Search results for: representation selection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3531

Search results for: representation selection

3531 Instance Selection for MI-Support Vector Machines

Authors: Amy M. Kwon

Abstract:

Support vector machine (SVM) is a well-known algorithm in machine learning due to its superior performance, and it also functions well in multiple-instance (MI) problems. Our study proposes a schematic algorithm to select instances based on Hausdorff distance, which can be adapted to SVMs as input vectors under the MI setting. Based on experiments on five benchmark datasets, our strategy for adapting representation outperformed in comparison with original approach. In addition, task execution times (TETs) were reduced by more than 80% based on MissSVM. Hence, it is noteworthy to consider this representation adaptation to SVMs under MI-setting.

Keywords: support vector machine, Margin, Hausdorff distance, representation selection, multiple-instance learning, machine learning

Procedia PDF Downloads 34
3530 The Representation of J. D. Salinger’s Views on Changes in American Society in the 1940s in The Catcher in the Rye

Authors: Jessadaporn Achariyopas

Abstract:

The objectives of this study aim to analyze both the protagonist in The Catcher in the Rye in terms of ideological concepts and narrative techniques which influence the construction of the representation and the relationship between the representation and J. D. Salinger’s views on changes in American society in the 1940s. This area of study might concern two theories: namely, a theory of representation and narratology. In addition, this research is intended to answer the following three questions. Firstly, how is the production of meaning through language in The Catcher in the Rye constructed? Secondly, what are J. D. Salinger’s views on changes in American society in the 1940s? Lastly, how is the relationship between the representation and J. D. Salinger’s views? The findings showed that the protagonist’s views, J. D. Salinger’s views, and changes in American society in the 1940s are obviously interrelated. The production of meaning which is the representation of the protagonist’s views was constructed of narrative techniques. J. D. Salinger’s views on changes in American society in the 1940s were the same antisocial perspectives as Holden Caulfield’s which are phoniness, alienation and meltdown.

Keywords: representation, construction of the representation, systems of representation, phoniness, alienation, meltdown

Procedia PDF Downloads 321
3529 Efficient Relay Selection Scheme Utilizing OVSF Code in Cooperative Communication System

Authors: Yeong-Seop Ahn, Myoung-Jin Kim, Young-Min Ko, Hyoung-Kyu Song

Abstract:

This paper proposes a relay selection scheme utilizing an orthogonal variable spreading factor (OVSF) code in a cooperative communication. The relay selection scheme influences on the communication performance in the cooperative communication. Conventional relay selection schemes such as the best harmonic mean relay selection scheme or the threshold-based relay selection scheme should know information such as channel state information (CSI) in advance. The proposed relay selection scheme does not require information in advance by using a reference signal utilizing the OVSF code. The simulation result shows that bit error rate (BER) performance of proposed relay selection scheme is similar to the best harmonic mean relay selection scheme that is known as one of the optimal relay selection schemes.

Keywords: cooperative communication, relay selection, OFDM, OVSF code

Procedia PDF Downloads 637
3528 Innovative Pictogram Chinese Characters Representation

Authors: J. H. Low, S. H. Hew, C. O. Wong

Abstract:

This paper proposes an innovative approach to represent the pictogram Chinese characters. The advantage of this representation is using an extraordinary to represent the pictogram Chinese character. This extraordinary representation is created accordingly to the original pictogram Chinese characters revolution. The purpose of this innovative creation is to assistant the learner learning Chinese as second language (SCL) in Chinese language learning specifically on memorize Chinese characters. Commonly, the SCL will give up and frustrate easily while memorize the Chinese characters by rote. So, our innovative representation is able to help on memorize the Chinese character by the help of visually storytelling. This innovative representation enhances the Chinese language learning experience of SCL.

Keywords: Chinese e-learning, innovative Chinese character representation, knowledge management, language learning

Procedia PDF Downloads 487
3527 Sparsity Order Selection and Denoising in Compressed Sensing Framework

Authors: Mahdi Shamsi, Tohid Yousefi Rezaii, Siavash Eftekharifar

Abstract:

Compressed sensing (CS) is a new powerful mathematical theory concentrating on sparse signals which is widely used in signal processing. The main idea is to sense sparse signals by far fewer measurements than the Nyquist sampling rate, but the reconstruction process becomes nonlinear and more complicated. Common dilemma in sparse signal recovery in CS is the lack of knowledge about sparsity order of the signal, which can be viewed as model order selection procedure. In this paper, we address the problem of sparsity order estimation in sparse signal recovery. This is of main interest in situations where the signal sparsity is unknown or the signal to be recovered is approximately sparse. It is shown that the proposed method also leads to some kind of signal denoising, where the observations are contaminated with noise. Finally, the performance of the proposed approach is evaluated in different scenarios and compared to an existing method, which shows the effectiveness of the proposed method in terms of order selection as well as denoising.

Keywords: compressed sensing, data denoising, model order selection, sparse representation

Procedia PDF Downloads 483
3526 Merit Measures and Validation in Employee Evaluation and Selection

Authors: Wilson P. R. Malebye, Solly M. Seeletse

Abstract:

Applicants for space in selection problems are usually compared subjectively, and the selection made are not reliable and often cannot be verified scientifically. The paper illustrates objective selection by involving a mathematical measure in selecting a candidate applying for a job, and then using other two independent measures, validates the choice made. The scientific process followed is SToR (SAW, TOPSIS, WP) in which Simple Additive Weighting (SAW) is used to select, and the TOPSIS (technique for order preference by similarity to ideal solution) and weighted product (WP) are used to validate. A practical exercise was obtained from a factual selection problem in a recruitment task undertaken in an organization in which the authors consulted, and their Human Resources (HR) department wanted to check if their selection was justifiable. The result was that our approach was consistent and convincing to that HR, and theirs was not because our selection was satisfactory while theirs could not be corroborated using any method.

Keywords: candidate selection, SToR, SW, TOPSIS, WP

Procedia PDF Downloads 345
3525 Optimal Selection of Replenishment Policies Using Distance Based Approach

Authors: Amit Gupta, Deepak Juneja, Sorabh Gupta

Abstract:

This paper presents a model based on distance based approach (DBA) method employed for evaluation, selection, and ranking of replenishment policies for a single location inventory, which hitherto not developed in the literature. This work recognizes the significance of the selection problem, identifies the selection criteria, the relative importance of selection criteria for this research problem. The developed model is capable of comparing any number of alternate inventory policies for various selection criteria where cardinal values are assigned as a rating to alternate inventory polices for selection criteria and weights of selection criteria. The illustrated example demonstrates the model and presents the result in terms of ranking of replenishment policies.

Keywords: DBA, ranking, replenishment policies, selection criteria

Procedia PDF Downloads 157
3524 Identity (Mis)Representation and Ideological Struggles in Discourses on Boko Haram in Nigeria

Authors: Temitope Ogungbemi

Abstract:

Jama'atu Ahlis Sunna Lidda'awati wal-Jihad (also called Boko Haram) in the North-East of Nigeria has facilitated ideological binarity in discourses on the crisis. Since its proliferation, media representation of the crisis has facilitated identity contamination and ideological struggle through which other critical issues, such as religious intolerance, ethnic diversity and other forms of class conflict in the Nigerian state, are brought to public notice. Though Boko Haram insurgency is ideological laden, the manifestation of the inherent ideologies requires extensive scholarly attention in order deconstruct the veiled ideologies. Therefore, the thrust of this study is to critically investigate identity (mis)representation as a basis for ideological mapping in discourses on Boko Haram in Nigeria, adopting critical discourse analytical tools supported with insights from systemic functional linguistics and critical discourse analysis. The data for this study consist of articles on Boko Haram in Nigerian newspapers published in English. The data selection is purposive and aimed at responding to challenges that are inherent in Nigeria's multifaithism and multiculturalism, and their effects on the construction of narratives on Boko Haram. The study reveals that identity manipulation is a constructive device for ideological mapping, realised through labeling, agency activation, and transitivity. Identity representation in discourses on Boko Haram depicted four dichotomous binarities using exclusion, generalisation, contrasting and attribution.

Keywords: identity representation, ideology, Boko Haram, newspapers

Procedia PDF Downloads 340
3523 The Effect of Feature Selection on Pattern Classification

Authors: Chih-Fong Tsai, Ya-Han Hu

Abstract:

The aim of feature selection (or dimensionality reduction) is to filter out unrepresentative features (or variables) making the classifier perform better than the one without feature selection. Since there are many well-known feature selection algorithms, and different classifiers based on different selection results may perform differently, very few studies consider examining the effect of performing different feature selection algorithms on the classification performances by different classifiers over different types of datasets. In this paper, two widely used algorithms, which are the genetic algorithm (GA) and information gain (IG), are used to perform feature selection. On the other hand, three well-known classifiers are constructed, which are the CART decision tree (DT), multi-layer perceptron (MLP) neural network, and support vector machine (SVM). Based on 14 different types of datasets, the experimental results show that in most cases IG is a better feature selection algorithm than GA. In addition, the combinations of IG with DT and IG with SVM perform best and second best for small and large scale datasets.

Keywords: data mining, feature selection, pattern classification, dimensionality reduction

Procedia PDF Downloads 669
3522 Decision Making, Reward Processing and Response Selection

Authors: Benmansour Nassima, Benmansour Souheyla

Abstract:

The appropriate integration of reward processing and decision making provided by the environment is vital for behavioural success and individuals’ well being in everyday life. Functional neurological investigation has already provided an inclusive image on affective and emotional (motivational) processing in the healthy human brain and has recently focused its interest also on the assessment of brain function in anxious and depressed individuals. This article offers an overview on the theoretical approaches that relate emotion and decision-making, and spotlights investigation with anxious or depressed individuals to reveal how emotions can interfere with decision-making. This research aims at incorporating the emotional structure based on response and stimulation with a Bayesian approach to decision-making in terms of probability and value processing. It seeks to show how studies of individuals with emotional dysfunctions bear out that alterations of decision-making can be considered in terms of altered probability and value subtraction. The utmost objective is to critically determine if the probabilistic representation of belief affords could be a critical approach to scrutinize alterations in probability and value representation in subjective with anxiety and depression, and draw round the general implications of this approach.

Keywords: decision-making, motivation, alteration, reward processing, response selection

Procedia PDF Downloads 477
3521 Determining of Importance Level of Factors Affecting Job Selection with the Method of AHP

Authors: Nurullah Ekmekci, Ömer Akkaya, Kazım Karaboğa, Mahmut Tekin

Abstract:

Job selection is one of the most important decisions that affect their lives in the name of being more useful to themselves and the society. There are many criteria to consider in the job selection. The amount of criteria in the job selection makes it a multi-criteria decision-making (MCDM) problem. In this study; job selection has been discussed as multi-criteria decision-making problem and has been solved by Analytic Hierarchy Process (AHP), one of the multi-criteria decision making methods. A survey, contains 5 different job selection criteria (finding a job friendliness, salary status, job , social security, work in the community deems reputation and business of the degree of difficulty) within many job selection criteria and 4 different job alternative (being academician, working at the civil service, working at the private sector and working at in their own business), has been conducted to the students of Selcuk University Faculty of Economics and Administrative Sciences. As a result of pairwise comparisons, the highest weighted criteria in the job selection and the most coveted job preferences were identified.

Keywords: analytical hierarchy process, job selection, multi-criteria, decision making

Procedia PDF Downloads 400
3520 Real-Time Episodic Memory Construction for Optimal Action Selection in Cognitive Robotics

Authors: Deon de Jager, Yahya Zweiri, Dimitrios Makris

Abstract:

The three most important components in the cognitive architecture for cognitive robotics is memory representation, memory recall, and action-selection performed by the executive. In this paper, action selection, performed by the executive, is defined as a memory quantification and optimization process. The methodology describes the real-time construction of episodic memory through semantic memory optimization. The optimization is performed by set-based particle swarm optimization, using an adaptive entropy memory quantification approach for fitness evaluation. The performance of the approach is experimentally evaluated by simulation, where a UAV is tasked with the collection and delivery of a medical package. The experiments show that the UAV dynamically uses the episodic memory to autonomously control its velocity, while successfully completing its mission.

Keywords: cognitive robotics, semantic memory, episodic memory, maximum entropy principle, particle swarm optimization

Procedia PDF Downloads 156
3519 A Feature Clustering-Based Sequential Selection Approach for Color Texture Classification

Authors: Mohamed Alimoussa, Alice Porebski, Nicolas Vandenbroucke, Rachid Oulad Haj Thami, Sana El Fkihi

Abstract:

Color and texture are highly discriminant visual cues that provide an essential information in many types of images. Color texture representation and classification is therefore one of the most challenging problems in computer vision and image processing applications. Color textures can be represented in different color spaces by using multiple image descriptors which generate a high dimensional set of texture features. In order to reduce the dimensionality of the feature set, feature selection techniques can be used. The goal of feature selection is to find a relevant subset from an original feature space that can improve the accuracy and efficiency of a classification algorithm. Traditionally, feature selection is focused on removing irrelevant features, neglecting the possible redundancy between relevant ones. This is why some feature selection approaches prefer to use feature clustering analysis to aid and guide the search. These techniques can be divided into two categories. i) Feature clustering-based ranking algorithm uses feature clustering as an analysis that comes before feature ranking. Indeed, after dividing the feature set into groups, these approaches perform a feature ranking in order to select the most discriminant feature of each group. ii) Feature clustering-based subset search algorithms can use feature clustering following one of three strategies; as an initial step that comes before the search, binded and combined with the search or as the search alternative and replacement. In this paper, we propose a new feature clustering-based sequential selection approach for the purpose of color texture representation and classification. Our approach is a three step algorithm. First, irrelevant features are removed from the feature set thanks to a class-correlation measure. Then, introducing a new automatic feature clustering algorithm, the feature set is divided into several feature clusters. Finally, a sequential search algorithm, based on a filter model and a separability measure, builds a relevant and non redundant feature subset: at each step, a feature is selected and features of the same cluster are removed and thus not considered thereafter. This allows to significantly speed up the selection process since large number of redundant features are eliminated at each step. The proposed algorithm uses the clustering algorithm binded and combined with the search. Experiments using a combination of two well known texture descriptors, namely Haralick features extracted from Reduced Size Chromatic Co-occurence Matrices (RSCCMs) and features extracted from Local Binary patterns (LBP) image histograms, on five color texture data sets, Outex, NewBarktex, Parquet, Stex and USPtex demonstrate the efficiency of our method compared to seven of the state of the art methods in terms of accuracy and computation time.

Keywords: feature selection, color texture classification, feature clustering, color LBP, chromatic cooccurrence matrix

Procedia PDF Downloads 136
3518 Selection Standards for National Teams: Theory and Practice

Authors: Alexey Kulik

Abstract:

This article deals with selection standards for national sport teams. The author examines the legal framework for selection criteria and suggests using the most honest criteria.

Keywords: national teams, standards of forming teams, selection standards, sport legislations

Procedia PDF Downloads 507
3517 The Role of Recruitment and Selection in Financial Performance of Enterprises in Kosovo

Authors: Arta Jashari, Enver Kutllovci

Abstract:

Abstract— The purpose of this study is to examine the relationship of recruitment and selection practice and performance in medium service enterprises in Kosovo. A total of 110 managers from public and private sector was analyzed. Our empirical results show that enterprises in Kosovo use recruitment and selection practice and they know how important is to have the right people with skills and knowledge accordingly with the job requirements. The outcome of Pearson correlation analysis provides evidence that recruitment and selection practice, positively and significantly influence the financial performance. Also, our results show a significant relationship between the education of managers and the use of the recruitment and selection practice. From our results we can conclude and suggest that with a good recruiting and selection, the organization will fill with a group of potentially qualified candidates who will be able to fulfill the enterprises objective.

Keywords: Human Resource, Kosovo, Recruitment and Selection, Performance

Procedia PDF Downloads 165
3516 Hybrid Feature Selection Method for Sentiment Classification of Movie Reviews

Authors: Vishnu Goyal, Basant Agarwal

Abstract:

Sentiment analysis research provides methods for identifying the people’s opinion written in blogs, reviews, social networking websites etc. Sentiment analysis is to understand what opinion people have about any given entity, object or thing. Sentiment analysis research can be broadly categorised into three types of approaches i.e. semantic orientation, machine learning and lexicon based approaches. Feature selection methods improve the performance of the machine learning algorithms by eliminating the irrelevant features. Information gain feature selection method has been considered best method for sentiment analysis; however, it has the drawback of selection of threshold. Therefore, in this paper, we propose a hybrid feature selection methods comprising of information gain and proposed feature selection method. Initially, features are selected using Information Gain (IG) and further more noisy features are eliminated using the proposed feature selection method. Experimental results show the efficiency of the proposed feature selection methods.

Keywords: feature selection, sentiment analysis, hybrid feature selection

Procedia PDF Downloads 338
3515 Non Commutative Lᵖ Spaces as Hilbert Modules

Authors: Salvatore Triolo

Abstract:

We discuss the possibility of extending the well-known Gelfand-Naimark-Segal representation to modules over a C*algebra. We focus our attention on the case of Hilbert modules. We consider, in particular, the problem of the existence of a faithful representation. Non-commutative Lᵖ-spaces are shown to constitute examples of a class of CQ*-algebras. Finally, we have shown that any semisimple proper CQ*-algebra (X, A#), with A# a W*-algebra can be represented as a CQ*-algebra of measurable operators in Segal’s sense.

Keywords: Gelfand-Naimark-Segal representation, CQ*-algebras, faithful representation, non-commutative Lᵖ-spaces, operator in Hilbert spaces

Procedia PDF Downloads 248
3514 Modeling Generalization in the Acquired Equivalence Paradigm with the Successor Representation

Authors: Troy M. Houser

Abstract:

The successor representation balances flexible and efficient reinforcement learning by learning to predict the future, given the present. As such, the successor representation models stimuli as what future states they lead to. Therefore, two stimuli that are perceptually dissimilar but lead to the same future state will come to be represented more similarly. This is very similar to an older behavioral paradigm -the acquired equivalence paradigm, which measures the generalization of learned associations. Here, we test via computational modeling the plausibility that the successor representation is the mechanism by which people generalize knowledge learned in the acquired equivalence paradigm. Computational evidence suggests that this is a plausible mechanism for acquired equivalence and thus can guide future empirical work on individual differences in associative-based generalization.

Keywords: acquired equivalence, successor representation, generalization, decision-making

Procedia PDF Downloads 27
3513 Competence-Based Human Resources Selection and Training: Making Decisions

Authors: O. Starineca, I. Voronchuk

Abstract:

Human Resources (HR) selection and training have various implementation possibilities depending on an organization’s abilities and peculiarities. We propose to base HR selection and training decisions about on a competence-based approach. HR selection and training of employees are topical as there is room for improvement in this field; therefore, the aim of the research is to propose rational decision-making approaches for an organization HR selection and training choice. Our proposals are based on the training development and competence-based selection approaches created within previous researches i.e. Analytic-Hierarchy Process (AHP) and Linear Programming. Literature review on non-formal education, competence-based selection, AHP form our theoretical background. Some educational service providers in Latvia offer employees training, e.g. motivation, computer skills, accounting, law, ethics, stress management, etc. that are topical for Public Administration. Competence-based approach is a rational base for rational decision-making in both HR selection and considering HR training.

Keywords: competence-based selection, human resource, training, decision-making

Procedia PDF Downloads 337
3512 Supplier Selection by Bi-Objectives Mixed Integer Program Approach

Authors: K.-H. Yang

Abstract:

In the past, there was a lot of excellent research studies conducted on topics related to supplier selection. Because the considered factors of supplier selection are complicated and difficult to be quantified, most researchers deal supplier selection issues by qualitative approaches. Compared to qualitative approaches, quantitative approaches are less applicable in the real world. This study tried to apply the quantitative approach to study a supplier selection problem with considering operation cost and delivery reliability. By those factors, this study applies Normalized Normal Constraint Method to solve the dual objectives mixed integer program of the supplier selection problem.

Keywords: bi-objectives MIP, normalized normal constraint method, supplier selection, quantitative approach

Procedia PDF Downloads 415
3511 A Case-Based Reasoning-Decision Tree Hybrid System for Stock Selection

Authors: Yaojun Wang, Yaoqing Wang

Abstract:

Stock selection is an important decision-making problem. Many machine learning and data mining technologies are employed to build automatic stock-selection system. A profitable stock-selection system should consider the stock’s investment value and the market timing. In this paper, we present a hybrid system including both engage for stock selection. This system uses a case-based reasoning (CBR) model to execute the stock classification, uses a decision-tree model to help with market timing and stock selection. The experiments show that the performance of this hybrid system is better than that of other techniques regarding to the classification accuracy, the average return and the Sharpe ratio.

Keywords: case-based reasoning, decision tree, stock selection, machine learning

Procedia PDF Downloads 420
3510 Hierarchical Piecewise Linear Representation of Time Series Data

Authors: Vineetha Bettaiah, Heggere S. Ranganath

Abstract:

This paper presents a Hierarchical Piecewise Linear Approximation (HPLA) for the representation of time series data in which the time series is treated as a curve in the time-amplitude image space. The curve is partitioned into segments by choosing perceptually important points as break points. Each segment between adjacent break points is recursively partitioned into two segments at the best point or midpoint until the error between the approximating line and the original curve becomes less than a pre-specified threshold. The HPLA representation achieves dimensionality reduction while preserving prominent local features and general shape of time series. The representation permits course-fine processing at different levels of details, allows flexible definition of similarity based on mathematical measures or general time series shape, and supports time series data mining operations including query by content, clustering and classification based on whole or subsequence similarity.

Keywords: data mining, dimensionality reduction, piecewise linear representation, time series representation

Procedia PDF Downloads 275
3509 Processing Big Data: An Approach Using Feature Selection

Authors: Nikat Parveen, M. Ananthi

Abstract:

Big data is one of the emerging technology, which collects the data from various sensors and those data will be used in many fields. Data retrieval is one of the major issue where there is a need to extract the exact data as per the need. In this paper, large amount of data set is processed by using the feature selection. Feature selection helps to choose the data which are actually needed to process and execute the task. The key value is the one which helps to point out exact data available in the storage space. Here the available data is streamed and R-Center is proposed to achieve this task.

Keywords: big data, key value, feature selection, retrieval, performance

Procedia PDF Downloads 341
3508 Size-Reduction Strategies for Iris Codes

Authors: Jutta Hämmerle-Uhl, Georg Penn, Gerhard Pötzelsberger, Andreas Uhl

Abstract:

Iris codes contain bits with different entropy. This work investigates different strategies to reduce the size of iris code templates with the aim of reducing storage requirements and computational demand in the matching process. Besides simple sub-sampling schemes, also a binary multi-resolution representation as used in the JBIG hierarchical coding mode is assessed. We find that iris code template size can be reduced significantly while maintaining recognition accuracy. Besides, we propose a two stage identification approach, using small-sized iris code templates in a pre-selection satge, and full resolution templates for final identification, which shows promising recognition behaviour.

Keywords: iris recognition, compact iris code, fast matching, best bits, pre-selection identification, two-stage identification

Procedia PDF Downloads 440
3507 The Potential Benefits of Multimedia Information Representation in Enhancing Students’ Critical Thinking and History Reasoning

Authors: Ang Ling Weay, Mona Masood

Abstract:

This paper discusses the potential benefits of an interactive multimedia information representation in enhancing students’ critical thinking aligned with history reasoning in learning history between Secondary School students in Malaysia. Two modes of multimedia information representation implemented which are chronological and thematic information representation. A qualitative study of an unstructured interview was conducted among two history teachers, one history education lecturer, two i-think expert and program trainers and five form 4 secondary school students. The interview was to elicit their opinions on the implementation of thinking maps and interactive multimedia information representation in history learning. The key elements of interactive multimedia (e.g. multiple media, user control, interactivity, and use of timelines and concept maps) were then considered to improve the learning process. Findings of the preliminary investigation reveal that the interactive multimedia information representations have the potential benefits to be implemented as instructional resource in enhancing students’ higher order thinking skills (HOTs). This paper concludes by giving suggestions for future work.

Keywords: multimedia information representation, critical thinking, history reasoning, chronological and thematic information representation

Procedia PDF Downloads 350
3506 A Relational Case-Based Reasoning Framework for Project Delivery System Selection

Authors: Yang Cui, Yong Qiang Chen

Abstract:

An appropriate project delivery system (PDS) is crucial to the success of a construction project. Case-based reasoning (CBR) is a useful support for PDS selection. However, the traditional CBR approach represents cases as attribute-value vectors without taking relations among attributes into consideration, and could not calculate the similarity when the structures of cases are not strictly same. Therefore, this paper solves this problem by adopting the relational case-based reasoning (RCBR) approach for PDS selection, considering both the structural similarity and feature similarity. To develop the feature terms of the construction projects, the criteria and factors governing PDS selection process are first identified. Then, feature terms for the construction projects are developed. Finally, the mechanism of similarity calculation and a case study indicate how RCBR works for PDS selection. The adoption of RCBR in PDS selection expands the scope of application of traditional CBR method and improves the accuracy of the PDS selection system.

Keywords: relational cased-based reasoning, case-based reasoning, project delivery system, PDS selection

Procedia PDF Downloads 432
3505 An Application of Graph Theory to The Electrical Circuit Using Matrix Method

Authors: Samai'la Abdullahi

Abstract:

A graph is a pair of two set and so that a graph is a pictorial representation of a system using two basic element nodes and edges. A node is represented by a circle (either hallo shade) and edge is represented by a line segment connecting two nodes together. In this paper, we present a circuit network in the concept of graph theory application and also circuit models of graph are represented in logical connection method were we formulate matrix method of adjacency and incidence of matrix and application of truth table.

Keywords: euler circuit and path, graph representation of circuit networks, representation of graph models, representation of circuit network using logical truth table

Procedia PDF Downloads 561
3504 Beer Brand Commercials and Gender Representation in Nigeria: Contextualization's of Selected Television and YouTube Visuals of the 2010s and 2020s

Authors: Theresa Belema Chris-Biriowu

Abstract:

The change in trends in relation to gender representation in beer brand commercials was the thrust of the study. The study investigated how beer brand commercials reflect societal realities in their portrayals of gender roles within the span of a decade. The major objective of the study was to find out how gender was contextualized in selected beer brand commercials that both air on Nigerian television and stream on YouTube. The study was anchored on the muted group theory. The population of the study was in two streams: the total number of beer beverages that are produced by the eleven breweries in Nigeria and the registered advertising agencies in Lagos, Nigeria. The sample size was also two-pronged: the purposive selection of beer brands that have their commercials on television and YouTube and the purposive selection of an ad agency that has produced running commercials for beer brands within the period between 2010s and 2020s. They adopted visual framing analysis and narrative analysis research techniques. The study qualitatively analyzed the contents of beer brand commercials and conducted an interview with the management of the ad agency for data collection. The data was presented in images and words. The findings showed that females are underrepresented and misrepresented in the beer brand commercials and that the beer brands are not producing commercials that adequately reflect the realities of present times. It was also found that very little has changed in the ad industry between the periods studied, and commercial screenplays are not written with a specific aim to either target the female demographics or give them equal opportunities to thrive in the beer economy. The study concluded that the gender gap in beer commercials subsists and translates to gender discrimination, especially since it is established that females are also stakeholders in the beer economy. The study recommends that beer brands should produce commercials that appeal to their audience irrespective of gender, reflect contemporary realities, and give all genders equal opportunities to thrive in the increasingly competitive industry.

Keywords: beer brands, commercials, gender representation, visuals, television, YouTube

Procedia PDF Downloads 35
3503 Efficient Single Relay Selection Scheme for Cooperative Communication

Authors: Sung-Bok Choi, Hyun-Jun Shin, Hyoung-Kyu Song

Abstract:

This paper proposes a single relay selection scheme in cooperative communication. Decode and forward scheme is considered when a source node wants to cooperate with a single relay for data transmission. To use the proposed single relay selection scheme, the source node make a little different pattern signal which is not complex pattern and broadcasts it. The proposed scheme does not require the channel state information between the source node and candidates of the relay during the relay selection. Therefore, it is able to be used in many fields.

Keywords: relay selection, cooperative communication, df, channel codes

Procedia PDF Downloads 670
3502 A Fuzzy Decision Making Approach for Supplier Selection in Healthcare Industry

Authors: Zeynep Sener, Mehtap Dursun

Abstract:

Supplier evaluation and selection is one of the most important components of an effective supply chain management system. Due to the expanding competition in healthcare, selecting the right medical device suppliers offers great potential for increasing quality while decreasing costs. This paper proposes a fuzzy decision making approach for medical supplier selection. A real-world medical device supplier selection problem is presented to illustrate the application of the proposed decision methodology.

Keywords: fuzzy decision making, fuzzy multiple objective programming, medical supply chain, supplier selection

Procedia PDF Downloads 451