Search results for: post model selection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22111

Search results for: post model selection

22111 Optimal Selection of Replenishment Policies Using Distance Based Approach

Authors: Amit Gupta, Deepak Juneja, Sorabh Gupta

Abstract:

This paper presents a model based on distance based approach (DBA) method employed for evaluation, selection, and ranking of replenishment policies for a single location inventory, which hitherto not developed in the literature. This work recognizes the significance of the selection problem, identifies the selection criteria, the relative importance of selection criteria for this research problem. The developed model is capable of comparing any number of alternate inventory policies for various selection criteria where cardinal values are assigned as a rating to alternate inventory polices for selection criteria and weights of selection criteria. The illustrated example demonstrates the model and presents the result in terms of ranking of replenishment policies.

Keywords: DBA, ranking, replenishment policies, selection criteria

Procedia PDF Downloads 157
22110 Study on the Model Predicting Post-Construction Settlement of Soft Ground

Authors: Pingshan Chen, Zhiliang Dong

Abstract:

In order to estimate the post-construction settlement more objectively, the power-polynomial model is proposed, which can reflect the trend of settlement development based on the observed settlement data. It was demonstrated by an actual case history of an embankment, and during the prediction. Compared with the other three prediction models, the power-polynomial model can estimate the post-construction settlement more accurately with more simple calculation.

Keywords: prediction, model, post-construction settlement, soft ground

Procedia PDF Downloads 425
22109 A Case-Based Reasoning-Decision Tree Hybrid System for Stock Selection

Authors: Yaojun Wang, Yaoqing Wang

Abstract:

Stock selection is an important decision-making problem. Many machine learning and data mining technologies are employed to build automatic stock-selection system. A profitable stock-selection system should consider the stock’s investment value and the market timing. In this paper, we present a hybrid system including both engage for stock selection. This system uses a case-based reasoning (CBR) model to execute the stock classification, uses a decision-tree model to help with market timing and stock selection. The experiments show that the performance of this hybrid system is better than that of other techniques regarding to the classification accuracy, the average return and the Sharpe ratio.

Keywords: case-based reasoning, decision tree, stock selection, machine learning

Procedia PDF Downloads 420
22108 Improving Post Release Outcomes

Authors: Michael Airton

Abstract:

This case study examines the development of a new service delivery model for prisons that focuses on using NGO’s to provide more effective case management and post release support functions. The model includes the co-design of the service delivery model and innovative commercial agreements that encourage embedded service providers within the prison and continuity of services post release with outcomes based payment mechanisms. The collaboration of prison staff, probation and parole officers and NGO’s is critical to the success of the model and its ability to deliver value and positive outcomes in relation to desistance from offending.

Keywords: collaborative service delivery, desistance, non-government organisations, post release support services

Procedia PDF Downloads 390
22107 Confidence Envelopes for Parametric Model Selection Inference and Post-Model Selection Inference

Authors: I. M. L. Nadeesha Jayaweera, Adao Alex Trindade

Abstract:

In choosing a candidate model in likelihood-based modeling via an information criterion, the practitioner is often faced with the difficult task of deciding just how far up the ranked list to look. Motivated by this pragmatic necessity, we construct an uncertainty band for a generalized (model selection) information criterion (GIC), defined as a criterion for which the limit in probability is identical to that of the normalized log-likelihood. This includes common special cases such as AIC & BIC. The method starts from the asymptotic normality of the GIC for the joint distribution of the candidate models in an independent and identically distributed (IID) data framework and proceeds by deriving the (asymptotically) exact distribution of the minimum. The calculation of an upper quantile for its distribution then involves the computation of multivariate Gaussian integrals, which is amenable to efficient implementation via the R package "mvtnorm". The performance of the methodology is tested on simulated data by checking the coverage probability of nominal upper quantiles and compared to the bootstrap. Both methods give coverages close to nominal for large samples, but the bootstrap is two orders of magnitude slower. The methodology is subsequently extended to two other commonly used model structures: regression and time series. In the regression case, we derive the corresponding asymptotically exact distribution of the minimum GIC invoking Lindeberg-Feller type conditions for triangular arrays and are thus able to similarly calculate upper quantiles for its distribution via multivariate Gaussian integration. The bootstrap once again provides a default competing procedure, and we find that similar comparison performance metrics hold as for the IID case. The time series case is complicated by far more intricate asymptotic regime for the joint distribution of the model GIC statistics. Under a Gaussian likelihood, the default in most packages, one needs to derive the limiting distribution of a normalized quadratic form for a realization from a stationary series. Under conditions on the process satisfied by ARMA models, a multivariate normal limit is once again achieved. The bootstrap can, however, be employed for its computation, whence we are once again in the multivariate Gaussian integration paradigm for upper quantile evaluation. Comparisons of this bootstrap-aided semi-exact method with the full-blown bootstrap once again reveal a similar performance but faster computation speeds. One of the most difficult problems in contemporary statistical methodological research is to be able to account for the extra variability introduced by model selection uncertainty, the so-called post-model selection inference (PMSI). We explore ways in which the GIC uncertainty band can be inverted to make inferences on the parameters. This is being attempted in the IID case by pivoting the CDF of the asymptotically exact distribution of the minimum GIC. For inference one parameter at a time and a small number of candidate models, this works well, whence the attained PMSI confidence intervals are wider than the MLE-based Wald, as expected.

Keywords: model selection inference, generalized information criteria, post model selection, Asymptotic Theory

Procedia PDF Downloads 89
22106 An Adaptive Hybrid Surrogate-Assisted Particle Swarm Optimization Algorithm for Expensive Structural Optimization

Authors: Xiongxiong You, Zhanwen Niu

Abstract:

Choosing an appropriate surrogate model plays an important role in surrogates-assisted evolutionary algorithms (SAEAs) since there are many types and different kernel functions in the surrogate model. In this paper, an adaptive selection of the best suitable surrogate model method is proposed to solve different kinds of expensive optimization problems. Firstly, according to the prediction residual error sum of square (PRESS) and different model selection strategies, the excellent individual surrogate models are integrated into multiple ensemble models in each generation. Then, based on the minimum root of mean square error (RMSE), the best suitable surrogate model is selected dynamically. Secondly, two methods with dynamic number of models and selection strategies are designed, which are used to show the influence of the number of individual models and selection strategy. Finally, some compared studies are made to deal with several commonly used benchmark problems, as well as a rotor system optimization problem. The results demonstrate the accuracy and robustness of the proposed method.

Keywords: adaptive selection, expensive optimization, rotor system, surrogates assisted evolutionary algorithms

Procedia PDF Downloads 141
22105 Recruitment Model (FSRM) for Faculty Selection Based on Fuzzy Soft

Authors: G. S. Thakur

Abstract:

This paper presents a Fuzzy Soft Recruitment Model (FSRM) for faculty selection of MHRD technical institutions. The selection criteria are based on 4-tier flexible structure in the institutions. The Advisory Committee on Faculty Recruitment (ACoFAR) suggested nine criteria for faculty in the proposed FSRM. The model Fuzzy Soft is proposed with consultation of ACoFAR based on selection criteria. The Fuzzy Soft distance similarity measures are applied for finding best faculty from the applicant pool.

Keywords: fuzzy soft set, fuzzy sets, fuzzy soft distance, fuzzy soft similarity measures, ACoFAR

Procedia PDF Downloads 348
22104 An Adjusted Network Information Criterion for Model Selection in Statistical Neural Network Models

Authors: Christopher Godwin Udomboso, Angela Unna Chukwu, Isaac Kwame Dontwi

Abstract:

In selecting a Statistical Neural Network model, the Network Information Criterion (NIC) has been observed to be sample biased, because it does not account for sample sizes. The selection of a model from a set of fitted candidate models requires objective data-driven criteria. In this paper, we derived and investigated the Adjusted Network Information Criterion (ANIC), based on Kullback’s symmetric divergence, which has been designed to be an asymptotically unbiased estimator of the expected Kullback-Leibler information of a fitted model. The analyses show that on a general note, the ANIC improves model selection in more sample sizes than does the NIC.

Keywords: statistical neural network, network information criterion, adjusted network, information criterion, transfer function

Procedia PDF Downloads 567
22103 Leveraging SHAP Values for Effective Feature Selection in Peptide Identification

Authors: Sharon Li, Zhonghang Xia

Abstract:

Post-database search is an essential phase in peptide identification using tandem mass spectrometry (MS/MS) to refine peptide-spectrum matches (PSMs) produced by database search engines. These engines frequently face difficulty differentiating between correct and incorrect peptide assignments. Despite advances in statistical and machine learning methods aimed at improving the accuracy of peptide identification, challenges remain in selecting critical features for these models. In this study, two machine learning models—a random forest tree and a support vector machine—were applied to three datasets to enhance PSMs. SHAP values were utilized to determine the significance of each feature within the models. The experimental results indicate that the random forest model consistently outperformed the SVM across all datasets. Further analysis of SHAP values revealed that the importance of features varies depending on the dataset, indicating that a feature's role in model predictions can differ significantly. This variability in feature selection can lead to substantial differences in model performance, with false discovery rate (FDR) differences exceeding 50% between different feature combinations. Through SHAP value analysis, the most effective feature combinations were identified, significantly enhancing model performance.

Keywords: peptide identification, SHAP value, feature selection, random forest tree, support vector machine

Procedia PDF Downloads 24
22102 Determinants of Self-Reported Hunger: An Ordered Probit Model with Sample Selection Approach

Authors: Brian W. Mandikiana

Abstract:

Homestead food production has the potential to alleviate hunger, improve health and nutrition for children and adults. This article examines the relationship between self-reported hunger and homestead food production using the ordered probit model. A sample of households participating in homestead food production was drawn from the first wave of the South African National Income Dynamics Survey, a nationally representative cross-section. The sample selection problem was corrected using an ordered probit model with sample selection approach. The findings show that homestead food production exerts a positive and significant impact on children and adults’ ability to cope with hunger and malnutrition. Yet, on the contrary, potential gains of homestead food production are threatened by shocks such as crop failure.

Keywords: agriculture, hunger, nutrition, sample selection

Procedia PDF Downloads 335
22101 Proposal of a Model Supporting Decision-Making on Information Security Risk Treatment

Authors: Ritsuko Kawasaki, Takeshi Hiromatsu

Abstract:

Management is required to understand all information security risks within an organization, and to make decisions on which information security risks should be treated in what level by allocating how much amount of cost. However, such decision-making is not usually easy, because various measures for risk treatment must be selected with the suitable application levels. In addition, some measures may have objectives conflicting with each other. It also makes the selection difficult. Therefore, this paper provides a model which supports the selection of measures by applying multi-objective analysis to find an optimal solution. Additionally, a list of measures is also provided to make the selection easier and more effective without any leakage of measures.

Keywords: information security risk treatment, selection of risk measures, risk acceptance, multi-objective optimization

Procedia PDF Downloads 379
22100 Binary Programming for Manufacturing Material and Manufacturing Process Selection Using Genetic Algorithms

Authors: Saleem Z. Ramadan

Abstract:

The material selection problem is concerned with the determination of the right material for a certain product to optimize certain performance indices in that product such as mass, energy density, and power-to-weight ratio. This paper is concerned about optimizing the selection of the manufacturing process along with the material used in the product under performance indices and availability constraints. In this paper, the material selection problem is formulated using binary programming and solved by genetic algorithm. The objective function of the model is to minimize the total manufacturing cost under performance indices and material and manufacturing process availability constraints.

Keywords: optimization, material selection, process selection, genetic algorithm

Procedia PDF Downloads 420
22099 Efficient Relay Selection Scheme Utilizing OVSF Code in Cooperative Communication System

Authors: Yeong-Seop Ahn, Myoung-Jin Kim, Young-Min Ko, Hyoung-Kyu Song

Abstract:

This paper proposes a relay selection scheme utilizing an orthogonal variable spreading factor (OVSF) code in a cooperative communication. The relay selection scheme influences on the communication performance in the cooperative communication. Conventional relay selection schemes such as the best harmonic mean relay selection scheme or the threshold-based relay selection scheme should know information such as channel state information (CSI) in advance. The proposed relay selection scheme does not require information in advance by using a reference signal utilizing the OVSF code. The simulation result shows that bit error rate (BER) performance of proposed relay selection scheme is similar to the best harmonic mean relay selection scheme that is known as one of the optimal relay selection schemes.

Keywords: cooperative communication, relay selection, OFDM, OVSF code

Procedia PDF Downloads 639
22098 The Choosing the Right Projects With Multi-Criteria Decision Making to Ensure the Sustainability of the Projects

Authors: Saniye Çeşmecioğlu

Abstract:

The importance of project sustainability and success has become increasingly significant due to the proliferation of external environmental factors that have decreased project resistance in contemporary times. The primary approach to forestall the failure of projects is to ensure their long-term viability through the strategic selection of projects as creating judicious project selection framework within the organization. Decision-makers require precise decision contexts (models) that conform to the company's business objectives and sustainability expectations during the project selection process. The establishment of a rational model for project selection enables organizations to create a distinctive and objective framework for the selection process. Additionally, for the optimal implementation of this decision-making model, it is crucial to establish a Project Management Office (PMO) team and Project Steering Committee within the organizational structure to oversee the framework. These teams enable updating project selection criteria and weights in response to changing conditions, ensuring alignment with the company's business goals, and facilitating the selection of potentially viable projects. This paper presents a multi-criteria decision model for selecting project sustainability and project success criteria that ensures timely project completion and retention. The model was developed using MACBETH (Measuring Attractiveness by a Categorical Based Evaluation Technique) and was based on broadcaster companies’ expectations. The ultimate results of this study provide a model that endorses the process of selecting the appropriate project objectively by utilizing project selection and sustainability criteria along with their respective weights for organizations. Additionally, the study offers suggestions that may ascertain helpful in future endeavors.

Keywords: project portfolio management, project selection, multi-criteria decision making, project sustainability and success criteria, MACBETH

Procedia PDF Downloads 62
22097 Electro-Thermo-Mechanical Behaviour of Functionally Graded Material Usage in Lead Acid Storage Batteries and the Benefits

Authors: Sandeep Das

Abstract:

Terminal post is one of the most important features of a Battery. The design and manufacturing of post are very much critical especially when threaded inserts (Bolt-on type) are used since all the collected energy is delivered from the lead part to the threaded insert (Cu or Cu alloy). Any imperfection at the interface may cause Voltage drop, high resistance, high heat generation, etc. This may be because of sudden change of material properties from lead to Cu alloys. To avoid this problem, a scheme of material gradation is proposed for achieving continuous variation of material properties for the Post used in commercially available lead acid battery. The Functionally graded (FG) material for the post is considered to be composed of different layers of homogeneous material. The volume fraction of the materials used corresponding to each layer is calculated by considering its variation along the direction of current flow (z) according to a power law. Accordingly, the effective properties of the homogeneous layers are estimated and the Post composed of this FG material is modeled using the commercially available ANSYS software. The solid 186 layered structural solid element has been used for discretization of the model of the FG Post. A thermal electric analysis is performed on the layered FG model. The model developed has been validated by comparing the results of the existing Post model& experimental analysis

Keywords: ANSYS, functionally graded material, lead-acid battery, terminal post

Procedia PDF Downloads 140
22096 Efficient Model Selection in Linear and Non-Linear Quantile Regression by Cross-Validation

Authors: Yoonsuh Jung, Steven N. MacEachern

Abstract:

Check loss function is used to define quantile regression. In the prospect of cross validation, it is also employed as a validation function when underlying truth is unknown. However, our empirical study indicates that the validation with check loss often leads to choosing an over estimated fits. In this work, we suggest a modified or L2-adjusted check loss which rounds the sharp corner in the middle of check loss. It has a large effect of guarding against over fitted model in some extent. Through various simulation settings of linear and non-linear regressions, the improvement of check loss by L2 adjustment is empirically examined. This adjustment is devised to shrink to zero as sample size grows.

Keywords: cross-validation, model selection, quantile regression, tuning parameter selection

Procedia PDF Downloads 438
22095 Qualitative and Quantitative Analysis of Motivation Letters to Model Turnover in Non-Governmental Organization

Authors: A. Porshnev, A. Zaporozhtchuk

Abstract:

Motivation regarded as a key factor of labor turnover, is especially important for volunteers working on an altruistic basis in NGO. Despite the motivational letter, candidate selection depends on the impression of the selection committee, which can be subject to human bias. We expect that structured and unstructured information provided in motivation letters could be used to improve candidate selection procedures. In our paper, we perform qualitative and quantitative analysis of 2280 motivation letters, create logistic regression, and build a decision tree to improve selection procedures. Our analysis showed that motivation factors are significant and enable human resources department to forecast labor turnover and provide extra information to demographic, professional and timing questions. In spite of the average level of accuracy the model demonstrates the selection procedures of company of under consideration can be improved. We also discuss interrelation between answers to open and closed motivation questions, recommend changes in motivational letter templates to ensure more relevant information about applicants and further steps to create more accurate model.

Keywords: decision trees, logistic regression, model, motivational letter, non-governmental organization, retention, turnover

Procedia PDF Downloads 177
22094 Merit Measures and Validation in Employee Evaluation and Selection

Authors: Wilson P. R. Malebye, Solly M. Seeletse

Abstract:

Applicants for space in selection problems are usually compared subjectively, and the selection made are not reliable and often cannot be verified scientifically. The paper illustrates objective selection by involving a mathematical measure in selecting a candidate applying for a job, and then using other two independent measures, validates the choice made. The scientific process followed is SToR (SAW, TOPSIS, WP) in which Simple Additive Weighting (SAW) is used to select, and the TOPSIS (technique for order preference by similarity to ideal solution) and weighted product (WP) are used to validate. A practical exercise was obtained from a factual selection problem in a recruitment task undertaken in an organization in which the authors consulted, and their Human Resources (HR) department wanted to check if their selection was justifiable. The result was that our approach was consistent and convincing to that HR, and theirs was not because our selection was satisfactory while theirs could not be corroborated using any method.

Keywords: candidate selection, SToR, SW, TOPSIS, WP

Procedia PDF Downloads 345
22093 Supplier Selection by Considering Cost and Reliability

Authors: K. -H. Yang

Abstract:

Supplier selection problem is one of the important issues of supply chain problems. Two categories of methodologies include qualitative and quantitative approaches which can be applied to supplier selection problems. However, due to the complexities of the problem and lacking of reliable and quantitative data, qualitative approaches are more than quantitative approaches. This study considers operational cost and supplier’s reliability factor and solves the problem by using a quantitative approach. A mixed integer programming model is the primary analytic tool. Analyses of different scenarios with variable cost and reliability structures show that the effectiveness of this approach to the supplier selection problem.

Keywords: mixed integer programming, quantitative approach, supplier’s reliability, supplier selection

Procedia PDF Downloads 384
22092 Partner Selection for Horizontal Logistic Cooperation

Authors: Mario Winkelhaus, Franz Vallée

Abstract:

Many companies see horizontal cooperation as a promising possibility to increase their efficiency in outbound logistics. The selection of suitable partners has particular importance in the formation of horizontal cooperation. Up until now, literature mainly focused on general applicable methods for the identification of cooperation partners without a closer examination of the specific area where the cooperation takes place. Thus, specific criteria as a basis for the partner selection in the field of logistics cooperation are missing. To close this scientific gap, an explorative research approach is used to answer the open question of the article. To collect the needed criteria, a qualitative experiment with 20 participants from 16 companies was done. Within this workshop, general criteria, as well as sector-specific requirements, have been identified which were integrated in a partner selection model.

Keywords: horizontal cooperation, logistics cooperation partnering criteria, partner selection

Procedia PDF Downloads 426
22091 Applicant Perceptions in Admission Process to Higher Education: The Influence of Social Anxiety

Authors: I. Diamant, R. Srouji

Abstract:

Applicant perceptions are attitudes, feelings, and cognitions which individuals have about selection procedures and have been mostly studied in the context of personnel selection. The main aim of the present study is to expand the understanding of applicant perceptions, using the framework of Organizational Justice Theory, in the domain of selection for higher education. The secondary aim is to explore the relationships between individual differences in social anxiety and applicants’ perceptions. The selection process is an accept/reject situation; it was hypothesized that applicants with higher social anxiety would experience negative perceptions and a lower success estimation, especially when subjected to social interaction elements in the process (interview and group simulation). Also, the effects of prior preparation and post-process explanations offered at the end of the selection process were explored. One hundred sixty psychology M.A. program applicants participated in this research, and following the selection process completed questionnaires measuring social anxiety, social exclusion, ratings on several justice dimensions for each of the methods in the selection process, feelings of success, and self-estimation of compatibility. About half of the applicants also received explanations regarding the significance and the aims of the selection process. Results provided support for most of our hypotheses: applicants with higher social anxiety experienced an increased level of social exclusion in the selection process, perceived the selection as less fair and ended with a lower feeling of success relative to those applicants without social anxiety. These relationships were especially salient in the selection procedures which included social interaction. Additionally, preparation for the selection process was positively related to the favorable perception of fairness in the selection process. Finally, contrary to our hypothesis, it was found that explanations did not affect the applicant’s perceptions. The results enhance our understanding of which factors affect applicant perceptions in applicants to higher education studies and contribute uniquely to the understanding of the effect of social anxiety on different aspects of selection experienced by applicants. The findings clearly show that some individuals may be predisposed to react unfavorably to certain selection situations. In an age of increasing awareness towards fairness in evaluation and selection and hiring procedures, these findings may be of relevance and may contribute to the design of future personnel selection methods in general and of higher education selection in particular.

Keywords: applicant perceptions, selection and assessment, organizational justice theory, social anxiety

Procedia PDF Downloads 151
22090 On-Line Data-Driven Multivariate Statistical Prediction Approach to Production Monitoring

Authors: Hyun-Woo Cho

Abstract:

Detection of incipient abnormal events in production processes is important to improve safety and reliability of manufacturing operations and reduce losses caused by failures. The construction of calibration models for predicting faulty conditions is quite essential in making decisions on when to perform preventive maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of process measurement data. The calibration model is used to predict faulty conditions from historical reference data. This approach utilizes variable selection techniques, and the predictive performance of several prediction methods are evaluated using real data. The results shows that the calibration model based on supervised probabilistic model yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.

Keywords: calibration model, monitoring, quality improvement, feature selection

Procedia PDF Downloads 357
22089 The Effect of Feature Selection on Pattern Classification

Authors: Chih-Fong Tsai, Ya-Han Hu

Abstract:

The aim of feature selection (or dimensionality reduction) is to filter out unrepresentative features (or variables) making the classifier perform better than the one without feature selection. Since there are many well-known feature selection algorithms, and different classifiers based on different selection results may perform differently, very few studies consider examining the effect of performing different feature selection algorithms on the classification performances by different classifiers over different types of datasets. In this paper, two widely used algorithms, which are the genetic algorithm (GA) and information gain (IG), are used to perform feature selection. On the other hand, three well-known classifiers are constructed, which are the CART decision tree (DT), multi-layer perceptron (MLP) neural network, and support vector machine (SVM). Based on 14 different types of datasets, the experimental results show that in most cases IG is a better feature selection algorithm than GA. In addition, the combinations of IG with DT and IG with SVM perform best and second best for small and large scale datasets.

Keywords: data mining, feature selection, pattern classification, dimensionality reduction

Procedia PDF Downloads 669
22088 Development of Graph-Theoretic Model for Ranking Top of Rail Lubricants

Authors: Subhash Chandra Sharma, Mohammad Soleimani

Abstract:

Selection of the correct lubricant for the top of rail application is a complex process. In this paper, the selection of the proper lubricant for a Top-Of-Rail (TOR) lubrication system based on graph theory and matrix approach has been developed. Attributes influencing the selection process and their influence on each other has been represented through a digraph and an equivalent matrix. A matrix function which is called the Permanent Function is derived. By substituting the level of inherent contribution of the influencing parameters and their influence on each other qualitatively, a criterion called Suitability Index is derived. Based on these indices, lubricants can be ranked for their suitability. The proposed model can be useful for maintenance engineers in selecting the best lubricant for a TOR application. The proposed methodology is illustrated step–by-step through an example.

Keywords: lubricant selection, top of rail lubrication, graph-theory, Ranking of lubricants

Procedia PDF Downloads 295
22087 Multi-Objective Evolutionary Computation Based Feature Selection Applied to Behaviour Assessment of Children

Authors: F. Jiménez, R. Jódar, M. Martín, G. Sánchez, G. Sciavicco

Abstract:

Abstract—Attribute or feature selection is one of the basic strategies to improve the performances of data classification tasks, and, at the same time, to reduce the complexity of classifiers, and it is a particularly fundamental one when the number of attributes is relatively high. Its application to unsupervised classification is restricted to a limited number of experiments in the literature. Evolutionary computation has already proven itself to be a very effective choice to consistently reduce the number of attributes towards a better classification rate and a simpler semantic interpretation of the inferred classifiers. We present a feature selection wrapper model composed by a multi-objective evolutionary algorithm, the clustering method Expectation-Maximization (EM), and the classifier C4.5 for the unsupervised classification of data extracted from a psychological test named BASC-II (Behavior Assessment System for Children - II ed.) with two objectives: Maximizing the likelihood of the clustering model and maximizing the accuracy of the obtained classifier. We present a methodology to integrate feature selection for unsupervised classification, model evaluation, decision making (to choose the most satisfactory model according to a a posteriori process in a multi-objective context), and testing. We compare the performance of the classifier obtained by the multi-objective evolutionary algorithms ENORA and NSGA-II, and the best solution is then validated by the psychologists that collected the data.

Keywords: evolutionary computation, feature selection, classification, clustering

Procedia PDF Downloads 371
22086 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings

Authors: Hyunchul Ahn, William X. S. Wong

Abstract:

Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.

Keywords: corporate credit rating prediction, Feature selection, genetic algorithms, instance selection, multiclass support vector machines

Procedia PDF Downloads 294
22085 Determining of Importance Level of Factors Affecting Job Selection with the Method of AHP

Authors: Nurullah Ekmekci, Ömer Akkaya, Kazım Karaboğa, Mahmut Tekin

Abstract:

Job selection is one of the most important decisions that affect their lives in the name of being more useful to themselves and the society. There are many criteria to consider in the job selection. The amount of criteria in the job selection makes it a multi-criteria decision-making (MCDM) problem. In this study; job selection has been discussed as multi-criteria decision-making problem and has been solved by Analytic Hierarchy Process (AHP), one of the multi-criteria decision making methods. A survey, contains 5 different job selection criteria (finding a job friendliness, salary status, job , social security, work in the community deems reputation and business of the degree of difficulty) within many job selection criteria and 4 different job alternative (being academician, working at the civil service, working at the private sector and working at in their own business), has been conducted to the students of Selcuk University Faculty of Economics and Administrative Sciences. As a result of pairwise comparisons, the highest weighted criteria in the job selection and the most coveted job preferences were identified.

Keywords: analytical hierarchy process, job selection, multi-criteria, decision making

Procedia PDF Downloads 400
22084 Developing an Out-of-Distribution Generalization Model Selection Framework through Impurity and Randomness Measurements and a Bias Index

Authors: Todd Zhou, Mikhail Yurochkin

Abstract:

Out-of-distribution (OOD) detection is receiving increasing amounts of attention in the machine learning research community, boosted by recent technologies, such as autonomous driving and image processing. This newly-burgeoning field has called for the need for more effective and efficient methods for out-of-distribution generalization methods. Without accessing the label information, deploying machine learning models to out-of-distribution domains becomes extremely challenging since it is impossible to evaluate model performance on unseen domains. To tackle this out-of-distribution detection difficulty, we designed a model selection pipeline algorithm and developed a model selection framework with different impurity and randomness measurements to evaluate and choose the best-performing models for out-of-distribution data. By exploring different randomness scores based on predicted probabilities, we adopted the out-of-distribution entropy and developed a custom-designed score, ”CombinedScore,” as the evaluation criterion. This proposed score was created by adding labeled source information into the judging space of the uncertainty entropy score using harmonic mean. Furthermore, the prediction bias was explored through the equality of opportunity violation measurement. We also improved machine learning model performance through model calibration. The effectiveness of the framework with the proposed evaluation criteria was validated on the Folktables American Community Survey (ACS) datasets.

Keywords: model selection, domain generalization, model fairness, randomness measurements, bias index

Procedia PDF Downloads 124
22083 Selection of Strategic Suppliers for Partnership: A Model with Two Stages Approach

Authors: Safak Isik, Ozalp Vayvay

Abstract:

Strategic partnerships with suppliers play a vital role for the long-term value-based supply chain. This strategic collaboration keeps still being one of the top priority of many business organizations in order to create more additional value; benefiting mainly from supplier’s specialization, capacity and innovative power, securing supply and better managing costs and quality. However, many organizations encounter difficulties in initiating, developing and managing those partnerships and many attempts result in failures. One of the reasons for such failure is the incompatibility of members of this partnership or in other words wrong supplier selection which emphasize the significance of the selection process since it is the beginning stage. An effective selection process of strategic suppliers is critical to the success of the partnership. Although there are several research studies to select the suppliers in literature, only a few of them is related to strategic supplier selection for long-term partnership. The purpose of this study is to propose a conceptual model for the selection of strategic partnership suppliers. A two-stage approach has been used in proposed model incorporating first segmentation and second selection. In the first stage; considering the fact that not all suppliers are strategically equal and instead of a long list of potential suppliers, Kraljic’s purchasing portfolio matrix can be used for segmentation. This supplier segmentation is the process of categorizing suppliers based on a defined set of criteria in order to identify types of suppliers and determine potential suppliers for strategic partnership. In the second stage, from a pool of potential suppliers defined at first phase, a comprehensive evaluation and selection can be performed to finally define strategic suppliers considering various tangible and intangible criteria. Since a long-term relationship with strategic suppliers is anticipated, criteria should consider both current and future status of the supplier. Based on an extensive literature review; strategical, operational and organizational criteria have been determined and elaborated. The result of the selection can also be used to determine suppliers who are not ready for a partnership but to be developed for strategic partnership. Since the model is based on multiple criteria for both stages, it provides a framework for further utilization of Multi-Criteria Decision Making (MCDM) techniques. The model may also be applied to a wide range of industries and involve managerial features in business organizations.

Keywords: Kraljic’s matrix, purchasing portfolio, strategic supplier selection, supplier collaboration, supplier partnership, supplier segmentation

Procedia PDF Downloads 239
22082 Proposal of a Model Supporting Decision-Making Based on Multi-Objective Optimization Analysis on Information Security Risk Treatment

Authors: Ritsuko Kawasaki (Aiba), Takeshi Hiromatsu

Abstract:

Management is required to understand all information security risks within an organization, and to make decisions on which information security risks should be treated in what level by allocating how much amount of cost. However, such decision-making is not usually easy, because various measures for risk treatment must be selected with the suitable application levels. In addition, some measures may have objectives conflicting with each other. It also makes the selection difficult. Moreover, risks generally have trends and it also should be considered in risk treatment. Therefore, this paper provides the extension of the model proposed in the previous study. The original model supports the selection of measures by applying a combination of weighted average method and goal programming method for multi-objective analysis to find an optimal solution. The extended model includes the notion of weights to the risks, and the larger weight means the priority of the risk.

Keywords: information security risk treatment, selection of risk measures, risk acceptance, multi-objective optimization

Procedia PDF Downloads 461