Search results for: quantum systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9417

Search results for: quantum systems

9057 Component Interface Formalization in Robotic Systems

Authors: Anton Hristozov, Eric Matson, Eric Dietz, Marcus Rogers

Abstract:

Components are heavily used in many software systems, including robotics systems. The growth of sophistication and diversity of new capabilities for robotic systems presents new challenges to their architectures. Their complexity is growing exponentially with the advent of AI, smart sensors, and the complex tasks they have to accomplish. Such complexity requires a more rigorous approach to the creation, use, and interoperability of software components. The issue is exacerbated because robotic systems are becoming more and more reliant on third-party components for certain functions. In order to achieve this kind of interoperability, including dynamic component replacement, we need a way to standardize their interfaces. A formal approach is desperately needed to specify what an interface of a robotic software component should contain. This study performs an analysis of the issue and presents a universal and generic approach to standardizing component interfaces for robotic systems. Our approach is inspired by well-established robotic architectures such as ROS, PX4, and Ardupilot. The study is also applicable to other software systems that share similar characteristics with robotic systems. We consider the use of JSON or Domain Specific Languages (DSL) development with tools such as Antlr and automatic code and configuration file generation for frameworks such as ROS and PX4. A case study with ROS2 is presented as a proof of concept for the proposed methodology.

Keywords: CPS, robots, software architecture, interface, ROS, autopilot

Procedia PDF Downloads 62
9056 Identification of Nonlinear Systems Using Radial Basis Function Neural Network

Authors: C. Pislaru, A. Shebani

Abstract:

This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the K-Means clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function.

Keywords: system identification, nonlinear systems, neural networks, radial basis function, K-means clustering algorithm

Procedia PDF Downloads 444
9055 Assessing the Adoption of Health Information Systems in a Resource-Constrained Country: A Case of Uganda

Authors: Lubowa Samuel

Abstract:

Health information systems, often known as HIS, are critical components of the healthcare system to improve health policies and promote global health development. In a broader sense, HIS as a system integrates data collecting, processing, reporting, and making use of various types of data to improve healthcare efficacy and efficiency through better management at all levels of healthcare delivery. The aim of this study is to assess the adoption of health information systems (HIS) in a resource-constrained country drawing from the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) model. The results indicate that the user's perception of the technology and the poor information technology infrastructures contribute a lot to the low adoption of HIS in resource-constrained countries.

Keywords: health information systems, resource-constrained countries, health information systems

Procedia PDF Downloads 91
9054 Improving Decision-Making in Multi-Project Environments within Organizational Information Systems Using Blockchain Technology

Authors: Seyed Hossein Iranmanesh, Hassan Nouri, Seyed Reza Iranmanesh

Abstract:

In the dynamic and complex landscape of today’s business, organizations often face challenges in impactful decision-making across multi-project settings. To efficiently allocate resources, coordinate tasks, and optimize project outcomes, establishing robust decision-making processes is essential. Furthermore, the increasing importance of information systems and their integration within organizational workflows introduces an additional layer of complexity. This research proposes the use of blockchain technology as a suitable solution to enhance decision-making in multi-project environments, particularly within the realm of information systems. The conceptual framework in this study comprises four independent variables and one dependent variable. The identified independent variables for the targeted research include: Blockchain Layer in Integrated Systems, Quality of Generated Information ,User Satisfaction with Integrated Systems and Utilization of Integrated Systems. The project’s performance, considered as the dependent variable and moderated by organizational policies and procedures, reflects the impact of blockchain technology adoption on organizational effectiveness1. The results highlight the significant influence of blockchain implementation on organizational performance.

Keywords: multi-project environments, decision support systems, information systems, blockchain technology, decentralized systems.

Procedia PDF Downloads 22
9053 A Nonlinear Dynamical System with Application

Authors: Abdullah Eqal Al Mazrooei

Abstract:

In this paper, a nonlinear dynamical system is presented. This system is a bilinear class. The bilinear systems are very important kind of nonlinear systems because they have many applications in real life. They are used in biology, chemistry, manufacturing, engineering, and economics where linear models are ineffective or inadequate. They have also been recently used to analyze and forecast weather conditions. Bilinear systems have three advantages: First, they define many problems which have a great applied importance. Second, they give us approximations to nonlinear systems. Thirdly, they have a rich geometric and algebraic structures, which promises to be a fruitful field of research for scientists and applications. The type of nonlinearity that is treated and analyzed consists of bilinear interaction between the states vectors and the system input. By using some properties of the tensor product, these systems can be transformed to linear systems. But, here we discuss the nonlinearity when the state vector is multiplied by itself. So, this model will be able to handle evolutions according to the Lotka-Volterra models or the Lorenz weather models, thus enabling a wider and more flexible application of such models. Here we apply by using an estimator to estimate temperatures. The results prove the efficiency of the proposed system.

Keywords: Lorenz models, nonlinear systems, nonlinear estimator, state-space model

Procedia PDF Downloads 234
9052 Temperature-Stable High-Speed Vertical-Cavity Surface-Emitting Lasers with Strong Carrier Confinement

Authors: Yun Sun, Meng Xun, Jingtao Zhou, Ming Li, Qiang Kan, Zhi Jin, Xinyu Liu, Dexin Wu

Abstract:

Higher speed short-wavelength vertical-cavity surface-emitting lasers (VCSELs) working at high temperature are required for future optical interconnects. In this work, the high-speed 850 nm VCSELs are designed, fabricated and characterized. The temperature dependent static and dynamic performance of devices are investigated by using current-power-voltage and small signal modulation measurements. Temperature-stable high-speed properties are obtained by employing highly strained multiple quantum wells and short cavity length of half wavelength. The temperature dependent photon lifetimes and carrier radiative times are determined from damping factor and resonance frequency obtained by fitting the intrinsic optical bandwidth with the two-pole transfer function. In addition, an analytical theoretical model including the strain effect is development based on model-solid theory. The calculation results indicate that the better high temperature performance of VCSELs can be attributed to the strong confinement of holes in the quantum wells leading to enhancement of the carrier transit time.

Keywords: vertical cavity surface emitting lasers, high speed modulation, optical interconnects, semiconductor lasers

Procedia PDF Downloads 95
9051 An Experimental Testbed Using Virtual Containers for Distributed Systems

Authors: Parth Patel, Ying Zhu

Abstract:

Distributed systems have become ubiquitous, and they continue their growth through a range of services. With advances in resource virtualization technology such as Virtual Machines (VM) and software containers, developers no longer require high-end servers to test and develop distributed software. Even in commercial production, virtualization has streamlined the process of rapid deployment and service management. This paper introduces a distributed systems testbed that utilizes virtualization to enable distributed systems development on commodity computers. The testbed can be used to develop new services, implement theoretical distributed systems concepts for understanding, and experiment with virtual network topologies. We show its versatility through two case studies that utilize the testbed for implementing a theoretical algorithm and developing our own methodology to find high-risk edges. The results of using the testbed for these use cases have proven the effectiveness and versatility of this testbed across a range of scenarios.

Keywords: distributed systems, experimental testbed, peer-to-peer networks, virtual container technology

Procedia PDF Downloads 115
9050 Stability of Hybrid Systems

Authors: Kreangkri Ratchagit

Abstract:

This paper is concerned with exponential stability of switched linear systems with interval time-varying delays. The time delay is any continuous function belonging to a given interval, in which the lower bound of delay is not restricted to zero. By constructing a suitable augmented Lyapunov-Krasovskii functional combined with Leibniz-Newton’s formula, a switching rule for the exponential stability of switched linear systems with interval time-varying delays and new delay-dependent sufficient conditions for the exponential stability of the systems are first established in terms of LMIs. Finally, some examples are exploited to illustrate the effectiveness of the proposed schemes.

Keywords: exponential stability, hybrid systems, timevarying delays, Lyapunov-Krasovskii functional, Leibniz-Newton’s formula

Procedia PDF Downloads 427
9049 Agent/Group/Role Organizational Model to Simulate an Industrial Control System

Authors: Noureddine Seddari, Mohamed Belaoued, Salah Bougueroua

Abstract:

The modeling of complex systems is generally based on the decomposition of their components into sub-systems easier to handle. This division has to be made in a methodical way. In this paper, we introduce an industrial control system modeling and simulation based on the Multi-Agent System (MAS) methodology AALAADIN and more particularly the underlying conceptual model Agent/Group/Role (AGR). Indeed, in this division using AGR model, the overall system is decomposed into sub-systems in order to improve the understanding of regulation and control systems, and to simplify the implementation of the obtained agents and their groups, which are implemented using the Multi-Agents Development KIT (MAD-KIT) platform. This approach appears to us to be the most appropriate for modeling of this type of systems because, due to the use of MAS, it is possible to model real systems in which very complex behaviors emerge from relatively simple and local interactions between many different individuals, therefore a MAS is well adapted to describe a system from the standpoint of the activity of its components, that is to say when the behavior of the individuals is complex (difficult to describe with equations). The main aim of this approach is the take advantage of the performance, the scalability and the robustness that are intuitively provided by MAS.

Keywords: complex systems, modeling and simulation, industrial control system, MAS, AALAADIN, AGR, MAD-KIT

Procedia PDF Downloads 209
9048 Calcium Complexing Properties of Isosaccharinate Ion in Highly Alkaline Environment

Authors: Csilla Dudás, Éva Böszörményi, Bence Kutus, István Pálinkó, Pál Sipos

Abstract:

In this study the behavior of alpha-D-isosaccharinate (2-hydroxymethyl-3-deoxy-D-erythro-pentonate, ISA−) in alkaline medium in the presence of calcium was studied. At first the Ca–ISA system was studied by Ca-ion selective electrode (Ca-ISE) in neutral medium at T = 25 °C and I = 1 M NaCl to determine the formation constant of the CaISA+ monocomplex, which was found to be logK = 1.01 ± 0.01 for the reaction of Ca2+ + ISA– = CaISA+. In alkaline medium pH potentiometric titrations were carried out to determine the composition and stability constant of the complex(es) formed. It was found that in these systems above pH = 12.5 the predominant species is the CaISAOH complex. Its formation constant was found to be logK = 3.04 ± 0.05 for the reaction of Ca2+ + ISA– + H2O = CaISAOH + H+ at T = 25 °C and I = 1 M NaCl. Solubility measurements resulted in data consistent with those of the potentiometric titrations. Temperature dependent NMR spectra showed that the slow exchange range between the complex and the free ligand is below 5 °C. It was also showed that ISA– acts as a multidentate ligand forming macrochelate Ca-complexes. The structure of the complexes was determined by using ab initio quantum chemical calculations.

Keywords: Ca-ISE potentiometry, calcium complexes, isosaccharinate ion, NMR spectroscopy, pH potentiometry

Procedia PDF Downloads 234
9047 Functional Electrical Stimulator and Neuromuscular Electro Stimulator System Analysis for Foot Drop

Authors: Gül Fatma Türker, Hatice Akman

Abstract:

Portable muscle stimulators for real-time applications has first introduced by Liberson in 1961. Now these systems has been advanced. In this study, FES (Functional Electrical Stimulator) and NMES (Neuromuscular Electrostimulator) systems are analyzed through their hardware and their quality of life improvements for foot drop patients. FES and NMES systems are used for people whose leg muscles and leg neural connections are healty but not able to walk properly because of their injured central nervous system like spinal cord injuries. These systems are used to stimulate neurons or muscles by getting information from other movements and programming these stimulations to get natural walk and it is accepted as a rehabilitation method for the correction of drop foot. This systems support person to approach natural form of walking. Foot drop is characterized by steppage gait. It is a gait abnormality. This systems helps to person for plantar and dorse reflection movements which are hard to done for foot drop patients.

Keywords: FES, foot drop, NMES, stimulator

Procedia PDF Downloads 359
9046 Application of Systems Engineering Tools and Methods to Improve Healthcare Delivery Inside the Emergency Department of a Mid-Size Hospital

Authors: Mohamed Elshal, Hazim El-Mounayri, Omar El-Mounayri

Abstract:

Emergency department (ED) is considered as a complex system of interacting entities: patients, human resources, software and hardware systems, interfaces, and other systems. This paper represents a research for implementing a detailed Systems Engineering (SE) approach in a mid-size hospital in central Indiana. This methodology will be applied by “The Initiative for Product Lifecycle Innovation (IPLI)” institution at Indiana University to study and solve the crowding problem with the aim of increasing throughput of patients and enhance their treatment experience; therefore, the nature of crowding problem needs to be investigated with all other problems that leads to it. The presented SE methods are workflow analysis and systems modeling where SE tools such as Microsoft Visio are used to construct a group of system-level diagrams that demonstrate: patient’s workflow, documentation and communication flow, data systems, human resources workflow and requirements, leadership involved, and integration between ER different systems. Finally, the ultimate goal will be managing the process through implementation of an executable model using commercialized software tools, which will identify bottlenecks, improve documentation flow, and help make the process faster.

Keywords: systems modeling, ED operation, workflow modeling, systems analysis

Procedia PDF Downloads 153
9045 Characterization and Geochemical Modeling of Cu and Zn Sorption Using Mixed Mineral Systems Injected with Iron Sulfide under Sulfidic-Anoxic Conditions I: Case Study of Cwmheidol Mine Waste Water, Wales, United Kingdom

Authors: D. E. Egirani, J. E. Andrews, A. R. Baker

Abstract:

This study investigates sorption of Cu and Zn contained in natural mine wastewater, using mixed mineral systems in sulfidic-anoxic condition. The mine wastewater was obtained from disused mine workings at Cwmheidol in Wales, United Kingdom. These contaminants flow into water courses. These water courses include River Rheidol. In this River fishing activities exist. In an attempt to reduce Cu-Zn levels of fish intake in the watercourses, single mineral systems and 1:1 mixed mineral systems of clay and goethite were tested with the mine waste water for copper and zinc removal at variable pH. Modelling of hydroxyl complexes was carried out using phreeqc method. Reactions using batch mode technique was conducted at room temperature. There was significant differences in the behaviour of copper and zinc removal using mixed mineral systems when compared  to single mineral systems. All mixed mineral systems sorb more Cu than Zn when tested with mine wastewater.

Keywords: Cu- Zn, hydroxyl complexes, kinetics, mixed mineral systems, reactivity

Procedia PDF Downloads 469
9044 Role of Power Electronics in Grid Integration of Renewable Energy Systems

Authors: M. N. Tandjaoui, C. Banoudjafar, C. Benachaiba, O. Abdelkhalek, A. Kechich

Abstract:

Advanced power electronic systems are deemed to be an integral part of renewable, green, and efficient energy systems. Wind energy is one of the renewable means of electricity generation that is now the world’s fastest growing energy source can bring new challenges when it is connected to the power grid due to the fluctuation nature of the wind and the comparatively new types of its generators. The wind energy is part of the worldwide discussion on the future of energy generation and use and consequent effects on the environment. However, this paper will introduce some of the requirements and aspects of the power electronic involved with modern wind generation systems, including modern power electronics and converters, and the issues of integrating wind turbines into power systems.

Keywords: power electronics, renewable energy, smart grid, green energy, power technology

Procedia PDF Downloads 623
9043 Path Integrals and Effective Field Theory of Large Scale Structure

Authors: Revant Nayar

Abstract:

In this work, we recast the equations describing large scale structure, and by extension all nonlinear fluids, in the path integral formalism. We first calculate the well known two and three point functions using Schwinger Keldysh formalism used commonly to perturbatively solve path integrals in non- equilibrium systems. Then we include EFT corrections due to pressure, viscosity, and noise as effects on the time-dependent propagator. We are able to express results for arbitrary two and three point correlation functions in LSS in terms of differential operators acting on a triple K master intergral. We also, for the first time, get analytical results for more general initial conditions deviating from the usual power law P∝kⁿ by introducing a mass scale in the initial conditions. This robust field theoretic formalism empowers us with tools from strongly coupled QFT to study the strongly non-linear regime of LSS and turbulent fluid dynamics such as OPE and holographic duals. These could be used to capture fully the strongly non-linear dynamics of fluids and move towards solving the open problem of classical turbulence.

Keywords: quantum field theory, cosmology, effective field theory, renormallisation

Procedia PDF Downloads 108
9042 Model-Free Distributed Control of Dynamical Systems

Authors: Javad Khazaei, Rick Blum

Abstract:

Distributed control is an efficient and flexible approach for coordination of multi-agent systems. One of the main challenges in designing a distributed controller is identifying the governing dynamics of the dynamical systems. Data-driven system identification is currently undergoing a revolution. With the availability of high-fidelity measurements and historical data, model-free identification of dynamical systems can facilitate the control design without tedious modeling of high-dimensional and/or nonlinear systems. This paper develops a distributed control design using consensus theory for linear and nonlinear dynamical systems using sparse identification of system dynamics. Compared with existing consensus designs that heavily rely on knowing the detailed system dynamics, the proposed model-free design can accurately capture the dynamics of the system with available measurements and input data and provide guaranteed performance in consensus and tracking problems. Heterogeneous damped oscillators are chosen as examples of dynamical system for validation purposes.

Keywords: consensus tracking, distributed control, model-free control, sparse identification of dynamical systems

Procedia PDF Downloads 235
9041 Double Negative Differential Resistance Features in Series AIN/GaN Double-Barrier Resonant Tunneling Diodes Vertically Integrated by Plasma-Assisted Molecular Beam Epitaxy

Authors: Jiajia Yao, Guanlin Wu, Fang Liu, Junshuai Xue, Yue Hao

Abstract:

This study reports on the epitaxial growth of a GaN-based resonant tunneling diode (RTD) structure with stable and repeatable double negative differential resistance (NDR) characteristics at room temperature on a c-plane GaN-on-sapphire template using plasma-assisted molecular beam epitaxy (PA-MBE) technology. In this structure, two independent AlN/GaN RTDs are epitaxially connected in series in the vertical growth direction through a silicon-doped GaN layer. As the collector electrode bias voltage increases, the two RTDs respectively align the ground state energy level in the quantum well with the 2DEG energy level in the emitter accumulation well to achieve quantum resonant tunneling and then reach the negative differential resistance (NDR) region. The two NDR regions exhibit similar peak current densities and peak-to-valley current ratios, which are 230 kA/cm² and 249 kA/cm², 1.33 and 1.38, respectively, for a device with a collector electrode mesa diameter of 1 µm. The consistency of the NDR is much higher than the results of on-chip discrete RTD device interconnection, resulting from the smaller chip area, fewer interconnect parasitic parameters, and less process complexity. The methods and results presented in this paper show the brilliant prospects of GaN RTDs in the development of multi-value logic digital circuits.

Keywords: MBE, AlN/GaN, RTDs, double NDR

Procedia PDF Downloads 31
9040 Enabling Enterprise Information System Interoperability: A Future Perspective

Authors: Mahdi Alkaeed, Adeel Ehsan

Abstract:

Enterprise information systems (EIS) act as the backbone of organizations that belong to different domains. These systems not only play a major role in the efficient usage of resources and time but also throw light on the future roadmap for the enterprise. In today's rapidly expanding world of business and technology, enterprise systems from various heterogenous environments have to exchange information at some point, be it within the same organization or between different organizations. This reality strengthens the importance of interoperability between these systems, which is one of the key enablers of systems collaboration. Both information technology infrastructure and business processes have to be aligned with each other to achieve this effect. This will be difficult to attain if traditional tightly coupled architecture is used. Instead, a more loosely coupled service-oriented architecture has to be used. That would enable an effective interoperability level between different EIS. This paper discusses and presents the current work that has been done in the field of EIS interoperability. Along the way, it also discusses the challenges, solutions to tackle those challenges presented in the studied literature, and limitations, if any.

Keywords: enterprise systems interoperability, collaboration and integration, service-based architecture, open system architecture

Procedia PDF Downloads 84
9039 Advancements in Smart Home Systems: A Comprehensive Exploration in Electronic Engineering

Authors: Chukwuka E. V., Rowling J. K., Rushdie Salman

Abstract:

The field of electronic engineering encompasses the study and application of electrical systems, circuits, and devices. Engineers in this discipline design, analyze and optimize electronic components to develop innovative solutions for various industries. This abstract provides a brief overview of the diverse areas within electronic engineering, including analog and digital electronics, signal processing, communication systems, and embedded systems. It highlights the importance of staying abreast of advancements in technology and fostering interdisciplinary collaboration to address contemporary challenges in this rapidly evolving field.

Keywords: smart home engineering, energy efficiency, user-centric design, security frameworks

Procedia PDF Downloads 48
9038 Hybrid Subspace Approach for Time Delay Estimation in MIMO Systems

Authors: Mojtaba Saeedinezhad, Sarah Yousefi

Abstract:

In this paper, we present a hybrid subspace approach for Time Delay Estimation (TDE) in multivariable systems. While several methods have been proposed for time delay estimation in SISO systems, delay estimation in MIMO systems were always a big challenge. In these systems the existing TDE methods have significant limitations because most of procedures are just based on system response estimation or correlation analysis. We introduce a new hybrid method for TDE in MIMO systems based on subspace identification and explicit output error method; and compare its performance with previously introduced procedures in presence of different noise levels and in a statistical manner. Then the best method is selected with multi objective decision making technique. It is shown that the performance of new approach is much better than the existing methods, even in low signal-to-noise conditions.

Keywords: system identification, time delay estimation, ARX, OE, merit ratio, multi variable decision making

Procedia PDF Downloads 315
9037 A Multi-agent System Framework for Stakeholder Analysis of Local Energy Systems

Authors: Mengqiu Deng, Xiao Peng, Yang Zhao

Abstract:

The development of local energy systems requires the collective involvement of different actors from various levels of society. However, the stakeholder analysis of local energy systems still has been under-developed. This paper proposes an multi-agent system (MAS) framework to facilitate the development of stakeholder analysis of local energy systems. The framework takes into account the most influencing stakeholders, including prosumers/consumers, system operators, energy companies and government bodies. Different stakeholders are modeled based on agent architectures for example the belief-desire-intention (BDI) to better reflect their motivations and interests in participating in local energy systems. The agent models of different stakeholders are then integrated in one model of the whole energy system. An illustrative case study is provided to elaborate how to develop a quantitative agent model for different stakeholders, as well as to demonstrate the practicability of the proposed framework. The findings from the case study indicate that the suggested framework and agent model can serve as analytical instruments for enhancing the government’s policy-making process by offering a systematic view of stakeholder interconnections in local energy systems.

Keywords: multi-agent system, BDI agent, local energy systems, stakeholders

Procedia PDF Downloads 52
9036 Interoperability Model Design of Smart Grid Power System

Authors: Seon-Hack Hong, Tae-Il Choi

Abstract:

Interoperability is defined as systems, components, and devices developed by different entities smoothly exchanging information and functioning organically without mutual consultation, being able to communicate with each other and computer systems of the same type or different types, and exchanging information or the ability of two or more systems to exchange information and use the information exchanged without extra effort. Insufficiencies such as duplication of functions when developing systems and applications due to lack of interoperability in the electric power system and low efficiency due to a lack of mutual information transmission system between the inside of the application program and the design is improved, and the seamless linkage of newly developed systems is improved. Since it is necessary to secure interoperability for this purpose, we designed the smart grid-based interoperability standard model in this paper.

Keywords: interoperability, power system, common information model, SCADA, IEEE2030, Zephyr

Procedia PDF Downloads 82
9035 Robust Control of Cyber-Physical System under Cyber Attacks Based on Invariant Tubes

Authors: Bruno Vilić Belina, Jadranko Matuško

Abstract:

The rapid development of cyber-physical systems significantly influences modern control systems introducing a whole new range of applications of control systems but also putting them under new challenges to ensure their resiliency to possible cyber attacks, either in the form of data integrity attacks or deception attacks. This paper presents a model predictive approach to the control of cyber-physical systems robust to cyber attacks. We assume that a cyber attack can be modelled as an additive disturbance that acts in the measuring channel. For such a system, we designed a tube-based predictive controller based. The performance of the designed controller has been verified in Matlab/Simulink environment.

Keywords: control systems, cyber attacks, resiliency, robustness, tube based model predictive control

Procedia PDF Downloads 43
9034 Dynamical Systems and Fibonacci Numbers

Authors: Vandana N. Purav

Abstract:

The Dynamical systems concept is a mathematical formalization for any fixed rule that describes the time dependence of a points position in its ambient space. e.g. pendulum of a clock, the number of fish each spring in a lake, the number of rabbits spring in an enclosure, etc. The Dynamical system theory used to describe the complex nature that is dynamical systems with differential equations called continuous dynamical system or dynamical system with difference equations called discrete dynamical system. The concept of dynamical system has its origin in Newtonian mechanics.

Keywords: dynamical systems, Fibonacci numbers, Newtonian mechanics, discrete dynamical system

Procedia PDF Downloads 468
9033 New Results on Exponential Stability of Hybrid Systems

Authors: Grienggrai Rajchakit

Abstract:

This paper is concerned with the exponential stability of switched linear systems with interval time-varying delays. The time delay is any continuous function belonging to a given interval, in which the lower bound of delay is not restricted to zero. By constructing a suitable augmented Lyapunov-Krasovskii functional combined with Leibniz-Newton's formula, a switching rule for the exponential stability of switched linear systems with interval time-varying delays and new delay-dependent sufficient conditions for the exponential stability of the systems are first established in terms of LMIs. Finally, some examples are exploited to illustrate the effectiveness of the proposed schemes.

Keywords: exponential stability, hybrid systems, time-varying delays, lyapunov-krasovskii functional, leibniz-newton's formula

Procedia PDF Downloads 523
9032 On the Problems of Human Concept Learning within Terminological Systems

Authors: Farshad Badie

Abstract:

The central focus of this article is on the fact that knowledge is constructed from an interaction between humans’ experiences and over their conceptions of constructed concepts. Logical characterisation of ‘human inductive learning over human’s constructed concepts’ within terminological systems and providing a logical background for theorising over the Human Concept Learning Problem (HCLP) in terminological systems are the main contributions of this research. This research connects with the topics ‘human learning’, ‘epistemology’, ‘cognitive modelling’, ‘knowledge representation’ and ‘ontological reasoning’.

Keywords: human concept learning, concept construction, knowledge construction, terminological systems

Procedia PDF Downloads 297
9031 Study on Security and Privacy Issues of Mobile Operating Systems Based on Malware Attacks

Authors: Huang Dennis, Aurelio Aziel, Burra Venkata Durga Kumar

Abstract:

Nowadays, smartphones and mobile operating systems have been popularly widespread in our daily lives. As people use smartphones, they tend to store more private and essential data on their devices, because of this it is very important to develop more secure mobile operating systems and cloud storage to secure the data. However, several factors can cause security risks in mobile operating systems such as malware, malicious app, phishing attacks, ransomware, and more, all of which can cause a big problem for users as they can access the user's private data. Those problems can cause data loss, financial loss, identity theft, and other serious consequences. Other than that, during the pandemic, people will use their mobile devices more and do all sorts of transactions online, which may lead to more victims of online scams and inexperienced users being the target. With the increase in attacks, researchers have been actively working to develop several countermeasures to enhance the security of operating systems. This study aims to provide an overview of the security and privacy issues in mobile operating systems, identifying the potential risk of operating systems, and the possible solutions. By examining these issues, we want to provide an easy understanding to users and researchers to improve knowledge and develop more secure mobile operating systems.

Keywords: mobile operating system, security, privacy, Malware

Procedia PDF Downloads 54
9030 Enhanced Disk-Based Databases towards Improved Hybrid in-Memory Systems

Authors: Samuel Kaspi, Sitalakshmi Venkatraman

Abstract:

In-memory database systems are becoming popular due to the availability and affordability of sufficiently large RAM and processors in modern high-end servers with the capacity to manage large in-memory database transactions. While fast and reliable in-memory systems are still being developed to overcome cache misses, CPU/IO bottlenecks and distributed transaction costs, disk-based data stores still serve as the primary persistence. In addition, with the recent growth in multi-tenancy cloud applications and associated security concerns, many organisations consider the trade-offs and continue to require fast and reliable transaction processing of disk-based database systems as an available choice. For these organizations, the only way of increasing throughput is by improving the performance of disk-based concurrency control. This warrants a hybrid database system with the ability to selectively apply an enhanced disk-based data management within the context of in-memory systems that would help improve overall throughput. The general view is that in-memory systems substantially outperform disk-based systems. We question this assumption and examine how a modified variation of access invariance that we call enhanced memory access, (EMA) can be used to allow very high levels of concurrency in the pre-fetching of data in disk-based systems. We demonstrate how this prefetching in disk-based systems can yield close to in-memory performance, which paves the way for improved hybrid database systems. This paper proposes a novel EMA technique and presents a comparative study between disk-based EMA systems and in-memory systems running on hardware configurations of equivalent power in terms of the number of processors and their speeds. The results of the experiments conducted clearly substantiate that when used in conjunction with all concurrency control mechanisms, EMA can increase the throughput of disk-based systems to levels quite close to those achieved by in-memory system. The promising results of this work show that enhanced disk-based systems facilitate in improving hybrid data management within the broader context of in-memory systems.

Keywords: in-memory database, disk-based system, hybrid database, concurrency control

Procedia PDF Downloads 389
9029 Thermal Performance and Environmental Assessment of Evaporative Cooling Systems: Case of Mina Valley, Saudi Arabia

Authors: A. Alharbi, R. Boukhanouf, T. Habeebullah, H. Ibrahim

Abstract:

This paper presents a detailed description of evaporative cooling systems used for space cooling in Mina Valley, Saudi Arabia. The thermal performance and environmental impact of the evaporative coolers were evaluated. It was found that the evaporative cooling systems used for space cooling in pilgrims’ accommodations and in the train stations could reduce energy consumption by as much as 75% and cut carbon dioxide emission by 78% compared to traditional vapour compression systems.

Keywords: evaporative cooling, vapor compression, electricity consumption, CO2 emission

Procedia PDF Downloads 407
9028 Optical Design and Modeling of Micro Light-Emitting Diodes for Display Applications

Authors: Chaya B. M., C. Dhanush, Inti Sai Srikar, Akula Pavan Parvatalu, Chirag Gowda R

Abstract:

Recently, there has been a lot of interest in µ-LED technology because of its exceptional qualities, including auto emission, high visibility, low consumption of power, rapid response and longevity. Light-emitting diodes (LED) using III-nitride, such as lighting sources, visible light communication (VLC) devices, and high-power devices, are finding increasing use as miniaturization technology advances. The use of micro-LED displays in place of traditional display technologies like liquid crystal displays (LCDs) and organic light-emitting diodes (OLEDs) is one of the most prominent recent advances, which may even represent the next generation of displays. The development of fully integrated, multifunctional devices and the incorporation of extra capabilities into micro-LED displays, such as sensing, light detection, and solar cells, are the pillars of advanced technology. Due to the wide range of applications for micro-LED technology, the effectiveness and dependability of these devices in numerous harsh conditions are becoming increasingly important. Enough research has been conducted to overcome the under-effectiveness of micro-LED devices. In this paper, different Micro LED design structures are proposed in order to achieve optimized optical properties. In order to attain improved external quantum efficiency (EQE), devices' light extraction efficiency (LEE) has also been boosted.

Keywords: finite difference time domain, light out coupling efficiency, far field intensity, power density, quantum efficiency, flat panel displays

Procedia PDF Downloads 55