cleaning the 15-liter container with 2 liters of tap water mixed with 15 milliliters of dishwashing liquid for 3.12 minutes per container is optimal, as the resulting TDS reduces to 189.75, falling within the standard value for good drinking water. This study result would benefit the drinking water industry in implementing a statistically evaluated cleaning procedure without conducting multiple trials, thus saving takt time and production costs.

Keywords: design of experiment, drinking water purification, quality management, production process reliability

Procedia PDF Downloads 18
1013 Gender-Based Violence among Women and Girls with Disability in Nepal

Authors: Manita Pyakurel, Ram Chandra Silwal, Padam Simkhada, Edwin van Teijlingen, Bikesh Bajracharya, Sushila Sapkota, Tina Gorkhali, Salita Gurung

Abstract:

Introduction: Gender-based violence (GBV) has been identified as a social and personal security concern for women with disabilities who are at increased risk for various types of abuse. This study aims to determine the prevalence rates of physical, psychological, and sexual violence among women and girls with disability in Nepal. Methods: This cross-sectional study was conducted in 28 municipalities, 14 districts, and 7 provinces representing all three ecological regions of Nepal from January to March 2021. Study respondents were girls and women with disabilities, aged between 15 and 59 years, at the study sites. Face-to-face semi-structured interviews were conducted among 1294 respondents using the KoBo toolbox application on a smartphone or tablet. Results: Among the total study population, 35.3% shared lifetime violence experience. Only 4.8% formally reported violence experienced. Among the violence experienced participants maximum (92.6%) of women and girls identified no change in violence before and after the COVID-19 pandemic. Women who were married had protective odds of 0.71 for violence experienced in their lifetime [aOR-0.71, CI (0.56-0.90)]. Conclusion: More than one-third experienced violence in their lifetime. Intimate partner violence was the most common violence experienced by women and girls with disability in Nepal. Sexual violence was the least type of violence experienced. The most common perpetrator of violence includes the mother or father-in-law. Most of the women and girls never reported violence.

Keywords: gender-based violence, prevalence, girls, women

Procedia PDF Downloads 103
1012 The Effect of Chemical Degradation of a Nonwoven Filter Media Membrane in Polyester

Authors: Rachid El Aidani, Phuong Nguyen-Tri, Toan Vu-Khanh

Abstract:

The filter media in synthetic fibre is the most geotextile materials used in aerosol and drainage filtration, particularly for buildings soil reinforcement in civil engineering due to its appropriated properties and its low cost. However, the current understanding of the durability and stability of this material in real service conditions, especially under severe long-term conditions are completely limited. This study has examined the effects of the chemical aging of a filter media in polyester non-woven under different temperatures (50, 70 and 80˚C) and pH (2. 7 and 12). The effect of aging conditions on mechanical properties, morphology, permeability, thermal stability and molar weigh changes is investigated. The results showed a significant reduction of mechanical properties in term of tensile strength, puncture force and tearing forces of the filter media after chemical aging due to the chemical degradation. The molar mass and mechanical properties changes in different temperature and pH showed a complex dependence of material properties on environmental conditions. The SEM and AFM characterizations showed a significant impact of the thermal aging on the morphological properties of the fibers. Based on the obtained results, the lifetime of the material in different temperatures was determined by the use of the Arrhenius model. These results provide useful information to better understand phenomena occurring during chemical aging of the filter media and may help to predict the service lifetime of this material in real used conditions.

Keywords: nonwoven membrane, chemical aging, mechanical properties, lifetime, filter media

Procedia PDF Downloads 293
1011 Relational and Personal Variables Predicting Marital Satisfaction

Authors: Sezen Gulec, Bilge Uzun

Abstract:

Almost all of the world population marries at least once in their lifetime. Nevertheless, in reality, only half of all marriages last a lifetime. The most important factor in marriage to manage is the satisfaction that they obtain. It is reality that marital satisfaction does not only related to maintain the relationship but also related to the social and work relationships. In this respect, the purpose of the present research is to find the personal and relational factors predicted marital satisfaction. The sample including 378 (178 male and 200 females) married individuals were administered to marital life scale, multidimensional perfectionism scale, trait forgivingness scale, adjective based personality test and relationship happiness questionnaire. The findings revealed marital happiness, forgiveness and extravertedness and emotional inconsistency factors were found to be significant predictors of marital satisfaction.

Keywords: marital satisfaction, happiness, perfectionism, forgiveness, five factor personality

Procedia PDF Downloads 643
1010 Chemical Degradation of a Polyester Nonwoven Membrane Used in Aerosol and Drainage Filter

Authors: Rachid El Aidani, Phuong Nguyen-Tri, Toan Vu-Khanh

Abstract:

The filter media in synthetic fibre is the most geotextile materials used in aerosol and drainage filtration, particularly for buildings soil reinforcement in civil engineering due to its appropriated properties and its low cost. However, the current understanding of the durability and stability of this material in real service conditions, especially under severe long-term conditions are completely limited. This study has examined the effects of the chemical aging of a filter media in polyester nonwoven under different temperatures (50, 70 and 80˚C) and pH (2. 7 and 12). The effect of aging conditions on mechanical properties, morphology, permeability, thermal stability and molar weigh changes is investigated. The results showed a significant reduction of mechanical properties in term of tensile strength, puncture force and tearing forces of the filter media after chemical aging due to the chemical degradation. The molar mass and mechanical properties changes in different temperature and pH showed a complex dependence of material properties on environmental conditions. The SEM and AFM characterizations showed a significant impact of the thermal aging on the morphological properties of the fibres. Based on the obtained results, the lifetime of the material in different temperatures was determined by the use of the Arrhenius model. These results provide useful information to better understand phenomena occurring during chemical aging of the filter media and may help to predict the service lifetime of this material in real used conditions.

Keywords: nonwoven membrane, chemical aging, mechanical properties, lifetime, filter media

Procedia PDF Downloads 313
1009 Contribution of Soluble Microbial Products on Dissolved Organic Nitrogen in Wastewater Effluent from Moving Bed Biofilm Reactor

Authors: Boonsiri Dandumrongsin, Halis Simsek, Chaiwat Rongsayamanont

Abstract:

Dissolved organic nitrogen (DON) is known as one of the persistence nitrogenous pollutant being originated from secondary treated effluent of municipal sewage treatment plant. However, effect of key system operating condition on the fate and behavior of residual DON in the treated effluent is still not known. This study aims to investigate effect of organic loading rate (OLR) on the residual level of DON in the biofilm reactor effluent. Synthetic municipal wastewater was fed into moving bed biofilm reactors at OLR of 1.6x10-3 and 3.2x10-3 kg SCOD/m3-d. The results showed higher organic removal efficiency was found in the reactor operating at higher OLR. However, DON was observed at higher value in the effluent of the higher OLR reactor than that of the lower OLR reactor evidencing a clear influence of OLR on the residual DON level in the treated effluent of the biofilm reactors. It is possible that the lower DON being observed in the reactor at lower OLR is likely to be a result of providing the microbe with the additional period for utilizing the refractory DON molecules during operation at lower organic loading. All the experiments were repeated using raw wastewaters and similar trend was obtained.

Keywords: dissolved organic nitrogen, hydraulic retention time, moving bed biofilm reactor, soluble microbial products

Procedia PDF Downloads 252