Search results for: power trading enhancement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7729

Search results for: power trading enhancement

7729 The Carbon Trading Price and Trading Volume Forecast in Shanghai City by BP Neural Network

Authors: Liu Zhiyuan, Sun Zongdi

Abstract:

In this paper, the BP neural network model is established to predict the carbon trading price and carbon trading volume in Shanghai City. First of all, we find the data of carbon trading price and carbon trading volume in Shanghai City from September 30, 2015 to December 23, 2016. The carbon trading price and trading volume data were processed to get the average value of each 5, 10, 20, 30, and 60 carbon trading price and trading volume. Then, these data are used as input of BP neural network model. Finally, after the training of BP neural network, the prediction values of Shanghai carbon trading price and trading volume are obtained, and the model is tested.

Keywords: Carbon trading price, carbon trading volume, BP neural network model, Shanghai City

Procedia PDF Downloads 352
7728 Optimal Power Distribution and Power Trading Control among Loads in a Smart Grid Operated Industry

Authors: Vivek Upadhayay, Siddharth Deshmukh

Abstract:

In recent years utilization of renewable energy sources has increased majorly because of the increase in global warming concerns. Organization these days are generally operated by Micro grid or smart grid on a small level. Power optimization and optimal load tripping is possible in a smart grid based industry. In any plant or industry loads can be divided into different categories based on their importance to the plant and power requirement pattern in the working days. Coming up with an idea to divide loads in different such categories and providing different power management algorithm to each category of load can reduce the power cost and can come handy in balancing stability and reliability of power. An objective function is defined which is subjected to a variable that we are supposed to minimize. Constraint equations are formed taking difference between the power usages pattern of present day and same day of previous week. By considering the objectives of minimal load tripping and optimal power distribution the proposed problem formulation is a multi-object optimization problem. Through normalization of each objective function, the multi-objective optimization is transformed to single-objective optimization. As a result we are getting the optimized values of power required to each load for present day by use of the past values of the required power for the same day of last week. It is quite a demand response scheduling of power. These minimized values then will be distributed to each load through an algorithm used to optimize the power distribution at a greater depth. In case of power storage exceeding the power requirement, profit can be made by selling exceeding power to the main grid.

Keywords: power flow optimization, power trading enhancement, smart grid, multi-object optimization

Procedia PDF Downloads 523
7727 The Effect of Green Power Trading Mechanism on Interregional Power Generation and Transmission in China

Authors: Yan-Shen Yang, Bai-Chen Xie

Abstract:

Background and significance of the study: Both green power trading schemes and interregional power transmission are effective ways to increase green power absorption and achieve renewable power development goals. China accelerates the construction of interregional power transmission lines and the green power market. A critical issue focusing on the close interaction between these two approaches arises, which can heavily affect the green power quota allocation and renewable power development. Existing studies have not discussed this issue adequately, so it is urgent to figure out their relationship to achieve a suitable power market design and a more reasonable power grid construction.Basic methodologies: We develop an equilibrium model of the power market in China to analyze the coupling effect of these two approaches as well as their influence on power generation and interregional transmission in China. Our model considers both the Tradable green certificate (TGC) and green power market, which consists of producers, consumers in the market, and an independent system operator (ISO) minimizing the total system cost. Our equilibrium model includes the decision optimization process of each participant. To reformulate the models presented as a single-level one, we replace the producer, consumer, ISO, and market equilibrium problems with their Karush-Kuhn-Tucker (KKT) conditions, which is further reformulated as a mixed-integer linear programming (MILP) and solved in Gurobi solver. Major findings: The result shows that: (1) the green power market can significantly promote renewable power absorption while the TGC market provides a more flexible way for green power trading. (2) The phenomena of inefficient occupation and no available transmission lines appear simultaneously. The existing interregional transmission lines cannot fully meet the demand for wind and solar PV power trading in some areas while the situation is vice versa in other areas. (3) Synchronous implementation of green power and TGC trading mechanism can benefit the development of green power as well as interregional power transmission. (4) The green power transaction exacerbates the unfair distribution of carbon emissions. The Carbon Gini Coefficient is up to 0.323 under the green power market which shows a high Carbon inequality. The eastern coastal region will benefit the most due to its huge demand for external power.

Keywords: green power market, tradable green certificate, interregional power transmission, power market equilibrium model

Procedia PDF Downloads 147
7726 Risk Factors’ Analysis on Shanghai Carbon Trading

Authors: Zhaojun Wang, Zongdi Sun, Zhiyuan Liu

Abstract:

First of all, the carbon trading price and trading volume in Shanghai are transformed by Fourier transform, and the frequency response diagram is obtained. Then, the frequency response diagram is analyzed and the Blackman filter is designed. The Blackman filter is used to filter, and the carbon trading time domain and frequency response diagram are obtained. After wavelet analysis, the carbon trading data were processed; respectively, we got the average value for each 5 days, 10 days, 20 days, 30 days, and 60 days. Finally, the data are used as input of the Back Propagation Neural Network model for prediction.

Keywords: Shanghai carbon trading, carbon trading price, carbon trading volume, wavelet analysis, BP neural network model

Procedia PDF Downloads 391
7725 A Prediction Model Using the Price Cyclicality Function Optimized for Algorithmic Trading in Financial Market

Authors: Cristian Păuna

Abstract:

After the widespread release of electronic trading, automated trading systems have become a significant part of the business intelligence system of any modern financial investment company. An important part of the trades is made completely automatically today by computers using mathematical algorithms. The trading decisions are taken almost instantly by logical models and the orders are sent by low-latency automatic systems. This paper will present a real-time price prediction methodology designed especially for algorithmic trading. Based on the price cyclicality function, the methodology revealed will generate price cyclicality bands to predict the optimal levels for the entries and exits. In order to automate the trading decisions, the cyclicality bands will generate automated trading signals. We have found that the model can be used with good results to predict the changes in market behavior. Using these predictions, the model can automatically adapt the trading signals in real-time to maximize the trading results. The paper will reveal the methodology to optimize and implement this model in automated trading systems. After tests, it is proved that this methodology can be applied with good efficiency in different timeframes. Real trading results will be also displayed and analyzed in order to qualify the methodology and to compare it with other models. As a conclusion, it was found that the price prediction model using the price cyclicality function is a reliable trading methodology for algorithmic trading in the financial market.

Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, price prediction

Procedia PDF Downloads 184
7724 Reverse Logistics, Green Supply Chain, and Carbon Trading

Authors: Neha Asthana, Vishal Krishna Prasad

Abstract:

Reverse logistics and green supply chain form an interconnected and interwoven network of parameters that contribute to enhancement and incremental exchange in the triple bottom line in the consistently changing and fragmenting markets of the globalizing markets of today. Reverse logistics not only contributes to completing the supply chain in a comprehensive and synchronized manner but also contributes to a significant degree in optimizing green supply chains through procedures such as recycling, refurbishing etc. contributing to waste reduction. Carbon trading, owing to its limitations in the global context and being in a nascent stage seeks plethora of research to determine its full application in synergy with reverse logistics and green supply chain.

Keywords: reverse logistics, carbon trading, carbon emissions, green supply chain

Procedia PDF Downloads 415
7723 Parabolic Impact Law of High Frequency Exchanges on Price Formation in Commodities Market

Authors: L. Maiza, A. Cantagrel, M. Forestier, G. Laucoin, T. Regali

Abstract:

Evaluation of High Frequency Trading (HFT) impact on financial markets is very important for traders who use market analysis to detect winning transaction opportunity. Analysis of HFT data on tobacco commodity market is discussed here and interesting linear relationship has been shown between trading frequency and difference between averaged trading prices above and below considered trading frequency. This may open new perspectives on markets data understanding and could provide possible interpretation of Adam Smith invisible hand.

Keywords: financial market, high frequency trading, analysis, impacts, Adam Smith invisible hand

Procedia PDF Downloads 359
7722 Energy Trading for Cooperative Microgrids with Renewable Energy Resources

Authors: Ziaullah, Shah Wahab Ali

Abstract:

Micro-grid equipped with heterogeneous energy resources present the idea of small scale distributed energy management (DEM). DEM helps in minimizing the transmission and operation costs, power management and peak load demands. Micro-grids are collections of small, independent controllable power-generating units and renewable energy resources. Micro-grids also motivate to enable active customer participation by giving accessibility of real-time information and control to the customer. The capability of fast restoration against faulty situation, integration of renewable energy resources and Information and Communication Technologies (ICT) make micro-grid as an ideal system for distributed power systems. Micro-grids can have a bank of energy storage devices. The energy management system of micro-grid can perform real-time energy forecasting of renewable resources, energy storage elements and controllable loads in making proper short-term scheduling to minimize total operating costs. We present a review of existing micro-grids optimization objectives/goals, constraints, solution approaches and tools used in micro-grids for energy management. Cost-benefit analysis of micro-grid reveals that cooperation among different micro-grids can play a vital role in the reduction of import energy cost and system stability. Cooperative micro-grids energy trading is an approach to electrical distribution energy resources that allows local energy demands more control over the optimization of power resources and uses. Cooperation among different micro-grids brings the interconnectivity and power trading issues. According to the literature, it shows that open area of research is available for cooperative micro-grids energy trading. In this paper, we proposed and formulated the efficient energy management/trading module for interconnected micro-grids. It is believed that this research will open new directions in future for energy trading in cooperative micro-grids/interconnected micro-grids.

Keywords: distributed energy management, information and communication technologies, microgrid, energy management

Procedia PDF Downloads 375
7721 Application of the Discrete-Event Simulation When Optimizing of Business Processes in Trading Companies

Authors: Maxat Bokambayev, Bella Tussupova, Aisha Mamyrova, Erlan Izbasarov

Abstract:

Optimization of business processes in trading companies is reviewed in the report. There is the presentation of the “Wholesale Customer Order Handling Process” business process model applicable for small and medium businesses. It is proposed to apply the algorithm for automation of the customer order processing which will significantly reduce labor costs and time expenditures and increase the profitability of companies. An optimized business process is an element of the information system of accounting of spare parts trading network activity. The considered algorithm may find application in the trading industry as well.

Keywords: business processes, discrete-event simulation, management, trading industry

Procedia PDF Downloads 344
7720 A Multi-Dimensional Neural Network Using the Fisher Transform to Predict the Price Evolution for Algorithmic Trading in Financial Markets

Authors: Cristian Pauna

Abstract:

Trading the financial markets is a widespread activity today. A large number of investors, companies, public of private funds are buying and selling every day in order to make profit. Algorithmic trading is the prevalent method to make the trade decisions after the electronic trading release. The orders are sent almost instantly by computers using mathematical models. This paper will present a price prediction methodology based on a multi-dimensional neural network. Using the Fisher transform, the neural network will be instructed for a low-latency auto-adaptive process in order to predict the price evolution for the next period of time. The model is designed especially for algorithmic trading and uses the real-time price series. It was found that the characteristics of the Fisher function applied at the nodes scale level can generate reliable trading signals using the neural network methodology. After real time tests it was found that this method can be applied in any timeframe to trade the financial markets. The paper will also include the steps to implement the presented methodology into an automated trading system. Real trading results will be displayed and analyzed in order to qualify the model. As conclusion, the compared results will reveal that the neural network methodology applied together with the Fisher transform at the nodes level can generate a good price prediction and can build reliable trading signals for algorithmic trading.

Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, neural network

Procedia PDF Downloads 160
7719 Business Challenges and Opportunities of Mobile Applications for Equity Trading in India

Authors: Helee Dave

Abstract:

Globalization has helped in the growth and change of the Indian economy to a great extent. The purchasing power of Indians has increased. IT Infrastructure has considerably improved in India. There is an increase in the usage of smartphones. The smartphones facilitate all sorts of work now a day, from getting groceries to planning a tour; it is just one click away. Similar is the case with equity trading. The traders in equity market can now deal with their stocks through mobile applications eliminating the middle man. The traders do not have an option but to open a dematerialization account with the banks which are compulsory enough irrespective of their mode of transaction that is online or offline. Considering that India is a young country having more than 50% of its population below the age of 25 and 65% of its population below the age of 35; this youth is comfortable with the usage of smartphones. The banking industry is also providing a virtual platform supporting equity market industry. Yet equity trading through online applications is at an infant stage. This paper primarily attempts to understand challenges and opportunities faced by equity trading through mobile apps in India.

Keywords: BPO, business process outsourcing, de-materialization account, equity, ITES, information technology enabled services

Procedia PDF Downloads 311
7718 Options Trading and Crash Risk

Authors: Cameron Truong, Mikhail Bhatia, Yangyang Chen, Viet Nga Cao

Abstract:

Using a sample of U.S. firms between 1996 and 2011, this paper documents a positive association between options trading volume and future stock price crash risk. This relation is evidently more pronounced among firms with higher information asymmetry, business uncertainty, and short-sale constraints. In a dichotomous cross-sectional setting, we also document that firms with options trading have higher future crash risk than firms without options trading. We further show in a difference-in-difference analysis that firms experience an increase in crash risk immediately after the listing of options. The results suggest that options traders are able of identifying bad news hoarding by management and choose to trade in a liquid options market in anticipation of future crashes.

Keywords: bad news hoarding, cross-sectional setting, options trading, stock price crash

Procedia PDF Downloads 449
7717 Detecting Impact of Allowance Trading Behaviors on Distribution of NOx Emission Reductions under the Clean Air Interstate Rule

Authors: Yuanxiaoyue Yang

Abstract:

Emissions trading, or ‘cap-and-trade', has been long promoted by economists as a more cost-effective pollution control approach than traditional performance standard approaches. While there is a large body of empirical evidence for the overall effectiveness of emissions trading, relatively little attention has been paid to other unintended consequences brought by emissions trading. One important consequence is that cap-and-trade could introduce the risk of creating high-level emission concentrations in areas where emitting facilities purchase a large number of emission allowances, which may cause an unequal distribution of environmental benefits. This study will contribute to the current environmental policy literature by linking trading activity with environmental injustice concerns and empirically analyzing the causal relationship between trading activity and emissions reduction under a cap-and-trade program for the first time. To investigate the potential environmental injustice concern in cap-and-trade, this paper uses a differences-in-differences (DID) with instrumental variable method to identify the causal effect of allowance trading behaviors on emission reduction levels under the clean air interstate rule (CAIR), a cap-and-trade program targeting on the power sector in the eastern US. The major data source is the facility-year level emissions and allowance transaction data collected from US EPA air market databases. While polluting facilities from CAIR are the treatment group under our DID identification, we use non-CAIR facilities from the Acid Rain Program - another NOx control program without a trading scheme – as the control group. To isolate the causal effects of trading behaviors on emissions reduction, we also use eligibility for CAIR participation as the instrumental variable. The DID results indicate that the CAIR program was able to reduce NOx emissions from affected facilities by about 10% more than facilities who did not participate in the CAIR program. Therefore, CAIR achieves excellent overall performance in emissions reduction. The IV regression results also indicate that compared with non-CAIR facilities, purchasing emission permits still decreases a CAIR participating facility’s emissions level significantly. This result implies that even buyers under the cap-and-trade program have achieved a great amount of emissions reduction. Therefore, we conclude little evidence of environmental injustice from the CAIR program.

Keywords: air pollution, cap-and-trade, emissions trading, environmental justice

Procedia PDF Downloads 150
7716 A Data Science Pipeline for Algorithmic Trading: A Comparative Study in Applications to Finance and Cryptoeconomics

Authors: Luyao Zhang, Tianyu Wu, Jiayi Li, Carlos-Gustavo Salas-Flores, Saad Lahrichi

Abstract:

Recent advances in AI have made algorithmic trading a central role in finance. However, current research and applications are disconnected information islands. We propose a generally applicable pipeline for designing, programming, and evaluating algorithmic trading of stock and crypto tokens. Moreover, we provide comparative case studies for four conventional algorithms, including moving average crossover, volume-weighted average price, sentiment analysis, and statistical arbitrage. Our study offers a systematic way to program and compare different trading strategies. Moreover, we implement our algorithms by object-oriented programming in Python3, which serves as open-source software for future academic research and applications.

Keywords: algorithmic trading, AI for finance, fintech, machine learning, moving average crossover, volume weighted average price, sentiment analysis, statistical arbitrage, pair trading, object-oriented programming, python3

Procedia PDF Downloads 144
7715 Comparative Study of Different Enhancement Techniques for Computed Tomography Images

Authors: C. G. Jinimole, A. Harsha

Abstract:

One of the key problems facing in the analysis of Computed Tomography (CT) images is the poor contrast of the images. Image enhancement can be used to improve the visual clarity and quality of the images or to provide a better transformation representation for further processing. Contrast enhancement of images is one of the acceptable methods used for image enhancement in various applications in the medical field. This will be helpful to visualize and extract details of brain infarctions, tumors, and cancers from the CT image. This paper presents a comparison study of five contrast enhancement techniques suitable for the contrast enhancement of CT images. The types of techniques include Power Law Transformation, Logarithmic Transformation, Histogram Equalization, Contrast Stretching, and Laplacian Transformation. All these techniques are compared with each other to find out which enhancement provides better contrast of CT image. For the comparison of the techniques, the parameters Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE) are used. Logarithmic Transformation provided the clearer and best quality image compared to all other techniques studied and has got the highest value of PSNR. Comparison concludes with better approach for its future research especially for mapping abnormalities from CT images resulting from Brain Injuries.

Keywords: computed tomography, enhancement techniques, increasing contrast, PSNR and MSE

Procedia PDF Downloads 314
7714 Expanding Trading Strategies By Studying Sentiment Correlation With Data Mining Techniques

Authors: Ved Kulkarni, Karthik Kini

Abstract:

This experiment aims to understand how the media affects the power markets in the mainland United States and study the duration of reaction time between news updates and actual price movements. it have taken into account electric utility companies trading in the NYSE and excluded companies that are more politically involved and move with higher sensitivity to Politics. The scrapper checks for any news related to keywords, which are predefined and stored for each specific company. Based on this, the classifier will allocate the effect into five categories: positive, negative, highly optimistic, highly negative, or neutral. The effect on the respective price movement will be studied to understand the response time. Based on the response time observed, neural networks would be trained to understand and react to changing market conditions, achieving the best strategy in every market. The stock trader would be day trading in the first phase and making option strategy predictions based on the black holes model. The expected result is to create an AI-based system that adjusts trading strategies within the market response time to each price movement.

Keywords: data mining, language processing, artificial neural networks, sentiment analysis

Procedia PDF Downloads 17
7713 Enhancing Technical Trading Strategy on the Bitcoin Market using News Headlines and Language Models

Authors: Mohammad Hosein Panahi, Naser Yazdani

Abstract:

we present a technical trading strategy that leverages the FinBERT language model and financial news analysis with a focus on news related to a subset of Nasdaq 100 stocks. Our approach surpasses the baseline Range Break-out strategy in the Bitcoin market, yielding a remarkable 24.8% increase in the win ratio for all Friday trades and an impressive 48.9% surge in short trades specifically on Fridays. Moreover, we conduct rigorous hypothesis testing to establish the statistical significance of these improvements. Our findings underscore considerable potential of our NLP-driven approach in enhancing trading strategies and achieving greater profitability within financial markets.

Keywords: quantitative finance, technical analysis, bitcoin market, NLP, language models, FinBERT, technical trading

Procedia PDF Downloads 75
7712 Grid and Market Integration of Large Scale Wind Farms using Advanced Predictive Data Mining Techniques

Authors: Umit Cali

Abstract:

The integration of intermittent energy sources like wind farms into the electricity grid has become an important challenge for the utilization and control of electric power systems, because of the fluctuating behaviour of wind power generation. Wind power predictions improve the economic and technical integration of large amounts of wind energy into the existing electricity grid. Trading, balancing, grid operation, controllability and safety issues increase the importance of predicting power output from wind power operators. Therefore, wind power forecasting systems have to be integrated into the monitoring and control systems of the transmission system operator (TSO) and wind farm operators/traders. The wind forecasts are relatively precise for the time period of only a few hours, and, therefore, relevant with regard to Spot and Intraday markets. In this work predictive data mining techniques are applied to identify a statistical and neural network model or set of models that can be used to predict wind power output of large onshore and offshore wind farms. These advanced data analytic methods helps us to amalgamate the information in very large meteorological, oceanographic and SCADA data sets into useful information and manageable systems. Accurate wind power forecasts are beneficial for wind plant operators, utility operators, and utility customers. An accurate forecast allows grid operators to schedule economically efficient generation to meet the demand of electrical customers. This study is also dedicated to an in-depth consideration of issues such as the comparison of day ahead and the short-term wind power forecasting results, determination of the accuracy of the wind power prediction and the evaluation of the energy economic and technical benefits of wind power forecasting.

Keywords: renewable energy sources, wind power, forecasting, data mining, big data, artificial intelligence, energy economics, power trading, power grids

Procedia PDF Downloads 517
7711 The Impact of Insider Trading on Open Market Share Repurchase: A Study in Indian Context

Authors: Sarthak Kumar Jena, Chandra Sekhar Mishra, Prabina Rajib

Abstract:

Purpose: This paper aims to derive undervaluation signal from the insiders trading of Indian companies where the ownership is complex and concentrated, investors protection is weak, and the insider rules and regulations are not stringent like developed country. This study examines the relationship between insider trading with short term and long term abnormal return. The study also examines the relationship between insider trading and the actual share repurchase by the firm. Methodology: A sample of 78 companies over the period 2008-2013 are analyzed in the study due to not availability of insider data in Indian context. For preliminary analysis T-test and Wilcoxon rank sum test is used to find the difference between the insider trading before and after the share repurchase announcement. Tobit model is used to find out whether insider trading influence shares repurchase decisions or not. Return on the basis of market model and buy hold are calculated in the previous year and the following year of share repurchase announcement. Findings: The paper finds that insider trading around share repurchase is more than control firms and there is positive and significant difference in insider buying between the previous year of share buyback announcement and the following year of buyback announcement. Insider buying before share repurchase announcement has a positive influence on share repurchase decisions. We find insider buying has a positive and significant relationship with announcement return, whereas insider selling has a negative significant relationship with announcement return. Actual share repurchase and program completion also depend on insider trading before share repurchase. Research limitation: The study is constrained by the small sample size, so the results should be viewed by keeping this limitation in mind. Originality: The paper is to our best knowledge the first study based on Indian context to extend the insider trading literature to share repurchase event and examine insider trading to find out undervaluation signal associated with insider buying.

Keywords: insider trading, buyback, open market share repurchase, signalling

Procedia PDF Downloads 198
7710 A Hybrid Expert System for Generating Stock Trading Signals

Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour

Abstract:

In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.

Keywords: fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange

Procedia PDF Downloads 332
7709 Fragmentation of The Multilateral Trading System: The Impact of Regionalism on WTO Law

Authors: Musa Njabulo Shongwe

Abstract:

The multilateral trading system is facing a great danger of fragmentation. Its modus operandi, multilateralism, is increasingly becoming clogged by trade barriers created by the proliferation of preferential regional trading blocs. The paper explores the fragmentation of the multilateral trade regulation system (WTO law) by analysing whether and to what extent Regional Trade Agreements (RTAs) have conflicted with the Multilateral Trading System. The paper examines the effects of RTA dominance in view of the WTO's quest for trade liberalization. This is an important inquiry because the proliferation of RTAs implies the erosion of the WTO law’s core principle of non-discrimination. The paper further explores how the proliferation of RTAs has endangered the coherence of the multilateral trading system. The study is carried out with the initial assumption that RTAs could be complementary and coherent with WTO law, and thus facilitate international trade and enhance development prospects. There is evidence that is tested by this study which suggests that RTAs can be divergent and hence undermine the WTO multilateral rules of regulating international trade. The paper finally recommends legal tools of regulating and managing the WTO-RTA interface, as well as other legal means of ensuring a harmonious existence between the WTO and regional trade arrangements.

Keywords: fragmentation of international trade law, regionalism, regional trade agreements, WTO law

Procedia PDF Downloads 377
7708 Voltage Stability Assessment and Enhancement Using STATCOM -A Case Study

Authors: Puneet Chawla, Balwinder Singh

Abstract:

Recently, increased attention has been devoted to the voltage instability phenomenon in power systems. Many techniques have been proposed in the literature for evaluating and predicting voltage stability using steady state analysis methods. In this paper, P-V and Q-V curves have been generated for a 57 bus Patiala Rajpura circle of India. The power-flow program is developed in MATLAB using Newton-Raphson method. Using Q-V curves, the weakest bus of the power system and the maximum reactive power change permissible on that bus is calculated. STATCOMs are placed on the weakest bus to improve the voltage and hence voltage stability and also the power transmission capability of the line.

Keywords: voltage stability, reactive power, power flow, weakest bus, STATCOM

Procedia PDF Downloads 515
7707 Hidden Markov Model for Financial Limit Order Book and Its Application to Algorithmic Trading Strategy

Authors: Sriram Kashyap Prasad, Ionut Florescu

Abstract:

This study models the intraday asset prices as driven by Markov process. This work identifies the latent states of the Hidden Markov model, using limit order book data (trades and quotes) to continuously estimate the states throughout the day. This work builds a trading strategy using estimated states to generate signals. The strategy utilizes current state to recalibrate buy/ sell levels and the transition between states to trigger stop-loss when adverse price movements occur. The proposed trading strategy is tested on the Stevens High Frequency Trading (SHIFT) platform. SHIFT is a highly realistic market simulator with functionalities for creating an artificial market simulation by deploying agents, trading strategies, distributing initial wealth, etc. In the implementation several assets on the NASDAQ exchange are used for testing. In comparison to a strategy with static buy/ sell levels, this study shows that the number of limit orders that get matched and executed can be increased. Executing limit orders earns rebates on NASDAQ. The system can capture jumps in the limit order book prices, provide dynamic buy/sell levels and trigger stop loss signals to improve the PnL (Profit and Loss) performance of the strategy.

Keywords: algorithmic trading, Hidden Markov model, high frequency trading, limit order book learning

Procedia PDF Downloads 151
7706 Proton Irradiation Testing on Commercial Enhancement Mode GaN Power Transistor

Authors: L. Boyaci

Abstract:

Two basic equipment of electrical power subsystem of space satellites are Power Conditioning Unit (PCU) and Power Distribution Unit (PDU). Today, the main switching element used in power equipment in satellites is silicon (Si) based radiation-hardened MOSFET. GaNFETs have superior performances over MOSFETs in terms of their conduction and switching characteristics. GaNFET has started to take MOSFET’s place in many applications in industry especially by virtue of its switching performances. If GaNFET can also be used in equipment for space applications, this would be great revolution for future space power subsystem designs. In this study, the effect of proton irradiation on Gallium Nitride based power transistors was investigated. Four commercial enhancement mode GaN power transistors from Efficient Power Conversion Corporation (EPC) are irradiated with 30MeV protons while devices are switching. Flux of 8.2x10⁹ protons/cm²/s is applied for 12.5 seconds to reach ultimate fluence of 10¹¹ protons/cm². Vgs-Ids characteristics are measured and recorded for each device before, during and after irradiation. It was observed that if there would be destructive events. Proton induced permanent damage on devices is not observed. All the devices remained healthy and continued to operate. For two of these devices, further irradiation is applied with same flux for 30 minutes up to a total fluence level of 1.476x10¹³ protons/cm². We observed that GaNFETs are fully functional under this high level of radiation and no destructive events and irreversible failures took place for transistors. Results reveal that irradiated GaNFET in this experiment has radiation tolerance under proton testing and very important candidate for being one of the future power switching element in space.

Keywords: enhancement mode GaN power transistors, proton irradiation effects, radiation tolerance

Procedia PDF Downloads 152
7705 Masked Candlestick Model: A Pre-Trained Model for Trading Prediction

Authors: Ling Qi, Matloob Khushi, Josiah Poon

Abstract:

This paper introduces a pre-trained Masked Candlestick Model (MCM) for trading time-series data. The pre-trained model is based on three core designs. First, we convert trading price data at each data point as a set of normalized elements and produce embeddings of each element. Second, we generate a masked sequence of such embedded elements as inputs for self-supervised learning. Third, we use the encoder mechanism from the transformer to train the inputs. The masked model learns the contextual relations among the sequence of embedded elements, which can aid downstream classification tasks. To evaluate the performance of the pre-trained model, we fine-tune MCM for three different downstream classification tasks to predict future price trends. The fine-tuned models achieved better accuracy rates for all three tasks than the baseline models. To better analyze the effectiveness of MCM, we test the same architecture for three currency pairs, namely EUR/GBP, AUD/USD, and EUR/JPY. The experimentation results demonstrate MCM’s effectiveness on all three currency pairs and indicate the MCM’s capability for signal extraction from trading data.

Keywords: masked language model, transformer, time series prediction, trading prediction, embedding, transfer learning, self-supervised learning

Procedia PDF Downloads 125
7704 A Probabilistic Theory of the Buy-Low and Sell-High for Algorithmic Trading

Authors: Peter Shi

Abstract:

Algorithmic trading is a rapidly expanding domain within quantitative finance, constituting a substantial portion of trading volumes in the US financial market. The demand for rigorous and robust mathematical theories underpinning these trading algorithms is ever-growing. In this study, the author establishes a new stock market model that integrates the Efficient Market Hypothesis and the statistical arbitrage. The model, for the first time, finds probabilistic relations between the rational price and the market price in terms of the conditional expectation. The theory consequently leads to a mathematical justification of the old market adage: buy-low and sell-high. The thresholds for “low” and “high” are precisely derived using a max-min operation on Bayes’s error. This explicit connection harmonizes the Efficient Market Hypothesis and Statistical Arbitrage, demonstrating their compatibility in explaining market dynamics. The amalgamation represents a pioneering contribution to quantitative finance. The study culminates in comprehensive numerical tests using historical market data, affirming that the “buy-low” and “sell-high” algorithm derived from this theory significantly outperforms the general market over the long term in four out of six distinct market environments.

Keywords: efficient market hypothesis, behavioral finance, Bayes' decision, algorithmic trading, risk control, stock market

Procedia PDF Downloads 72
7703 An Improved Cuckoo Search Algorithm for Voltage Stability Enhancement in Power Transmission Networks

Authors: Reza Sirjani, Nobosse Tafem Bolan

Abstract:

Many optimization techniques available in the literature have been developed in order to solve the problem of voltage stability enhancement in power systems. However, there are a number of drawbacks in the use of previous techniques aimed at determining the optimal location and size of reactive compensators in a network. In this paper, an Improved Cuckoo Search algorithm is applied as an appropriate optimization algorithm to determine the optimum location and size of a Static Var Compensator (SVC) in a transmission network. The main objectives are voltage stability improvement and total cost minimization. The results of the presented technique are then compared with other available optimization techniques.

Keywords: cuckoo search algorithm, optimization, power system, var compensators, voltage stability

Procedia PDF Downloads 551
7702 Challenges of Carbon Trading Schemes in Africa

Authors: Bengan Simbarashe Manwere

Abstract:

The entire African continent, comprising 55 countries, holds a 2% share of the global carbon market. The World Bank attributes the continent’s insignificant share and participation in the carbon market to the limited access to electricity. Approximately 800 million people spread across 47 African countries generate as much power as Spain, with a population of 45million. Only South Africa and North Africa have carbon-reduction investment opportunities on the continent and dominate the 2% market share of the global carbon market. On the back of the 2015 Paris Agreement, South Africa signed into law the Carbon Tax Act 15 of 2019 and the Customs and Excise Amendment Act 13 of 2019 (Gazette No. 4280) on 1 June 2019. By these laws, South Africa was ushered into the league of active global carbon market players. By increasing the cost of production by the rate of R120/tCO2e, the tax intentionally compels the internalization of pollution as a cost of production and, relatedly, stimulate investment in clean technologies. The first phase covered the 1 June 2019 – 31 December 2022 period during which the tax was meant to escalate at CPI + 2% for Scope 1 emitters. However, in the second phase, which stretches from 2023 to 2030, the tax will escalate at the inflation rate only as measured by the consumer price index (CPI). The Carbon Tax Act provides for carbon allowances as mitigation strategies to limit agents’ carbon tax liability by up to 95% for fugitive and process emissions. Although the June 2019 Carbon Tax Act explicitly makes provision for a carbon trading scheme (CTS), the carbon trading regulations thereof were only finalised in December 2020. This points to a delay in the establishment of a carbon trading scheme (CTS). Relatedly, emitters in South Africa are not able to benefit from the 95% reduction in effective carbon tax rate from R120/tCO2e to R6/tCO2e as the Johannesburg Stock Exchange (JSE) has not yet finalized the establishment of the market for trading carbon credits. Whereas most carbon trading schemes have been designed and constructed from the beginning as new tailor-made systems in countries the likes of France, Australia, Romania which treat carbon as a financial product, South Africa intends, on the contrary, to leverage existing trading infrastructure of the Johannesburg Stock Exchange (JSE) and the Clearing and Settlement platforms of Strate, among others, in the interest of the Paris Agreement timelines. Therefore the carbon trading scheme will not be constructed from scratch. At the same time, carbon will be treated as a commodity in order to align with the existing institutional and infrastructural capacity. This explains why the Carbon Tax Act is silent about the involvement of the Financial Sector Conduct Authority (FSCA).For South Africa, there is need to establish they equilibrium stability of the CTS. This is important as South Africa is an innovator in carbon trading and the successful trading of carbon credits on the JSE will lead to imitation by early adopters first, followed by the middle majority thereafter.

Keywords: carbon trading scheme (CTS), Johannesburg stock exchange (JSE), carbon tax act 15 of 2019, South Africa

Procedia PDF Downloads 69
7701 ‘It Is a Class Thing’: Socio-Economic Factors Sustaining Illicit Trading in New Naira Notes in Ibadan, Nigeria

Authors: Frank C. Amaechi, Adeyinka A. Aderinto, Usman A. Ojedokun, Oludayo Tade

Abstract:

Illicit trading in new naira notes has become a common practice in most communities in Nigeria despite the Central Bank Act’s in 2007 proscription of all forms of naira abuse. This study investigated the socio-economic factors sustaining illicit trading in new naira notes in Ibadan metropolis. The study was exploratory and cross-sectional in design. Neutralization theory was adopted as theoretical framework. Data were generated through the combination of in-depth interview and key informant interview methods. The purposive sampling technique was utilised to select five illicit traders of new naira notes, 32 patrons of the trade and six bank officials. Findings revealed that illicit trading in Nigeria’s national currency is flourishing because of the frequent demand for new naira notes that are not readily available in Nigerian banks. Also, the norm of cash spraying at social events is sustaining the illicit markets for new naira notes in Ibadan metropolis. In addition, a chain of network, comprising three principal actors, is behind the illegal business. A strict enforcement of the law banning cash spraying is advocated as a means of arresting this phenomenon.

Keywords: illicit trading, naira notes, national currency, Nigeria

Procedia PDF Downloads 311
7700 Regional Trade Agreements versus the WTO: A Human Rights Perspective

Authors: Mohsen Qasemi

Abstract:

In the international economic order multilateral trading system which established by General Agreement on Tariffs and Trade 1947 (GATT) was dominant until about two decades ago. Regional Trade Agreements (RTAs) have changed this order and become an important phenomenon. One of the main objectives of the World Trade Organization (WTO) as a central institution of multilateral trading system is raising standards of living. There are many scholars who suggest that WTO should take steps to protect human rights in its activities. Although it has always been opposing views who declare that since WTO has no explicit rule for human rights, it has no human rights related obligations. At the time that the WTO was established, member states began to join RTAs and since then, the escalating growth of these agreements and their effects on multilateral trading system has been controversial. There are some aspects of RTAs that have received too little attention from scholars. It is important to take a different view and evaluate the RTAs based on non-commercial aspects. The present paper seeks to answer this question: which system could be more useful in protecting human rights, RTAs or WTO?

Keywords: WTO, RTAs, human rights, multilateral trading system, non discrimination

Procedia PDF Downloads 359