Search results for: permeability coefficient
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2680

Search results for: permeability coefficient

2470 Experimental Study on Floating Breakwater Anchored by Piles

Authors: Yessi Nirwana Kurniadi, Nira Yunita Permata

Abstract:

Coastline is vulnerable to coastal erosion which damage infrastructure and buildings. Floating breakwaters are applied in order to minimize material cost but still can reduce wave height. In this paper, we investigated floating breakwater anchored by piles based on experimental study in the laboratory with model scale 1:8. Two type of floating model were tested with several combination wave height, wave period and surface water elevation to determined transmission coefficient. This experimental study proved that floating breakwater with piles can prevent wave height up to 27 cm. The physical model shows that ratio of depth to wave length is less than 0.6 and ratio of model width to wave length is less than 0.3. It is confirmed that if those ratio are less than those value, the transmission coefficient is 0.5. The result also showed that the first type model of floating breakwater can reduce wave height by 60.4 % while the second one can reduce up to 55.56 %.

Keywords: floating breakwater, experimental study, pile, transimission coefficient

Procedia PDF Downloads 505
2469 Effect of Homogeneous and Heterogeneous Chemical Reactions on Peristaltic Flow of a Jeffrey Fluid in an Asymmetric Channel

Authors: G. Ravi Kiran, G. Radhakrishnamacharya

Abstract:

In this paper, the dispersion of a solute in the peristaltic flow of a Jeffrey fluid in the presence of both homogeneous and heterogeneous chemical reactions has been discussed. The average effective dispersion coefficient has been found using Taylor's limiting condition under long wavelength approximation. It is observed that the average dispersion coefficient increases with amplitude ratio which implies that dispersion is more in the presence of peristalsis. The average effective dispersion coefficient increases with Jeffrey parameter in the cases of both homogeneous and combined homogeneous and heterogeneous chemical reactions. Further, dispersion decreases with a phase difference, homogeneous reaction rate parameters, and heterogeneous reaction rate parameter.

Keywords: peristalsis, dispersion, chemical reaction, Jeffrey fluid, asymmetric channel

Procedia PDF Downloads 554
2468 Structure and Tribological Properties of Moisture Insensitivity Si Containing Diamond-Like Carbon Film

Authors: Mingjiang Dai, Qian Shi, Fang Hu, Songsheng Lin, Huijun Hou, Chunbei Wei

Abstract:

A diamond-like carbon (DLC) is considered as a promising protective film since its high hardness and excellent tribological properties. However, DLC films are very sensitive to the environmental condition, its friction coefficient could dramatic change in high humidity, therefore, limited their further application in aerospace, the watch industry, and micro/nano-electromechanical systems. Therefore, most studies focus on the low friction coefficient of DLC films at a high humid environment. However, this is out of satisfied in practical application. An important thing was ignored is that the DLC coated components are usually used in the diversed environment, which means its friction coefficient may evidently change in different humid condition. As a result, the invalidation of DLC coated components or even sometimes disaster occurred. For example, DLC coated minisize gears were used in the watch industry, and the customer may frequently transform their locations with different weather and humidity even in one day. If friction coefficient is not stable in dry and high moisture conditions, the watch will be inaccurate. Thus, it is necessary to investigate the stable tribological behavior of DLC films in various environments. In this study, a-C:H:Si films were deposited by multi-function magnetron sputtering system, containing one ion source device and a pair of SiC dual mid-frequent targets and two direct current Ti/C targets. Hydrogenated carbon layers were manufactured by sputtering the graphite target in argon and methane gasses. The silicon was doped in DLC coatings by sputtering silicon carbide targets and the doping content were adjusted by mid-frequent sputtering current. The microstructure of the film was characterized by Raman spectrometry, X-ray photoelectron spectroscopy, and transmission electron microscopy while its friction behavior under different humidity conditions was studied using a ball-on-disc tribometer. The a-C:H films with Si content from 0 to 17at.% were obtained and the influence of Si content on the structure and tribological properties under the relative humidity of 50% and 85% were investigated. Results show that the a-C:H:Si film has typical diamond-like characteristics, in which Si mainly existed in the form of Si, SiC, and SiO2. As expected, the friction coefficient of a-C:H films can be effectively changed after Si doping, from 0.302 to 0.176 in RH 50%. The further test shows that the friction coefficient value of a-C:H:Si film in RH 85% is first increase and then decrease as a function of Si content. We found that the a-C:H:Si films with a Si content of 3.75 at.% show a stable friction coefficient of 0.13 in different humidity environment. It is suggestion that the sp3/sp2 ratio of a-C:H films with 3.75 at.% Si was higher than others, which tend to form the silica-gel-like sacrificial layers during friction tests. Therefore, the films deliver stable low friction coefficient under controlled RH value of 50 and 85%.

Keywords: diamond-like carbon, Si doping, moisture environment, table low friction coefficient

Procedia PDF Downloads 337
2467 High-Temperature Tribological Characterization of Nano-Sized Silicon Nitride + 5% Boron Nitride Ceramic Composite

Authors: Mohammad Farooq Wani

Abstract:

Tribological studies on nano-sized ß-silicon nitride+5% BN were carried out in dry air at high temperatures to clarify the lack of consensus in the bibliographic data concerning the Tribological behavior of Si3N4 ceramics and effect of doped hexagonal boron nitride on coefficient of friction and wear coefficient at different loads and elevated temperatures. The composites were prepared via high energy mechanical milling and subsequent spark plasma sintering using Y2O3 and Al2O3 as sintering additives. After sintering, the average crystalline size of Si3N4 was observed to be 50 nm. Tribological tests were performed with temperature and Friction coefficients 0.16 to 1.183 and 0.54 to 0.71 were observed for Nano-sized ß-silicon nitride+5% BN composite under normal load of 10N-70 N and over high temperature range of 350 ºC-550 ºC respectively. Specific wear coefficients from 1.33x 10-4 mm3N-1m-1 to 4.42x 10-4 mm3N-1m-1 were observed for Nano-sized Si3N4 + 5% BN composite against Si3N4 ball as tribo-pair counterpart over high temperature range of 350 ºC-550 ºC while as under normal load of 10N to70N Specific wear coefficients of 6.91x 10-4 mm3N-1m-1 to 1.70x 10-4 were observed. The addition of BN to the Si3N4 composite resulted in a slight reduction of the friction coefficient and lower values of wear coefficient.

Keywords: ceramics, tribology, friction and wear, solid lubrication

Procedia PDF Downloads 347
2466 Thermal Expansion Coefficient and Young’s Modulus of Silica-Reinforced Epoxy Composite

Authors: Hyu Sang Jo, Gyo Woo Lee

Abstract:

In this study, the evaluation of thermal stability of the micrometer-sized silica particle reinforced epoxy composite was carried out through the measurement of thermal expansion coefficient and Young’s modulus of the specimens. For all the specimens in this study from the baseline to those containing 50 wt% silica filler, the thermal expansion coefficients and the Young’s moduli were gradually decreased down to 20% and increased up to 41%, respectively. The experimental results were compared with filler-volume-based simple empirical relations. The experimental results of thermal expansion coefficients correspond with those of Thomas’s model which is modified from the rule of mixture. However, the measured result for Young’s modulus tends to be increased slightly. The differences in increments of the moduli between experimental and numerical model data are quite large.

Keywords: thermal stability, silica-reinforced, epoxy composite, coefficient of thermal expansion, empirical model

Procedia PDF Downloads 269
2465 Simulation of Gamma Rays Attenuation Coefficient for Some common Shielding Materials Using Monte Carlo Program

Authors: Cherief Houria, Fouka Mourad

Abstract:

In this work, the simulation of the radiation attenuation is carried out in a photon detector consisting of different common shielding material using a Monte Carlo program called PTM. The aim of the study is to investigate the effect of atomic weight and the thickness of shielding materials on the gamma radiation attenuation ability. The linear attenuation coefficients of Aluminum (Al), Iron (Fe), and lead (Pb) elements were evaluated at photons energy of 661:7KeV that are considered to be emitted from a standard radioactive point source Cs 137. The experimental measurements have been performed for three materials to obtain these linear attenuation coefficients, using a Gamma NaI(Tl) scintillation detector. Our results have been compared with the simulation results of the linear attenuation coefficient using the XCOM database and Geant4 codes and reveal that they are well agreed with both simulation data.

Keywords: gamma photon, Monte Carlo program, radiation attenuation, shielding material, the linear attenuation coefficient

Procedia PDF Downloads 172
2464 Improvement of Camera Calibration Based on the Relationship between Focal Length and Aberration Coefficient

Authors: Guorong Sui, Xingwei Jia, Chenhui Yin, Xiumin Gao

Abstract:

In the processing of camera-based high precision and non-contact measurement, the geometric-optical aberration is always inevitably disturbing the measuring system. Moreover, the aberration is different with the different focal length, which will increase the difficulties of the system’s calibration. Therefore, to understand the relationship between the focal length as a function of aberration properties is a very important issue to the calibration of the measuring systems. In this study, we propose a new mathematics model, which is based on the plane calibration method by Zhang Zhengyou, and establish a relationship between the focal length and aberration coefficient. By using the mathematics model and carefully modified compensation templates, the calibration precision of the system can be dramatically improved. The experiment results show that the relative error is less than 1%. It is important for optoelectronic imaging systems that apply to measure, track and position by changing the camera’s focal length.

Keywords: camera calibration, aberration coefficient, vision measurement, focal length, mathematics model

Procedia PDF Downloads 330
2463 Effect of Multi-Stage Fractured Patterns on Production Improvement of Horizontal Wells

Authors: Armin Shirbazo, Mohammad Vahab, Hamed Lamei Ramandi, Jalal Fahimpour

Abstract:

One of the most effective ways for increasing production in wells that are faced with problems such as pressure depletion and low rate is hydraulic fracturing. Hydraulic fracturing is creating a high permeable path through the reservoir and simulated area around the wellbore. This is very important for low permeability reservoirs, which their production is uneconomical. In this study, the influence of the fracturing pattern in multi-stage fractured horizontal wells is analyzed for a tight, heavy oil reservoir to explore the impact of fracturing patterns on improving oil recovery. The horizontal well has five transverse fractures with the same fracture length, width, height, and conductivity properties. The fracture patterns are divided into four distinct shapes: uniform shape, diamond shape, U shape, and W shape. The results show that different fracturing patterns produce various cumulative production after ten years, and the best pattern can be selected based on the most cumulative production. The result also illustrates that optimum design in fracturing can boost the production up to 3% through the permeability distribution around the wellbore and reservoir.

Keywords: multi-stage fracturing, horizontal well, fracture patterns, fracture length, number of stages

Procedia PDF Downloads 189
2462 Effect of Modeling of Hydraulic Form Loss Coefficient to Break on Emergency Core Coolant Bypass

Authors: Young S. Bang, Dong H. Yoon, Seung H. Yoo

Abstract:

Emergency Core Coolant Bypass (ECC Bypass) has been regarded as an important phenomenon to peak cladding temperature of large-break loss-of-coolant-accidents (LBLOCA) in nuclear power plants (NPP). A modeling scheme to address the ECC Bypass phenomena and the calculation of LBLOCA using that scheme are discussed in the present paper. A hydraulic form loss coefficient (HFLC) from the reactor vessel downcomer to the broken cold leg is predicted by the computational fluid dynamics (CFD) code with a variation of the void fraction incoming from the downcomer. The maximum, mean, and minimum values of FLC are derived from the CFD results and are incorporated into the LBLOCA calculation using a system thermal-hydraulic code, MARS-KS. As a relevant parameter addressing the ECC Bypass phenomena, the FLC to the break and its range are proposed.

Keywords: CFD analysis, ECC bypass, hydraulic form loss coefficient, system thermal-hydraulic code

Procedia PDF Downloads 200
2461 Adobe Attenuation Coefficient Determination and Its Comparison with Other Shielding Materials for Energies Found in Common X-Rays Procedures

Authors: Camarena Rodriguez C. S., Portocarrero Bonifaz A., Palma Esparza R., Romero Carlos N. A.

Abstract:

Adobe is a construction material that fulfills the same function as a conventional brick. Widely used since ancient times, it is present in an appreciable percentage of buildings in Latin America. Adobe is a mixture of clay and sand. The interest in the study of the properties of this material arises due to its presence in the infrastructure of hospital´s radiological services, located in places with low economic resources, for the attenuation of radiation. Some materials such as lead and concrete are the most used for shielding and are widely studied in the literature. The present study will determine the mass attenuation coefficient of Adobe. The minimum required thicknesses for the primary and secondary barriers will be estimated for the shielding of radiological facilities where conventional and dental X-rays are performed. For the experimental procedure, an X-ray source emitted direct radiation towards different thicknesses of an Adobe barrier, and a detector was placed on the other side. For this purpose, an UNFORS Xi solid state detector was used, which collected information on the difference of radiation intensity. The initial parameters of the exposure started at 45 kV; and then the tube tension was varied in increments of 5 kV, reaching a maximum of 125 kV. The X-Ray tube was positioned at a distance of 0.5 m from the surface of the Adobe bricks, and the collimation of the radiation beam was set for an area of 0.15 m x 0.15 m. Finally, mathematical methods were applied to determine the mass attenuation coefficient for different energy ranges. In conclusion, the mass attenuation coefficient for Adobe was determined and the approximate thicknesses of the most common Adobe barriers in the hospital buildings were calculated for their later application in the radiological protection.

Keywords: Adobe, attenuation coefficient, radiological protection, shielding, x-rays

Procedia PDF Downloads 131
2460 Optimization of Acid Treatments by Assessing Diversion Strategies in Carbonate and Sandstone Formations

Authors: Ragi Poyyara, Vijaya Patnana, Mohammed Alam

Abstract:

When acid is pumped into damaged reservoirs for damage removal/stimulation, distorted inflow of acid into the formation occurs caused by acid preferentially traveling into highly permeable regions over low permeable regions, or (in general) into the path of least resistance. This can lead to poor zonal coverage and hence warrants diversion to carry out an effective placement of acid. Diversion is desirably a reversible technique of temporarily reducing the permeability of high perm zones, thereby forcing the acid into lower perm zones. The uniqueness of each reservoir can pose several challenges to engineers attempting to devise optimum and effective diversion strategies. Diversion techniques include mechanical placement and/or chemical diversion of treatment fluids, further sub-classified into ball sealers, bridge plugs, packers, particulate diverters, viscous gels, crosslinked gels, relative permeability modifiers (RPMs), foams, and/or the use of placement techniques, such as coiled tubing (CT) and the maximum pressure difference and injection rate (MAPDIR) methodology. It is not always realized that the effectiveness of diverters greatly depends on reservoir properties, such as formation type, temperature, reservoir permeability, heterogeneity, and physical well characteristics (e.g., completion type, well deviation, length of treatment interval, multiple intervals, etc.). This paper reviews the mechanisms by which each variety of diverter functions and discusses the effect of various reservoir properties on the efficiency of diversion techniques. Guidelines are recommended to help enhance productivity from zones of interest by choosing the best methods of diversion while pumping an optimized amount of treatment fluid. The success of an overall acid treatment often depends on the effectiveness of the diverting agents.

Keywords: diversion, reservoir, zonal coverage, carbonate, sandstone

Procedia PDF Downloads 394
2459 Simulation of Reflection Loss for Carbon and Nickel-Carbon Thin Films

Authors: M. Emami, R. Tarighi, R. Goodarzi

Abstract:

Maximal radar wave absorbing cannot be achieved by shaping alone. We have to focus on the parameters of absorbing materials such as permittivity, permeability, and thickness so that best absorbing according to our necessity can happen. The real and imaginary parts of the relative complex permittivity (εr' and εr") and permeability (µr' and µr") were obtained by simulation. The microwave absorbing property of carbon and Ni(C) is simulated in this study by MATLAB software; the simulation was in the frequency range between 2 to 12 GHz for carbon black (C), and carbon coated nickel (Ni(C)) with different thicknesses. In fact, we draw reflection loss (RL) for C and Ni-C via frequency. We have compared their absorption for 3-mm thickness and predicted for other thicknesses by using of electromagnetic wave transmission theory. The results showed that reflection loss position changes in low frequency with increasing of thickness. We found out that, in all cases, using nanocomposites as absorbance cannot get better results relative to pure nanoparticles. The frequency where absorption is maximum can determine the best choice between nanocomposites and pure nanoparticles. Also, we could find an optimal thickness for long wavelength absorbing in order to utilize them in protecting shields and covering.

Keywords: absorbing, carbon, carbon nickel, frequency, thicknesses

Procedia PDF Downloads 153
2458 Prediction of Fracture Aperture in Fragmented Rocks

Authors: Hossein Agheshlui, Stephan Matthai

Abstract:

In fractured rock masses open fractures tend to act as the main pathways of fluid flow. The permeability of a rock fracture depends on its aperture. The change of aperture with stress can cause a many-orders-of-magnitude change in the hydraulic conductivity at moderate compressive stress levels. In this study, the change of aperture in fragmented rocks is investigated using finite element analysis. A full 3D mechanical model of a simplified version of an outcrop analog is created and studied. A constant initial aperture value is applied to all fractures. Different far field stresses are applied and the change of aperture is monitored considering the block to block interaction. The fragmented rock layer is assumed to be sandwiched between softer layers. Frictional contact forces are defined at the layer boundaries as well as among contacting rock blocks. For a given in situ stress, the blocks slide and contact each other, resulting in new aperture distributions. A map of changed aperture is produced after applying the in situ stress and compared to the initial apertures. Subsequently, the permeability of the system before and after the stress application is compared.

Keywords: fractured rocks, mechanical model, aperture change due to stress, frictional interface

Procedia PDF Downloads 386
2457 Analysis of Vortex-Induced Vibration Characteristics for a Three-Dimensional Flexible Tube

Authors: Zhipeng Feng, Huanhuan Qi, Pingchuan Shen, Fenggang Zang, Yixiong Zhang

Abstract:

Numerical simulations of vortex-induced vibration of a three-dimensional flexible tube under uniform turbulent flow are calculated when Reynolds number is 1.35×104. In order to achieve the vortex-induced vibration, the three-dimensional unsteady, viscous, incompressible Navier-Stokes equation and LES turbulence model are solved with the finite volume approach, the tube is discretized according to the finite element theory, and its dynamic equilibrium equations are solved by the Newmark method. The fluid-tube interaction is realized by utilizing the diffusion-based smooth dynamic mesh method. Considering the vortex-induced vibration system, the variety trends of lift coefficient, drag coefficient, displacement, vertex shedding frequency, phase difference angle of tube are analyzed under different frequency ratios. The nonlinear phenomena of locked-in, phase-switch are captured successfully. Meanwhile, the limit cycle and bifurcation of lift coefficient and displacement are analyzed by using trajectory, phase portrait, and Poincaré sections. The results reveal that: when drag coefficient reaches its minimum value, the transverse amplitude reaches its maximum, and the “lock-in” begins simultaneously. In the range of lock-in, amplitude decreases gradually with increasing of frequency ratio. When lift coefficient reaches its minimum value, the phase difference undergoes a suddenly change from the “out-of-phase” to the “in-phase” mode.

Keywords: vortex induced vibration, limit cycle, LES, CFD, FEM

Procedia PDF Downloads 253
2456 A CFD Study of the Performance Characteristics of Vented Cylinders as Vortex Generators

Authors: R. Kishan, R. M. Sumant, S. Suhas, Arun Mahalingam

Abstract:

This paper mainly researched on influence of vortex generator on lift coefficient and drag coefficient, when vortex generator is mounted on a flat plate. Vented cylinders were used as vortex generators which intensify vortex shedding in the wake of the vented cylinder as compared to base line circular cylinder which ensures more attached flow and increases lift force of the system. Firstly vented cylinders were analyzed in commercial CFD software which is compared with baseline cylinders for different angles of attack and further variation of lift and drag forces were studied by varying Reynolds number to account for influence of turbulence and boundary layer in the flow. Later vented cylinders were mounted on a flat plate and variation of lift and drag coefficients was studied by varying angles of attack and studying the dependence of Reynolds number and dimensions of vortex generator on the coefficients. Mesh grid sensitivity is studied to check the convergence of the results obtained It was found that usage of vented cylinders as vortex generators increased lift forces with small variation in drag forces by varying angle of attack.

Keywords: CFD analysis, drag coefficient, FVM, lift coefficient, modeling, Reynolds number, simulation, vortex generators, vortex shedding

Procedia PDF Downloads 406
2455 Multilayer Thermal Screens for Greenhouse Insulation

Authors: Clara Shenderey, Helena Vitoshkin, Mordechai Barak, Avraham Arbel

Abstract:

Greenhouse cultivation is an energy-intensive process due to the high demands on cooling or heating according to external climatic conditions, which could be extreme in the summer or winter seasons. The thermal radiation rate inside a greenhouse depends mainly on the type of covering material and greenhouse construction. Using additional thermal screens under a greenhouse covering combined with a dehumidification system improves the insulation and could be cost-effective. Greenhouse covering material usually contains protective ultraviolet (UV) radiation additives to prevent the film wear, insect harm, and crop diseases. This paper investigates the overall heat transfer coefficient, or U-value, for greenhouse polyethylene covering contains UV-additives and glass covering with or without a thermal screen supplement. The hot-box method was employed to evaluate overall heat transfer coefficients experimentally as a function of the type and number of the thermal screens. The results show that the overall heat transfer coefficient decreases with increasing the number of thermal screens as a hyperbolic function. The overall heat transfer coefficient highly depends on the ability of the material to reflect thermal radiation. Using a greenhouse covering, i.e., polyethylene films or glass, in combination with high reflective thermal screens, i.e., containing about 98% of aluminum stripes or aluminum foil, the U-value reduces by 61%-89% in the first case, whereas by 70%-92% in the second case, depending on the number of the thermal screen. Using thermal screens made from low reflective materials may reduce the U-value by 30%-57%. The heat transfer coefficient is an indicator of the thermal insulation properties of the materials, which allows farmers to make decisions on the use of appropriate thermal screens depending on the external and internal climate conditions in a greenhouse.

Keywords: energy-saving thermal screen, greenhouse cover material, heat transfer coefficient, hot box

Procedia PDF Downloads 118
2454 Effect of Al Addition on Microstructure and Physical Properties of Fe-36Ni Invar Alloy

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

High strength Fe-36Ni-base Invar alloys containing Al contents up to 0.3 weight percent were cast into ingots and thermodynamic equilibrium during solidification has been investigated in this study. From the thermodynamic simulation using Thermo-Calc®, it has been revealed that equilibrium phases which can be formed are two kinds of MC-type precipitates, MoC, and M2C carbides. The mu phase was also expected to form by addition of aluminum. Microstructure observation revealed the coarse precipitates in the as-cast ingots, which was non-equilibrium phase and could be resolved by the successive heat treatment. With increasing Al contents up to 0.3 wt.%, tensile strength of Invar alloy increased as 1400MPa after cold rolling and thermal expansion coefficient increased significantly. Cold rolling appeared to dramatically decrease thermal expansion coefficient.

Keywords: invar alloy, aluminum, phase equilibrium, thermal expansion coefficient, microstructure, tensile properties

Procedia PDF Downloads 335
2453 Unconventional Composite Inorganic Membrane Fabrication for Carbon Emissions Mitigation

Authors: Ngozi Nwogu, Godson Osueke, Mamdud Hossain, Edward Gobina

Abstract:

An unconventional composite inorganic ceramic membrane capable in carbon dioxide emission decline was fabricated and tested at laboratory scale to develop in conformism to various environmental guidelines to mitigate the effect of global warming. A review of the existing membrane technologies for carbon capture including the relevant gas transport mechanisms are presented and discussed. Single gas separation experiments using silica modified ceramic membrane with internal diameter 20mm, outside diameter 25mm and length of 368mm deposited on a macro porous supported reactor.was carried out to investigate individual gas permeation behaviours at different pressures and membrane efficiency after a dip coating method. Nitrogen, Carbon dioxide, Argon, Oxygen and Methane pure gases were used to investigate their individual permeation rates at various pressures. Results show that the gas flow rate increases with pressure drop. However at above a pressure of 3bar, CO2 permeability ratio to than the other gases indicated control of a more selective surface adsorptive transport mechanism.

Keywords: carbon dioxide, composite membranes, permeability, transport mechanisms

Procedia PDF Downloads 477
2452 Comparison of Entropy Coefficient and Internal Resistance of Two (Used and Fresh) Cylindrical Commercial Lithium-Ion Battery (NCR18650) with Different Capacities

Authors: Sara Kamalisiahroudi, Zhang Jianbo, Bin Wu, Jun Huang, Laisuo Su

Abstract:

The temperature rising within a battery cell depends on the level of heat generation, the thermal properties and the heat transfer around the cell. The rising of temperature is a serious problem of Lithium-Ion batteries and the internal resistance of battery is the main reason for this heating up, so the heat generation rate of the batteries is an important investigating factor in battery pack design. The delivered power of a battery is directly related to its capacity, decreases in the battery capacity means the growth of the Solid Electrolyte Interface (SEI) layer which is because of the deposits of lithium from the electrolyte to form SEI layer that increases the internal resistance of the battery. In this study two identical cylindrical Lithium-Ion (NCR18650)batteries from the same company with noticeable different in capacity (a fresh and a used battery) were compared for more focusing on their heat generation parameters (entropy coefficient and internal resistance) according to Brandi model, by utilizing potentiometric method for entropy coefficient and EIS method for internal resistance measurement. The results clarify the effect of capacity difference on cell electrical (R) and thermal (dU/dT) parameters. It can be very noticeable in battery pack design for its Safety.

Keywords: heat generation, Solid Electrolyte Interface (SEI), potentiometric method, entropy coefficient

Procedia PDF Downloads 436
2451 Sliding Velocity in Impact with Friction in Three-Dimensional Multibody Systems

Authors: Hesham A. Elkaranshawy, Amr Abdelrazek, Hosam Ezzat

Abstract:

This paper analyzes a single point rough collision in three dimensional rigid-multibody systems. A set of nonlinear different equations describing the progress and outcome of the impact are obtained. Specifically in case of the tangential, referred to as sliding, component of impact velocity is of great importance. Numerical methods are used to solve this problem. In this work, all these possible sliding behaviors during impact are identified, conditions leading to each behavior are specified, and an appropriate numerical procedure is suggested. A case of a four-degrees-of-freedom spatial robot that collides with its environment is investigated. The phase portrait of the tangential velocity, which presents the flow trajectories for different initial conditions, is calculated. Using the coefficient of friction as a control parameter, few phase portraits are drawn, each for a specific value of this coefficient. In addition, the bifurcation associated with the variation of this coefficient will be investigated.

Keywords: friction impact, three-dimensional rigid multibody systems, sliding velocity, nonlinear ordinary differential equations, phase portrait

Procedia PDF Downloads 355
2450 Effect of Shrinkage on Heat and Mass Transfer Parameters of Solar Dried Potato Samples of Variable Diameter

Authors: Kshanaprava Dhalsamant, Punyadarshini P. Tripathy, Shanker L. Shrivastava

Abstract:

Potato is chosen as the food product for carrying out the natural convection mixed-mode solar drying experiments since they are easily available and globally consumed. The convective heat and mass transfer coefficients along with effective diffusivity were calculated considering both shrinkage and without shrinkage for the potato cylinders of different geometry (8, 10 and 13 mm diameters and a constant length of 50 mm). The convective heat transfer coefficient (hc) without considering shrinkage effect were 24.28, 18.69, 15.89 W/m2˚C and hc considering shrinkage effect were 37.81, 29.21, 25.72 W/m2˚C for 8, 10 and 13 mm diameter samples respectively. Similarly, the effective diffusivity (Deff) without considering shrinkage effect were 3.20×10-9, 4.82×10-9, 2.48×10-8 m2/s and Deff considering shrinkage effect were 1.68×10-9, 2.56×10-9, 1.34×10-8 m2/s for 8, 10 and 13 mm diameter samples respectively and the mass transfer coefficient (hm) without considering the shrinkage effect were 5.16×10-7, 2.93×10-7, 2.59×10-7 m/s and hm considering shrinkage effect were 3.71×10-7, 2.04×10-7, 1.80×10-7 m/s for 8, 10 and 13 mm diameter samples respectively. Increased values of hc were obtained by considering shrinkage effect in all diameter samples because shrinkage results in decreasing diameter with time achieving in enhanced rate of water loss. The average values of Deff determined without considering the shrinkage effect were found to be almost double that with shrinkage effect. The reduction in hm values is due to the fact that with increasing sample diameter, the exposed surface area per unit mass decreases, resulting in a slower moisture removal. It is worth noting that considering shrinkage effect led to overestimation of hc values in the range of 55.72-61.86% and neglecting the shrinkage effect in the mass transfer analysis, the values of Deff and hm are overestimated in the range of 85.02-90.27% and 39.11-45.11%, respectively, for the range of sample diameter investigated in the present study.

Keywords: shrinkage, convective heat transfer coefficient, effectivive diffusivity, convective mass transfer coefficient

Procedia PDF Downloads 219
2449 A New Modification of Nonlinear Conjugate Gradient Coefficients with Global Convergence Properties

Authors: Ahmad Alhawarat, Mustafa Mamat, Mohd Rivaie, Ismail Mohd

Abstract:

Conjugate gradient method has been enormously used to solve large scale unconstrained optimization problems due to the number of iteration, memory, CPU time, and convergence property, in this paper we find a new class of nonlinear conjugate gradient coefficient with global convergence properties proved by exact line search. The numerical results for our new βK give a good result when it compared with well-known formulas.

Keywords: conjugate gradient method, conjugate gradient coefficient, global convergence

Procedia PDF Downloads 414
2448 A Fractional Derivative Model to Quantify Non-Darcy Flow in Porous and Fractured Media

Authors: Golden J. Zhang, Dongbao Zhou

Abstract:

Darcy’s law is the fundamental theory in fluid dynamics and engineering applications. Although Darcy linearity was found to be valid for slow, viscous flow, non-linear and non-Darcian flow has been well documented under both small and large velocity fluid flow. Various classical models were proposed and used widely to quantify non-Darcian flow, including the well-known Forchheimer, Izbash, and Swartzendruber models. Applications, however, revealed limitations of these models. Here we propose a general model built upon the Caputo fractional derivative to quantify non-Darcian flow for various flows (laminar to turbulence).Real-world applications and model comparisons showed that the new fractional-derivative model, which extends the fractional model proposed recently by Zhou and Yang (2018), can capture the non-Darcian flow in the relatively small velocity in low-permeability deposits and the relatively high velocity in high-permeability sand. A scale effect was also identified for non-Darcian flow in fractured rocks. Therefore, fractional calculus may provide an efficient tool to improve classical models to quantify fluid dynamics in aquatic environments.

Keywords: fractional derivative, darcy’s law, non-darcian flow, fluid dynamics

Procedia PDF Downloads 88
2447 Water Equivalent from the Point of View of Fast Neutron Removal Cross-Section

Authors: Mohammed Alrajhi

Abstract:

Radiological properties of gel dosimeters and phantom materials are often evaluated in terms of effective atomic number, electron density, photon mass attenuation coefficient, photon mass energy absorption coefficient and total stopping power of electrons. To evaluate the water equivalence of such materials for fast neutron attenuation 19 different types of gel dosimeters and phantom materials were considered. Macroscopic removal cross-sections for fast neutrons (ΣR cm-1) have been calculated for a range of ferrous-sulphate and polymeric gel dosimeters using Nxcom Program. The study showed that the value of ΣR/ρ (cm2.g-1) for all polymer gels were in close agreement (1.5- 2.8%) with that of water. As such, the slight differences in ΣR/ρ between water and gels are small and may be considered negligible. Also, the removal cross-section of the studied phantom materials were very close (~ ±1.5%) to that of water except bone (cortical) which had about 38% variation. Finally, the variation of removal cross-section with hydrogen content was studied.

Keywords: cross-section, neutron, photon, coefficient, mathematics

Procedia PDF Downloads 348
2446 Effect of Fractional Flow Curves on the Heavy Oil and Light Oil Recoveries in Petroleum Reservoirs

Authors: Abdul Jamil Nazari, Shigeo Honma

Abstract:

This paper evaluates and compares the effect of fractional flow curves on the heavy oil and light oil recoveries in a petroleum reservoir. Fingering of flowing water is one of the serious problems of the oil displacement by water and another problem is the estimation of the amount of recover oil from a petroleum reservoir. To address these problems, the fractional flow of heavy oil and light oil are investigated. The fractional flow approach treats the multi-phases flow rate as a total mixed fluid and then describes the individual phases as fractional of the total flow. Laboratory experiments are implemented for two different types of oils, heavy oil, and light oil, to experimentally obtain relative permeability and fractional flow curves. Application of the light oil fractional curve, which exhibits a regular S-shape, to the water flooding method showed that a large amount of mobile oil in the reservoir is displaced by water injection. In contrast, the fractional flow curve of heavy oil does not display an S-shape because of its high viscosity. Although the advance of the injected waterfront is faster than in light oil reservoirs, a significant amount of mobile oil remains behind the waterfront.

Keywords: fractional flow, relative permeability, oil recovery, water fingering

Procedia PDF Downloads 273
2445 Characteristics of Edible Film Made from Skin and Bone Fish Gelatin, Spotted Oceanic Triggerfish (Canthidermis maculata) and Tilapia Fish (Oreochromis niloticus)

Authors: Normalina Arpi, Fahrizal Fahrizal, Dewi Yunita

Abstract:

Edible films can increase the shelf life of various food products by acting as water, oxygen, and lipid barrier. Fish gelatin as a film-forming agent has unique characteristics but varies depending on fish species. The purpose of this research is to characterize edible film made using skin and bone fish gelatin with the addition of plasticizer. Gelatin of spotted oceanic triggerfish (Canthidermis maculata) and tilapia (Oreochromis niloticus) were used. Glycerol and sorbitol with concentration of 0.25 and 0.5 % were added as a plasticizer. Spotted oceanic triggerfish gelatin with sorbitol resulted film with higher tensile strength and oxygen permeability, whereas tilapia gelatin with glycerol produced an edible film with higher elongation and water vapor permeability. The edible film made of spotted oceanic triggerfish gelatin and 0.25% sorbitol had the best characteristics.

Keywords: edible film, fish gelatin , glycerol, sorbitol

Procedia PDF Downloads 131
2444 Estimation of the Upper Tail Dependence Coefficient for Insurance Loss Data Using an Empirical Copula-Based Approach

Authors: Adrian O'Hagan, Robert McLoughlin

Abstract:

Considerable focus in the world of insurance risk quantification is placed on modeling loss values from lines of business (LOBs) that possess upper tail dependence. Copulas such as the Joe, Gumbel and Student-t copula may be used for this purpose. The copula structure imparts a desired level of tail dependence on the joint distribution of claims from the different LOBs. Alternatively, practitioners may possess historical or simulated data that already exhibit upper tail dependence, through the impact of catastrophe events such as hurricanes or earthquakes. In these circumstances, it is not desirable to induce additional upper tail dependence when modeling the joint distribution of the loss values from the individual LOBs. Instead, it is of interest to accurately assess the degree of tail dependence already present in the data. The empirical copula and its associated upper tail dependence coefficient are presented in this paper as robust, efficient means of achieving this goal.

Keywords: empirical copula, extreme events, insurance loss reserving, upper tail dependence coefficient

Procedia PDF Downloads 261
2443 Calculation Analysis of an Axial Compressor Supersonic Stage Impeller

Authors: Y. Galerkin, E. Popova, K. Soldatova

Abstract:

There is an evident trend to elevate pressure ratio of a single stage of a turbo compressors - axial compressors in particular. Whilst there was an opinion recently that a pressure ratio 1,9 was a reasonable limit, later appeared information on successful modeling tested of stages with pressure ratio up to 2,8. The Authors recon that lack of information on high pressure stages makes actual a study of rational choice of design parameters before high supersonic flow problems solving. The computer program of an engineering type was developed. Below is presented a sample of its application to study possible parameters of the impeller of the stage with pressure ratio π*=3,0. Influence of two main design parameters on expected efficiency, periphery blade speed and flow structure is demonstrated. The results had lead to choose a variant for further analysis and improvement by CFD methods.

Keywords: supersonic stage, impeller, efficiency, flow rate coefficient, work coefficient, loss coefficient, oblique shock, direct shock

Procedia PDF Downloads 439
2442 Development of Al-5%Cu/Si₃N₄, B₄C or BN Composites for Piston Applications

Authors: Ahmed Lotfy, Andrey V. Pozdniakov, Vadim C. Zolotorevskiy

Abstract:

The purpose of this research is to provide a competitive alternative to aluminum silicon alloys used in automotive applications. This alternative was created by developing three types of composites Al-5%Cu- (B₄C, BN or Si₃N₄) particulates with a low coefficient of thermal expansion. Stir casting was used to synthesis composites containing 2, 5 and 7 wt. % of B₄C, Si₃N₄ and 2, 5 of BN followed by squeeze casting. The squeeze casting process decreased the porosity of the final composites. The composites exhibited a fairly uniform particle distribution throughout the matrix alloy. The microstructure and XRD results of the composites suggested a significant reaction occurred at the interface between the particles and alloy. Increasing the aging temperature from 200 to 250°C decreased the hardness values of the matrix and the composites and decreased the time required to reach the peak. Turner model was used to calculate the expected values of thermal expansion coefficient CTE of matrix and its composites. Deviations between calculated and experimental values of CTE were not exceeded 10%. Al-5%Cu-B₄C composites experimentally showed the lowest values of CTE (17-19)·10-6 °С-1 and (19-20) ·10-6 °С-1 in the temperature range 20-100 °С and 20-200 °С respectively.

Keywords: aluminum matrix composites, coefficient of thermal expansion, X-ray diffraction, squeeze casting, electron microscopy,

Procedia PDF Downloads 371
2441 Wear and Fraction Behavior of Porcelain Coated with Polyurethane/SiO2 Coating Layer

Authors: Ching Yern Chee

Abstract:

Various loading of nano silica is added into polyurethane (PU) and then coated on porcelain substrate. The wear and friction properties of the porcelain substrates coated with polyurethane/nano silica nano composite coatings were investigated using the reciprocating wear testing machine. The friction and wear test of polyurethane/nano silica coated porcelain substrate was studied at different sliding speed and applied load. It was found that the optimum composition of nano silica is 3 wt% which gives the lowest friction coefficient and wear rate in all applied load ranges and sliding speeds. For 3 wt% nano silica filled PU coated porcelain substrate, the increment of sliding speed caused higher wear rates but lower frictions coefficient. Besides, the friction coefficient of nano silica filled PU coated porcelain substrate decreased but the wear rate increased with the applied load.

Keywords: porcelain, nanocomposite coating, morphology, friction, wear behavior

Procedia PDF Downloads 501