Search results for: rainwater infiltration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 376

Search results for: rainwater infiltration

346 Economic Analysis of Rainwater Harvesting Systems for Dairy Cattle

Authors: Sandra Cecilia Muhirirwe, Bart Van Der Bruggen, Violet Kisakye

Abstract:

Economic analysis of Rainwater harvesting (RWH) systems is vital in search of a cost-effective solution to water unreliability, especially in low-income countries. There is little literature focusing on the financial aspects of RWH for dairy farmers. The main purpose was to assess the economic viability of rainwater harvesting for diary framers in the Rwenzori region. The study focused on the use of rainwater harvesting systems from the rooftop and collection in above surface tanks. Daily rainfall time series for 12 years was obtained across nine gauging stations. The daily water balance equation was used for optimal sizing of the tank. Economic analysis of the investment was carried out based on the life cycle costs and the accruing benefits for the period of 15 years. Roof areas were varied from 75m2 as the minimum required area to 500m2 while maintaining the same number of cattle and keeping the daily water demand constant. The results show that the required rainwater tank sizes are very large and may be impractical to install due to the strongly varying terrain and the initial cost of investment. In all districts, there is a significant reduction of the volume of the required tank with an increasing collection area. The results further show that increasing the collection area has a minor effect on reducing the required tank size. Generally, for all rainfall areas, the reliability increases with an increase in the roof area. The results indicate that 100% reliability can only be realized with very large collection areas that are impractical to install. The estimated benefits outweigh the cost of investment. The Present Net Value shows that the investment is economically viable and investment with a short payback of a maximum of 3 years for all the time series in the study area.

Keywords: dairy cattle, optimisation, rainwater harvesting, economic analysis

Procedia PDF Downloads 169
345 Implementing Urban Rainwater Harvesting Systems: Between Policy and Practice

Authors: Natàlia Garcia Soler, Timothy Moss

Abstract:

Despite the multiple benefits of sustainable urban drainage, as demonstrated in numerous case studies across the world, urban rainwater harvesting techniques are generally restricted to isolated model projects. The leap from niche to mainstream has, in most cities, proved an elusive goal. Why policies promoting rainwater harvesting are limited in their widespread implementation has seldom been subjected to systematic analysis. Much of the literature on the policy, planning and institutional contexts of these techniques focus either on their potential benefits or on project design, but very rarely on a critical-constructive analysis of past experiences of implementation. Moreover, the vast majority of these contributions are restricted to single-case studies. There is a dearth of knowledge with respect to, firstly, policy implementation processes and, secondly, multi-case analysis. Insights from both, the authors argue, are essential to inform more effective rainwater harvesting in cities in the future. This paper presents preliminary findings from a research project on rainwater harvesting in cities from a social science perspective that is funded by the Swedish Research Foundation (Formas). This project – UrbanRain – is examining the challenges and opportunities of mainstreaming rainwater harvesting in three European cities. The paper addresses two research questions: firstly, what lessons can be learned on suitable policy incentives and planning instruments for rainwater harvesting from a meta-analysis of the relevant international literature and, secondly, how far these lessons are reflected in a study of past and ongoing rainwater harvesting projects in a European forerunner city. This two-tier approach frames the structure of the paper. We present, first, the results of the literature analysis on policy and planning issues of urban rainwater harvesting. Here, we analyze quantitatively and qualitatively the literature of the past 15 years on this topic in terms of thematic focus, issues addressed and key findings and draw conclusions on research gaps, highlighting the need for more studies on implementation factors, actor interests, institutional adaptation and multi-level governance. In a second step we focus in on the experiences of rainwater harvesting in Berlin and present the results of a mapping exercise on a wide variety of projects implemented there over the last 30 years. Here, we develop a typology to characterize the rainwater harvesting projects in terms of policy issues (what problems and goals are targeted), project design (which kind of solutions are envisaged), project implementation (how and when they were implemented), location (whether they are in new or existing urban developments) and actors (which stakeholders are involved and how), paying particular attention to the shifting institutional framework in Berlin. Mapping and categorizing these projects is based on a combination of document analysis and expert interviews. The paper concludes by synthesizing the findings, identifying how far the goals, governance structures and instruments applied in the Berlin projects studied reflect the findings emerging from the meta-analysis of the international literature on policy and planning issues of rainwater harvesting and what implications these findings have for mainstreaming such techniques in future practice.

Keywords: institutional framework, planning, policy, project implementation, urban rainwater management

Procedia PDF Downloads 262
344 Long Term Effect of FYM and Green Manure on Infiltration Characteristics Under Vertisol

Authors: Tripti Nayak, R. K. Bajpai

Abstract:

An ongoing field experiment was conducted at Long term fertilizer experiment, Raipur, to study the Effect of fertilization (both organic and inorganic) on soil Physical properties (infiltration rate) of Vertisol of ten treatments viz. The treatment combinations for were T1(Control),T2(50%NPK), T3(100%NPK), T4(150%NPK), T5(100%NPK+Zn), T6(100%NP), T7(100%N), T8(100%NPK+FYM), T9 (50%NPK+BGA) and T10(50%NPK+GM). Farmyard manure and green manure is applied at the treatment of T8 (100%NPK+FYM) and T10 (50%NPK+GM). Result showed that the highest infiltration rate recorded T8(100%NPK+FYM) and T10 (50%NPK+GM). These considerations have led to a renewed interest in the organic manures such as FYM, compost and green manures, which are formulations helps in sustainable agriculture production either by providing plants with fixed nitrogen, available P or by other plant growth promoting substances. Organic matter (OM) is the life of the soil because it contains all the essential elements required for plant growth. It also serves as food for soil bacteria. Decomposed OM, known as humus, improves the soil tilth, quality and helps the plant to grow. In general among all the other treatments and control gave poorest infiltration rate. Incorporation of organic sources considerably improved the soil physical properties such as decrease in bulk density and increase in infiltration rate and available NPK status of the soil. Study showed that wherever, nitrogen was substituted through GM, FYM or crop residue (rice straw) in rice, Corresponding decrease in bulk density favorably enhanced the infiltration rate and it was found to be highest in the green-manured plot, FYM and lowest in control. Concluded that Continuous monitoring of physical properties should be carried out for maintaining soil health and enhancing the crop production.

Keywords: long term effect, FYM, green manure, infiltration rate, soil health, crop productivity, vertisol

Procedia PDF Downloads 341
343 Microstructure Characterization on Silicon Carbide Formation from Natural Wood

Authors: Noor Leha Abdul Rahman, Koay Mei Hyie, Anizah Kalam, Husna Elias, Teng Wang Dung

Abstract:

Dark Red Meranti and Kapur, kinds of important type of wood in Malaysia were used as a precursor to fabricate porous silicon carbide. A carbon template is produced by pyrolysis at 850°C in an oxygen free atmosphere. The carbon template then further subjected to infiltration with silicon by silicon melt infiltration method. The infiltration process was carried out in tube furnace in argon flow at 1500°C, at two different holding time; 2 hours and 3 hours. Thermo gravimetric analysis was done to investigate the decomposition behavior of two species of plants. The resulting silicon carbide was characterized by XRD which was found the formation of silicon carbide and also excess silicon. The microstructure was characterized by scanning electron microscope (SEM) and the density was determined by the Archimedes method. An increase in holding time during infiltration will increased the density as well as formation of silicon carbide. Dark Red Meranti precursor is likely suitable for production of silicon carbide compared to Kapur.

Keywords: density, SEM, silicon carbide, XRD

Procedia PDF Downloads 391
342 Combined Synchrotron Radiography and Diffraction for in Situ Study of Reactive Infiltration of Aluminum into Iron Porous Preform

Authors: S. Djaziri, F. Sket, A. Hynowska, S. Milenkovic

Abstract:

The use of Fe-Al based intermetallics as an alternative to Cr/Ni based stainless steels is very promising for industrial applications that use critical raw materials parts under extreme conditions. However, the development of advanced Fe-Al based intermetallics with appropriate mechanical properties presents several challenges that involve appropriate processing and microstructure control. A processing strategy is being developed which aims at producing a net-shape porous Fe-based preform that is infiltrated with molten Al or Al-alloy. In the present work, porous Fe-based preforms produced by two different methods (selective laser melting (SLM) and Kochanek-process (KE)) are studied during infiltration with molten aluminum. In the objective to elucidate the mechanisms underlying the formation of Fe-Al intermetallic phases during infiltration, an in-house furnace has been designed for in situ observation of infiltration at synchrotron facilities combining x-ray radiography (XR) and x-ray diffraction (XRD) techniques. The feasibility of this approach has been demonstrated, and information about the melt flow front propagation has been obtained. In addition, reactive infiltration has been achieved where a bi-phased intermetallic layer has been identified to be formed between the solid Fe and liquid Al. In particular, a tongue-like Fe₂Al₅ phase adhering to the Fe and a needle-like Fe₄Al₁₃ phase adhering to the Al were observed. The growth of the intermetallic compound was found to be dependent on the temperature gradient present along the preform as well as on the reaction time which will be discussed in view of the different obtained results.

Keywords: combined synchrotron radiography and diffraction, Fe-Al intermetallic compounds, in-situ molten Al infiltration, porous solid Fe preforms

Procedia PDF Downloads 192
341 The Influence of Different Technologies on the Infiltration Properties and Soil Surface Crusting Processing in the North Bohemia Region

Authors: Miroslav Dumbrovsky, Lucie Larisova

Abstract:

The infiltration characteristic of the soil surface is one of the major factors that determines the potential soil degradation risk. The physical, chemical and biological characteristic of soil is changed by the processing of soil. The infiltration soil ability has an important role in soil and water conservation. The subject of the contribution is the evaluation of the influence of the conventional tillage and reduced tillage technology on soil surface crusting processing and infiltration properties of the soil in the North Bohemia region. Field experimental work at the area was carried out in the years 2013-2016 on Cambisol district medium-heavy clayey soil. The research was conducted on sloping erosion-endangered blocks of compacted arable land. The areas were chosen each year in the way that one of the experimental areas was handled by conventional tillage technologies and the other by reduced tillage technologies. Intact soil samples were taken into Kopecký´s cylinders in the three landscape positions, at a depth of 10 cm (representing topsoil) and 30 cm (representing subsoil). The cumulative infiltration was measured using a mini-disc infiltrometer near the consumption points. The Zhang method (1997), which provides an estimate of the unsaturated hydraulic conductivity K(h), was used for the evaluation of the infiltration tests of the mini-disc infiltrometer. The soil profile processed by conventional tillage showed a higher degree of compaction and soil crusting processing. The bulk density was between 1.10–1.67 g.cm⁻³, compared to the land processed by the reduced tillage technology, where the values were between 0.80–1.29 g.cm⁻³. Unsaturated hydraulic conductivity values were about one-third higher within the reduced tillage technology soil processing.

Keywords: soil crusting processing, unsaturated hydraulic conductivity, cumulative infiltration, bulk density, porosity

Procedia PDF Downloads 211
340 Experimental Testing of a Synthetic Mulch to Reduce Runoff and Evaporative Water Losses

Authors: Yasmeen Saleem, Pedro Berliner, Nurit Agam

Abstract:

The most severe limitation for plant production in arid areas is water. Rainfall events are rare but can have pulses of high intensity. As a result, crusts are formed, which decreases infiltration into the soil, and results additionally in erosive losses of soil. Direct evaporation of water from the wetted soil can account for large fractions of the water stored in the soil. Different kinds of mulches have been used to decrease the loss of water in arid and semi-arid region. This study aims to evaluate the effect of polystyrene styrofoam pellets mulch on soil infiltration, runoff, and evaporation as a more efficient and economically viable mulch alternative. Polystyrene styrofoam pellets of two sizes (0.5 and 1 cm diameter) will be placed on top of the soil in two mulch layer depths (1 and 2 cm), in addition to the non-mulched treatment. The rainfall simulator will be used as an artificial source of rain. The preliminary results in the prototype experiment indicate that polystyrene styrofoam pellets decreased runoff, increased soil-water infiltration. We are still testing the effect of these pellets on decreasing the soil-water evaporation.

Keywords: synthetic mulch, runoff, evaporation, infiltration

Procedia PDF Downloads 97
339 Systemic Approach to Risk Measurement of Drainage Systems in Urban Areas

Authors: Jadwiga Królikowska, Andrzej Królikowski, Jarosław Bajer

Abstract:

The work delineates the threats of maladjustment of the capacity of rain canals, designed and built in the early 20th century, in connection to heavy rainfall, especially in summer. This is the cause of the so called 'urban floods.' It directly relates to fierce raise of paving in the cities. Resolving this problem requires a change in philosophy of draining the rainfall by wider use of retention, infiltration and usage of rainwater. In systemic approach to managing the safety of urban drainage systems the risk, which is directly connected to safety failures, has been accepted as a measure. The risk level defines the probability of occurrence of losses greater than the ones forecast for a given time frame. The procedure of risk modelling, enabling its numeric analysis by using appropriate weights, is a significant issue in this paper.

Keywords: risk management, drainage system, urban areas, urban floods

Procedia PDF Downloads 337
338 The Systemic Approach to Risk Measurement of Drainage Systems in Urban Areas

Authors: Jadwiga Królikowska, Andrzej Królikowski, Jarosław Bajer

Abstract:

The work delineates the threats of maladjustment of the capacity of rain canals, designed and built in the early 20th century, in connection to heavy rainfall, especially in summer. This is the cause of the so called 'urban floods.' It directly relates to fierce raise of paving in the cities. Resolving this problem requires a change in philosophy of draining the rainfall by wider use of retention, infiltration and usage of rainwater. In systemic approach to managing the safety of urban drainage systems the risk, which is directly connected to safety failures, has been accepted as a measure. The risk level defines the probability of occurrence of losses grater than the ones forecast for a given time frame. The procedure of risk modelling, enabling its numeric analysis by using appropriate weights, is a significant issue in this paper.

Keywords: drainage system, urban areas, risk measurement, systemic approach

Procedia PDF Downloads 264
337 Spatial Characters Adapted to Rainwater Natural Circulation in Residential Landscape

Authors: Yun Zhang

Abstract:

Urban housing in China is typified by residential districts that occupy 25 to 40 percentage of the urban land. In residential districts, squares, roads, and building facades, as well as plants, usually form a four-grade spatial structure: district entrances, central landscapes, housing cluster entrances, green spaces between dwellings. This spatial structure and its elements not only compose the visible residential landscape but also play a major role of carrying rain water. These elements, therefore, imply ecological significance to urban fitness. Based upon theories of landscape ecology, residential landscape can be understood as a pattern typified by minor soft patch of planted area and major hard patch of buildings and squares, as well as hard corridors of roads. Use five landscape districts in Hangzhou as examples; this paper finds that the size, shape and slope direction of soft patch, the bend of roads, and the form of the four-grade spatial structure are influential for adapting to natural rainwater circulation.

Keywords: Hangzhou China, rainwater, residential landscape, spatial character, urban housing

Procedia PDF Downloads 294
336 Comparative Assessment of Rainwater Management Alternatives for Dhaka City: Case Study of North South University

Authors: S. M. Islam, Wasi Uddin, Nazmun Nahar

Abstract:

Dhaka, the capital of Bangladesh, faces two contrasting problems; excess of water during monsoon season and scarcity of water during dry season. The first problem occurs due to rapid urbanization and mismanagement of rainwater whereas the second problem is related to climate change and increasing urban population. Inadequate drainage system also worsens the overall water management scenario in Dhaka city. Dhaka has a population density of 115,000 people per square miles. This results in a 2.5 billion liter water demand every day, 87% of which is fulfilled by groundwater. Over dependency on groundwater has resulted in more than 200 feet drop in the last 50 years and continues to decline at a rate of 9 feet per year. Considering the gravity of the problem, it is high time that practitioners, academicians and policymakers consider different water management practices and look into their cumulative impacts at different scales. The present study assesses different rainwater management options for North South University of Bangladesh and recommends the most feasible and sustainable rainwater management measure. North South University currently accommodates over 20,000 students, faculty members, and administrative staffs. To fulfill the water demand, there are two deep tube wells, which bring up approximately 150,000 liter of water every hour. The annual water demand is approximately 103 million liters. Dhaka receives approximately 1800 mm of rainfall every year. For the current study, two academic buildings and one administrative building consist of 4924 square meters of rooftop area was selected as catchment area. Both rainwater harvesting and groundwater recharge options were analyzed separately. It was estimated that by rainwater harvesting, annually a total of 7.2 million liters of water can be reused which is approximately 7% of the total annual water usage. In the monsoon, rainwater harvesting fulfills 12.2% of the monthly water demand. The approximate cost of the rainwater harvesting system is estimated to be 940975 bdt (USD 11500). For direct groundwater recharge, a system comprises of one de-siltation tank, two recharge tanks and one siltation tank were designed that requires approximately 532788 bdt (USD 6500). The payback period is approximately 7 years and 4 months for the groundwater recharge system whereas the payback period for rainwater harvesting option is approximately 12 years and 4 months. Based on the cost-benefit analysis, the present study finds the groundwater recharge system to be most suitable for North South University. The present study also demonstrates that if only one institution like North South University can add up a substantial amount of water to the aquifer, bringing other institutions in the network has the potential to create significant cumulative impact on replenishing the declining groundwater level of Dhaka city. As an additional benefit, it also prevents large amount of water being discharged into the storm sewers which results in severe flooding in Dhaka city during monsoon.

Keywords: Dhaka, groundwater, harvesting, rainwater, recharge

Procedia PDF Downloads 98
335 Sustainability Analysis and Quality Assessment of Rainwater Harvested from Green Roofs: A Review

Authors: Mst. Nilufa Sultana, Shatirah Akib, Muhammad Aqeel Ashraf, Mohamed Roseli Zainal Abidin

Abstract:

Most people today are aware that global Climate change, is not just a scientific theory but also a fact with worldwide consequences. Global climate change is due to rapid urbanization, industrialization, high population growth and current vulnerability of the climatic condition. Water is becoming scarce as a result of global climate change. To mitigate the problem arising due to global climate change and its drought effect, harvesting rainwater from green roofs, an environmentally-friendly and versatile technology, is becoming one of the best assessment criteria and gaining attention in Malaysia. This paper addresses the sustainability of green roofs and examines the quality of water harvested from green roofs in comparison to rainwater. The factors that affect the quality of such water, taking into account, for example, roofing materials, climatic conditions, the frequency of rainfall frequency and the first flush. A green roof was installed on the Humid Tropic Centre (HTC) is a place of the study on monitoring program for urban Stormwater Management Manual for Malaysia (MSMA), Eco-Hydrological Project in Kualalumpur, and the rainwater was harvested and evaluated on the basis of four parameters i.e., conductivity, dissolved oxygen (DO), pH and temperature. These parameters were found to fall between Class I and Class III of the Interim National Water Quality Standards (INWQS) and the Water Quality Index (WQI). Some preliminary treatment such as disinfection and filtration could likely to improve the value of these parameters to class I. This review paper clearly indicates that there is a need for more research to address other microbiological and chemical quality parameters to ensure that the harvested water is suitable for use potable water for domestic purposes. The change in all physical, chemical and microbiological parameters with respect to storage time will be a major focus of future studies in this field.

Keywords: Green roofs, INWQS, MSMA-SME, rainwater harvesting, water treatment, water quality parameter, WQI

Procedia PDF Downloads 500
334 Intelligent Rainwater Reuse System for Irrigation

Authors: Maria M. S. Pires, Andre F. X. Gloria, Pedro J. A. Sebastiao

Abstract:

The technological advances in the area of Internet of Things have been creating more and more solutions in the area of agriculture. These solutions are quite important for life, as they lead to the saving of the most precious resource, water, being this need to save water a concern worldwide. The paper proposes the creation of an Internet of Things system based on a network of sensors and interconnected actuators that automatically monitors the quality of the rainwater that is stored inside a tank in order to be used for irrigation. The main objective is to promote sustainability by reusing rainwater for irrigation systems instead of water that is usually available for other functions, such as other productions or even domestic tasks. A mobile application was developed for Android so that the user can control and monitor his system in real time. In the application, it is possible to visualize the data that translate the quality of the water inserted in the tank, as well as perform some actions on the implemented actuators, such as start/stop the irrigation system and pour the water in case of poor water quality. The implemented system translates a simple solution with a high level of efficiency and tests and results obtained within the possible environment.

Keywords: internet of things, irrigation system, wireless sensor and actuator network, ESP32, sustainability, water reuse, water efficiency

Procedia PDF Downloads 118
333 Study on Optimization of Air Infiltration at Entrance of a Commercial Complex in Zhejiang Province

Authors: Yujie Zhao, Jiantao Weng

Abstract:

In the past decade, with the rapid development of China's economy, the purchasing power and physical demand of residents have been improved, which results in the vast emergence of public buildings like large shopping malls. However, the architects usually focus on the internal functions and streamlines of these buildings, ignoring the impact of the environment on the subjective feelings of building users. Only in Zhejiang province, the infiltration of cold air in winter frequently occurs at the entrance of sizeable commercial complex buildings that have been in operation, which will affect the environmental comfort of the building lobby and internal public spaces. At present, to reduce these adverse effects, it is usually adopted to add active equipment, such as setting air curtains to block air exchange or adding heating air conditioners. From the perspective of energy consumption, the infiltration of cold air into the entrance will increase the heat consumption of indoor heating equipment, which will indirectly cause considerable economic losses during the whole winter heating stage. Therefore, it is of considerable significance to explore the suitable entrance forms for improving the environmental comfort of commercial buildings and saving energy. In this paper, a commercial complex with apparent cold air infiltration problem in Hangzhou is selected as the research object to establish a model. The environmental parameters of the building entrance, including temperature, wind speed, and infiltration air volume, are obtained by Computational Fluid Dynamics (CFD) simulation, from which the heat consumption caused by the natural air infiltration in the winter and its potential economic loss is estimated as the objective metric. This study finally obtains the optimization direction of the building entrance form of the commercial complex by comparing the simulation results of other local commercial complex projects with different entrance forms. The conclusions will guide the entrance design of the same type of commercial complex in this area.

Keywords: air infiltration, commercial complex, heat consumption, CFD simulation

Procedia PDF Downloads 105
332 Determination of the Quantity of Water Absorbed by the Plant When Irrigating by Infiltration in Arid Regions (Case of Ouargla in Algeria)

Authors: Mehdi Benlarbi, Dalila Oulhaci

Abstract:

Several physical, human and economic factors come into play in the choice of an irrigation system for developing arid and semi-arid regions. Since it is impossible to define or weight quantitatively all the relevant factors in each case, the choice of the system is often based on subjective preferences rather than explicit analysis. Over the past decade, irrational irrigation in the Ouargla region has evolved to a certain extent based largely on water wastage and which may pose risks to the environment both off-site and at the site. In the whole region, the environment is damaged by excess water because the water tables that tend to be high form swamps that pollute nature on the surface. The purpose of our work is a comparison between sprinkler irrigation and drip irrigation using bottles. By irrigating with the aid of the bottle and giving a volume of 4 liters with a flow rate of one (1) liter per hour, the watering dose received varies between 6 and 7 mm without infiltration losses. And for the case of sprinkler irrigation, the dose received may not exceed 2.5mm. E in some cases, we have a quantity of water lost by infiltration. This shows that irrigation using the bottle is much more efficient than sprinkling. Because, on the one hand, a large amount of water is absorbed by the plant and on the other hand, there is no loss by infiltration. The results obtained are very significant because, on the one hand, we reuse local products, and on the other hand, as the bottles are buried, we avoid water losses by evaporation, especially in dry periods and salinization.

Keywords: resources, water, arid, evaporation, infiltration

Procedia PDF Downloads 48
331 Prognostic and Predictive Value of Tumor: Infiltrating Lymphocytes in Triple Negative Breast Cancer

Authors: Wooseok Byon, Eunyoung Kim, Junseong Kwon, Byung Joo Song, Chan Heun Park

Abstract:

Background/Purpose: Previous preclinical and clinical data suggest that increased lymphocytic infiltration would be associated with good prognosis and benefit from immunogenic chemotherapy especially in triple-negative breast cancer (TNBC). We investigated a single-center experience of TNBC and relationship with lymphocytic infiltration. Methods: From January 2004 to December 2012, at the Department of Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, we retrospectively reviewed 897 breast cancer patients-clinical outcomes, clinicopathological characteristics, breast cancer subtypes. And we reviewed lymphocytic infiltration of TNBC specimens by two pathologists. Statistical analysis of risk factors associated with recurrence was performed. Results: A total of 897 patients, 76 were TNBC (8.47%). Mean age of TNBC patients were 50.95 (SD10.42) years, mean follow-up periods was 40.06 months. We reviewed 49 slides, and there were 8 recurrent breast cancer patients (16.32%), and 4 patients were expired (8.16%). There were 9 lymphocytic predominant breast cancers (LPBC)-carcinomas with either intratumoral lymphocytes in >60% of tumor cell nests. 1 patient of LPBC was recurred and 8 were not. In multivariate logistic regression, the odds ratio of lymphocytic infiltration was 0.59 (p=0.643). Conclusion: In a single-center experience of TNBC, the lymphocytic infiltration in tumor cell nest might be a good trend on the prognosis but there was not statistically significant.

Keywords: tumor-infiltrating lymphocytes, triple negative breast cancer, medical and health sciences

Procedia PDF Downloads 384
330 Change of Flavor Characteristics of Flavor Oil Made Using Sarcodon aspratus (Sarcodon aspratus Berk. S. Ito) According to Extraction Temperature and Extraction Time

Authors: Gyeong-Suk Jo, Soo-Hyun Ji, You-Seok Lee, Jeong-Hwa Kang

Abstract:

To develop an flavor oil using Sarcodon aspratus (Sarcodon aspratus Berk. S. Ito), infiltration extraction method was used to add dried mushroom flavor of Sarcodon aspratus to base olive oil. Edible base oil used during infiltration extraction was pressed olive oil, and infiltration extraction was done while varying extraction temperature to 20, 30, 40 and 50(℃) extraction time to 24 hours, 48 hours and 72 hours. Amount of Sarcodon aspratus added to base oil was 20% compared to 100% of base oil. Production yield of Sarcodon aspratus flavor oil decreased with increasing extraction frequency. Aroma intensity was 2195~2447 (A.U./1㎖), and it increased with increasing extraction temperature and extraction time. Chromaticity of Sarcodon aspratus flavor oil was bright pale yellow with pH of 4.5, sugar content of 71~72 (°Brix), and highest average turbidity of 16.74 (Haze %) shown by the 40℃ group. In the aromatic evaluation, increasing extraction temperature and extraction time resulted in increase of cheese aroma, savory sweet aroma and beef jerky aroma, as well as spicy taste comprised of slight bitter taste, savory taste and slight acrid taste, to make aromatic oil with unique flavor.

Keywords: Flavor Characteristics, Flavor Oil, Infiltration extraction method, mushroom, Sarcodon aspratus (Sarcodon aspratus Berk. S. Ito)

Procedia PDF Downloads 345
329 Metagenomics Composition During and After Wet Deposition and the Presence of Airborne Microplastics

Authors: Yee Hui Lim, Elena Gusareva, Irvan Luhung, Yulia Frank, Stephan Christoph Schuster

Abstract:

Environmental pollution from microplastics (MPs) is an emerging concern worldwide. While the presence of microplastics has been well established in the marine and terrestrial environments, the prevalence of microplastics in the atmosphere is still poorly understood. Wet depositions such as rain or snow scavenge impurities from the atmosphere as it falls to the ground. These wet depositions serve as a useful tool in the removal of airborne particles that are suspended in the air. Therefore, the aim of this study is to investigate the presence of atmospheric microplastics and fibres through the analysis of air, rainwater and snow samples. Air samples were collected with filter-based air samplers from outdoor locations in Singapore. The sampling campaigns were conducted during and after each rain event. Rainwater samples from Singapore and Siberia were collected as well. Snow samples were also collected from Siberia as part of the ongoing study. Genomic DNA was then extracted from the samples and sequenced with shotgun metagenomics approach. qPCR analysis was conducted to quantify the total bacteria and fungi in the air, rainwater and snow samples. The results compared the bioaerosol profiles of all the samples. To observe the presence of microplastics, scanning electron microscope (SEM) was used. From the preliminary results, microplastics were detected. It can be concluded that there is a significant amount of atmospheric microplastics present, and its occurrence should be investigated in greater detail.

Keywords: atmospheric microplastics, metagenomics, scanning electron microscope, wet deposition

Procedia PDF Downloads 55
328 Central Retinal Venous Occlusion Associated O Bilateral Optic Nerve Infiltration Revealing Relapse Of An Acute Lymphoblastic Leukemia

Authors: Fendouli Ines, Zaafrane Nesrine, Mhamdi Hana, Knani Leila, Ghorbel Mohamed

Abstract:

Introduction: Ocular infiltration of leukemia can involve orbit, uveal tract, retina and optic nerve. It may result from direct ocular infiltration by leukemic cells or indirect ocular involvement resulting from secondary hematologic changes, opportunistic infections and complications of various modalities of therapy. We here in report a case of central venous retinal occlusion associated to optic nerve infiltration as presenting signs of a relapse of acute lymphoblastic leukemia. Case Report: A twelve-year-old male -patient of acute B lymphoblastic leukemia presented with headaches and bilateral blurred vision in the left ee. Ophthalmic examination showed a visual acuity reduced to counting fingers in the right eye and no light perception in the left eye. Funduscopy revealed a voluminous disc edema surrounded by retinal haemorrhages in the right eye, and venous tortusities, papillary edema, and hemorrages suggesting central retinal venous occlusion in the LE. Swept source optical coherence tomography revealed a serous retinal detachment in the RE and .hyperreflective inner layers with macular edema in the left eye. Cerebro-orbital MRI showed bilateral thickened left optic nerve. There were no radiological signs of true papillary edema due to intracranial hypertension secondary to central nervous system involvement. Myelogram and lumbar punction demonstrated blast infiltration and confirmed ocular relapse of the leukemia. Conclusion: Ocular involvement lymphoblastic acute leukemias decreased since the introduction of a systematic prophylactic treatment of central nervous system. Periodic ophthalmic examination is necessary to allow early diagnosis and treatment.

Keywords: acute leukemia, optic nerve, infiltration, relapse

Procedia PDF Downloads 55
327 Experiment on Artificial Recharge of Groundwater Implemented Project: Effect on the Infiltration Velocity by Vegetation Mulch

Authors: Cheh-Shyh Ting, Jiin-Liang Lin

Abstract:

This study was conducted at the Wanglung Farm in Pingtung County to test the groundwater seepage influences on the implemented project for artificial groundwater recharge. The study was divided into three phases. The first phase, conducted on natural groundwater that was recharged through the local climate and growing conditions, observed the natural form of vegetation species. The original plants were flooded, and after 60 days it was observed that of the original plants only Goosegrass (Eleusine indica) and Black heart (Polygonum lapathifolium Linn.) remained. Direct infiltration tests were carried out, and calculations for the effect of vegetation on infiltration velocity of the recharge pool were noted. The second phase was an indoor test. Bahia grass and wild amaranth were selected as vegetation roots. After growth, the distribution of different grassroots was observed in order to facilitate a comparison permeability coefficient calculated by the amount of penetration and to explore the relationship between density and the efficiency to groundwater recharge. The third phase was the root tomography analysis, further observation of the development of plant roots using computed tomography technology. Computed Tomography, also known as (CT), is a diagnostic imaging examination, normally used in the medical field. In the first phase of the feasibility study, most non-aquatic plants wilted and died within seven days. In seven days, the remaining plants were used for experimental infiltration analysis. Results showed that in eight hours of infiltration test, Eleusine indica stems averaged 0.466 m/day and wild amaranth averaged 0.014 m/day. The second phase of the experiment was conducted on the remains of the plant a week in it had died and rotted, and the infiltration experiment was performed under these conditions. The results showed eight hours in end of the infiltration test, Eleusine indica stems averaged 0.033 m/day, and wild amaranth averaged 0.098 m/day. Non-aquatic plants died within two weeks, and their rotted remains clogged the pores of bottom soil particles, causing obstruction of recharge pool infiltration. Experiment results showed that eight hours in the test the average infiltration velocity for Eleusine indica stems was 0.0229 m/day and wild amaranth averaged 0.0117 m/day. Since the rotted roots of the plants blocked the pores of the soil in the recharge pool, which resulted in the obstruction of the artificial infiltration pond and showed an immediate impact on recharge efficiency. In order to observe the development of plant roots, the third phase used computed tomography imaging. Iodine developer was injected into the Black heart, allowing its cross-sectional images to be shown on CT and to be used to observe root development.

Keywords: artificial recharge of groundwater, computed tomography, infiltration velocity, vegetation root system

Procedia PDF Downloads 276
326 Assessing Socio-economic Impacts of Arsenic and Iron Contamination in Groundwater: Feasibility of Rainwater Harvesting in Amdanga Block, North 24 Parganas, West Bengal, India

Authors: Rajkumar Ghosh

Abstract:

The present study focuses on conducting a socio-economic assessment of groundwater contamination by arsenic and iron and explores the feasibility of rainwater harvesting (RWH) as an alternative water source in the Amdanga Block of North 24 Parganas, West Bengal, India. The region is plagued by severe groundwater contamination, primarily due to excessive concentrations of arsenic and iron, which pose significant health risks to the local population. The study utilizes a mixed-methods approach, combining quantitative analysis of water samples collected from different locations within the Amdanga Block and socio-economic surveys conducted among the affected communities. The results reveal alarmingly high levels of arsenic and iron contamination in the groundwater, surpassing the World Health Organization (WHO) and Indian government's permissible limits. This contamination significantly impacts the health and well-being of the local population, leading to a range of health issues such as skin The water samples are analyzed for arsenic and iron levels, while the surveys gather data on water usage patterns, health conditions, and socio-economic factors. lesions, respiratory disorders, and gastrointestinal problems. Furthermore, the socio-economic assessment highlights the vulnerability of the affected communities due to limited access to safe drinking water. The findings reveal the adverse socio-economic implications, including increased medical expenditures, reduced productivity, and compromised educational opportunities. To address these challenges, the study explores the feasibility of rainwater harvesting as an alternative source of clean water. RWH systems have the potential to mitigate groundwater contamination by providing a sustainable and independent water supply. The assessment includes evaluating the rainwater availability, analyzing the infrastructure requirements, and estimating the potential benefits and challenges associated with RWH implementation in the study area. The findings of this study contribute to a comprehensive understanding of the socio-economic impact of groundwater contamination by arsenic and iron, emphasizing the urgency to address this critical issue in the Amdanga Block. The feasibility assessment of rainwater harvesting serves as a practical solution to ensure a safe and sustainable water supply, reducing the dependency on contaminated groundwater sources. The study's results can inform policymakers, researchers, and local stakeholders in implementing effective mitigation measures and promoting the adoption of rainwater harvesting as a viable alternative in similar arsenic and iron-contaminated regions.

Keywords: contamination, rainwater harvesting, groundwater, sustainable water supply

Procedia PDF Downloads 73
325 Particle Jetting Induced by the Explosive Dispersal

Authors: Kun Xue, Lvlan Miu, Jiarui Li

Abstract:

Jetting structures are widely found in particle rings or shells dispersed by the central explosion. In contrast, some explosive dispersal of particles only results in a dispersed cloud without distinctive structures. Employing the coupling method of the compressible computational fluid mechanics and discrete element method (CCFD-DEM), we reveal the underlying physics governing the formation of the jetting structure, which is related to the competition between the shock compaction and gas infiltration, two major processes during the shock interaction with the granular media. If the shock compaction exceeds the gas infiltration, the discernable jetting structures are expected, precipitated by the agglomerates of fast-moving particles induced by the heterogenous network of force chains. Otherwise, particles are uniformly accelerated by the interstitial flows, and no distinguishable jetting structures are formed. We proceed to devise the phase map of the jetting formation in the space defined by two dimensionless parameters which characterize the timescales of the shock compaction and the gas infiltration, respectively.

Keywords: compressible multiphase flows, DEM, granular jetting, pattern formation

Procedia PDF Downloads 45
324 Investigation on the Properties of Particulate Reinforced AA2014 Metal Matrix Composite Materials Produced by Vacuum Infiltration Method

Authors: Isil Kerti, Onur Okur, Sibel Daglilar, Recep Calin

Abstract:

Particulate reinforced aluminium matrix composites have gained more importance in automotive, aeronautical and defense industries due to their specific properties like as low density, high strength and stiffness, good fatigue strength, dimensional stability at high temperature and acceptable tribological properties. In this study, 2014 Aluminium alloy used as a matrix material and B₄C and SiC were selected as reinforcements components. For production of composites materials, vacuum infiltration method was used. In the experimental studies, the reinforcement volume ratios were defined by mixing as totally 10% B₄C and SiC. Aging treatment (T6) was applied to the specimens. The effect of T6 treatment on hardness was determined by using Brinell hardness test method. The effects of the aging treatment on microstructure and chemical structure were analysed by making XRD, SEM and EDS analysis on the specimens.

Keywords: metal matrix composite, vacumm infiltration method, aluminum metal matrix, mechanical feature

Procedia PDF Downloads 284
323 Adaptable Path to Net Zero Carbon: Feasibility Study of Grid-Connected Rooftop Solar PV Systems with Rooftop Rainwater Harvesting to Decrease Urban Flooding in India

Authors: Rajkumar Ghosh, Ananya Mukhopadhyay

Abstract:

India has seen enormous urbanization in recent years, resulting in increased energy consumption and water demand in its metropolitan regions. Adoption of grid-connected solar rooftop systems and rainwater collection has gained significant popularity in urban areas to address these challenges while also boosting sustainability and environmental consciousness. Grid-connected solar rooftop systems offer a long-term solution to India's growing energy needs. Solar panels are erected on the rooftops of residential and commercial buildings to generate power by utilizing the abundant solar energy available across the country. Solar rooftop systems generate clean, renewable electricity, reducing reliance on fossil fuels and lowering greenhouse gas emissions. This is compatible with India's goal of reducing its carbon footprint. Urban residents and companies can save money on electricity by generating their own and possibly selling excess power back to the grid through net metering arrangements. India gives several financial incentives (subsidies 40% for system capacity 1 kW to 3 kW) to stimulate the building of solar rooftop systems, making them an economically viable option for city dwellers. India provides subsidies up to 70% to special states such as Uttarakhand, Sikkim, Himachal Pradesh, Jammu & Kashmir, and Lakshadweep. Incorporating solar rooftops into urban infrastructure contributes to sustainable urban expansion by alleviating pressure on traditional energy sources and improving air quality. Incorporating solar rooftops into urban infrastructure contributes to sustainable urban expansion by alleviating demand on existing energy sources and improving power supply reliability. Rainwater harvesting is another key component of India's sustainable urban development. It comprises collecting and storing rainwater for use in non-potable water applications such as irrigation, toilet flushing, and groundwater recharge. Rainwater gathering 2 helps to conserve water resources by lowering the demand for freshwater sources. This technology is crucial in water-stressed areas to ensure a sustainable water supply. Excessive rainwater runoff in metropolitan areas can lead to Urban flooding. Solar PV system with Rooftop Rainwater harvesting systems absorb and channel excess rainwater, which helps to reduce flooding and waterlogging in Smart cities. Rainwater harvesting systems are inexpensive and quick to set up, making them a tempting option for city dwellers and businesses looking to save money on water. Rainwater harvesting systems are now compulsory in several Indian states for specified types of buildings (bye law, Rooftop space ≥ 300 sq. m.), ensuring widespread adoption. Finally, grid-connected solar rooftop systems and rainwater collection are important to India's long-term urban development. They not only reduce the environmental impact of urbanization, but also empower individuals and businesses to control their energy and water requirements. The G20 summit will focus on green financing, fossil fuel phaseout, and renewable energy transition. The G20 Summit in New Delhi reaffirmed India's commitment to battle climate change by doubling renewable energy capacity. To address climate change and mitigate global warming, India intends to attain 280 GW of solar renewable energy by 2030 and Net Zero carbon emissions by 2070. With continued government support and increased awareness, these strategies will help India develop a more resilient and sustainable urban future.

Keywords: grid-connected solar PV system, rooftop rainwater harvesting, urban flood, groundwater, urban flooding, net zero carbon emission

Procedia PDF Downloads 51
322 Water Harvest and Recycling with Principles of Permaculture in Rural Buildings in Southeastern Anatolia Region, Turkey

Authors: Muhammed Gündoğan

Abstract:

Permaculture is an important source of science and experience that can ensure the integration of sustainable architecture with nature. Since the past, many applications have been applied in rural areas for generations with the principle of benefiting from the self-renewal potential of nature. This culture, which has been transferred from generation to generation with architectural disciplines, has the potential to significantly improve the sustainability of the rural area and is an important guide with its nature-based solution proposals. Şanlıurfa has arid and semi-arid climate characteristics. Although it has substantial agricultural potential, water is limited, especially in rural areas. In the region, rainwater harvesting practices such as artificial water canals and cisterns have been used for a long time. However, these solutions remained mostly at the urban scale, and their reflections at the building scale were restricted and inadequate solutions. Impermeable surfaces are required for water harvesting, but water harvesting is not possible as rural buildings are mostly surrounded by cultivated land. Therefore, existing structures are important in terms of applicability. In this context, considering the typology of Traditional Şanlıurfa Houses, the aim of the project was to create a proposal for limited potable and utility water, which is a serious problem, especially for rural buildings in Şanlıurfa. In the project proposal, roof systems that can work integrated with the structural shape of Traditional Şanlıurfa Houses, rainwater collection systems in the inner courtyard, and greywater recycling were provided. While the average precipitation amount was 453.7 kg/m3 between 1929 and 2012, this value was measured as 622.7 kg/m3 in 2012. Greywater was used to produce natural fertilizers and compost for small-scale fruit and vegetable gardens, and it was combined with the principles of Permaculture to make it a lifestyle. As a result, it has been estimated that a total of 976.4 m3 kg of water can be saved, with an annual average of 158.8 m3 of rainwater recycling and 817.6 m3 of greywater recycling within the scope of the project.

Keywords: rural, traditional residential building, permaculture, rainwater harvesting, greywater recycling

Procedia PDF Downloads 103
321 Study of Corrosion in Structures due to Chloride Infiltration

Authors: Sukrit Ghorai, Akku Aby Mathews

Abstract:

Corrosion in reinforcing steel is the leading cause for deterioration in concrete structures. It is an electrochemical process which leads to volumetric change in concrete and causes cracking, delamination and spalling. The objective of the study is to provide a rational method to estimate the probable chloride concentration at the reinforcement level for a known surface chloride concentration. The paper derives the formulation of design charts to aid engineers for quick calculation of the chloride concentration. Furthermore, the paper focuses on comparison of durability design against corrosion with American, European and Indian design standards.

Keywords: chloride infiltration, concrete, corrosion, design charts

Procedia PDF Downloads 379
320 Low-Temperature Fabrication of Reaction Bonded Composites, Based on Sic and (Sic+B4C) Mixture, Infiltrated with Si-Al Alloy

Authors: Helen Dilman, Eyal Oz, Shmuel Hayun, Nahum Frage

Abstract:

The conventional approach for manufacturing silicon carbide and boron carbide reaction bonded composites is based on infiltrating a ceramic porous preform with molten silicon. The relatively high melting temperature of the silicon infiltrating medium is a drawback of the process. The present contribution is concerned with an approach that allows obtaining reaction bonded composites by pressure-less infiltration at a significantly lower (850-1000oC) temperature range. This approach was applied for the fabrication of fully dense SiC/(Si-Al) and (SiC+B4C)/(Si-Al) composites. The key feature of the approach is based on using Si alloys with low melting temperature and the Mg-vapor atmosphere, under which an adequate wetting between ceramics and liquid alloys for the infiltration process is achieved. In the first set of the experiments ceramic performs compacted from multimodal SiC powders (with the green density of about 27 vol. %) without free carbon addition were infiltrated by Si-20%Al alloy at 950oC. In the second set, 19 vol. % of a fine boron carbide powder was added to SiC powders as a source of carbon. The green density of the SiC-B4C preforms was about 23-25 vol. %. In both cases, successful infiltration was achieved and the composites were fully dense. The density of the composites was about 3g/cm3. For the SiC based composites the hardness value was 750±150HV, Young modulus-280GPa and bending strength-240±30MPa. These values for (SiC-B4C)/(Si-Al) composites (1460±200HV, 317GPa and 360±20MPa) were significantly higher due to the formation of novel ceramics phases. Microstructural characteristics of the composites and their phase composition will be discussed.

Keywords: boron carbide, composites, infiltration, low temperatures, silicon carbide

Procedia PDF Downloads 529
319 Conjunctive Use of Shallow Groundwater for Irrigation Purpose: The Case of Wonji Shoa Sugar Estate, Ethiopia

Authors: Megersa Olumana Dinka, Kassahun Birhanu Tadesse

Abstract:

Irrigation suitability of shallow groundwater (SGW) was investigated by taking thirty groundwater samples from piezometers and hand-dug wells in Wonji Shoa Sugar Estate (WSSE) (Ethiopia). Many physicochemical parameters (Mg²⁺, Na⁺, Ca²⁺, K⁺, CO₃-, SO4²⁻, HCO₃⁻, Cl⁻, TH, EC, TDS and pH) were analyzed following standard procedures. Different irrigation indices (MAR, SSP, SAR, RSC, KR, and PI) were also used for SGW suitability assessment. If all SGW are blended and used for irrigation, the salinity problem would be slight to moderate, and 100% of potential sugarcane yield could be obtained. The infiltration and sodium ion toxicity problems of the blended water would be none to moderate, and slight to moderate, respectively. As sugarcane is semi-tolerant to sodium toxicity, no significant sodium toxicity problem would be expected from the use of blended water. Blending SGW would also reduce each chloride and boron ion toxicity to none. In general, the rating of SGW was good to excellent for irrigation in terms of average EC (salinity), and excellent in terms of average SAR (infiltration). The SGW of the WSSE was categorized under C3S1 (high salinity and low sodium hazard). In conclusion, the conjunctive use of groundwater for irrigation would help to reduce the potential effect of waterlogging and salinization and their associated problems on soil and sugarcane production and productivity. However, a high value of SSP and RSC indicate a high possibility of infiltration problem. Hence, it is advisable to use the SGW for irrigation after blending with surface water. In this case, the optimum blending ratio of the surface to SGW sources has to be determined for sustainable sugarcane productivity.

Keywords: blending, infiltration, salinity, sodicity, sugarcane, toxicity

Procedia PDF Downloads 344
318 The Influence of Infiltration and Exfiltration Processes on Maximum Wave Run-Up: A Field Study on Trinidad Beaches

Authors: Shani Brathwaite, Deborah Villarroel-Lamb

Abstract:

Wave run-up may be defined as the time-varying position of the landward extent of the water’s edge, measured vertically from the mean water level position. The hydrodynamics of the swash zone and the accurate prediction of maximum wave run-up, play a critical role in the study of coastal engineering. The understanding of these processes is necessary for the modeling of sediment transport, beach recovery and the design and maintenance of coastal engineering structures. However, due to the complex nature of the swash zone, there remains a lack of detailed knowledge in this area. Particularly, there has been found to be insufficient consideration of bed porosity and ultimately infiltration/exfiltration processes, in the development of wave run-up models. Theoretically, there should be an inverse relationship between maximum wave run-up and beach porosity. The greater the rate of infiltration during an event, associated with a larger bed porosity, the lower the magnitude of the maximum wave run-up. Additionally, most models have been developed using data collected on North American or Australian beaches and may have limitations when used for operational forecasting in Trinidad. This paper aims to assess the influence and significance of infiltration and exfiltration processes on wave run-up magnitudes within the swash zone. It also seeks to pay particular attention to how well various empirical formulae can predict maximum run-up on contrasting beaches in Trinidad. Traditional surveying techniques will be used to collect wave run-up and cross-sectional data on various beaches. Wave data from wave gauges and wave models will be used as well as porosity measurements collected using a double ring infiltrometer. The relationship between maximum wave run-up and differing physical parameters will be investigated using correlation analyses. These physical parameters comprise wave and beach characteristics such as wave height, wave direction, period, beach slope, the magnitude of wave setup, and beach porosity. Most parameterizations to determine the maximum wave run-up are described using differing parameters and do not always have a good predictive capability. This study seeks to improve the formulation of wave run-up by using the aforementioned parameters to generate a formulation with a special focus on the influence of infiltration/exfiltration processes. This will further contribute to the improvement of the prediction of sediment transport, beach recovery and design of coastal engineering structures in Trinidad.

Keywords: beach porosity, empirical models, infiltration, swash, wave run-up

Procedia PDF Downloads 317
317 A Derivative of L-allo Threonine Alleviates Asthmatic Symptoms in vitro and in vivo

Authors: Kun Chun, Jin-Chun Heo, Sang-Han Lee

Abstract:

Asthma is a chronic airway inflammatory disease characterized by the infiltration of inflammatory cells and tissue remodeling. In this study, we examined the anti-asthmatic activity of a derivative of L-allo threonine by in vitro and in vivo anti-asthmatic assays. Ovalbumin (OVA)-induced C57BL/6 mice were used to analyze lung inflammation and cytokine expressions for exhibiting anti-atopic activity of the derivative. LX519290, a derivative of L-allo threonine, induced an increased IFN-γ and a decreased IL-10 mRNA level. This compound exhibited potent anti-asthmatic activity by decreasing immune cell infiltration in the lung, and IL-4 and IL-13 cytokine levels in the serum of OVA-induced mice. These results indicated that chronic airway injury was decreased by LX519290. We also assessed that LX519290 inhibits infiltration of immune cell, mucus release and cytokine expression in an in vivo model. Our results collectively suggest that the L-allo threonine is effective in alleviating asthmatic symptoms by treating inflammatory factors in the lung.

Keywords: asthma, L -allo threonine, LX519290, mice

Procedia PDF Downloads 353