Search results for: permanent ground displacement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3400

Search results for: permanent ground displacement

3130 Delineating Concern Ground in Block Caving – Underground Mine Using Ground Penetrating Radar

Authors: Eric Sitorus, Septian Prahastudhi, Turgod Nainggolan, Erwin Riyanto

Abstract:

Mining by block or panel caving is a mining method that takes advantage of fractures within an ore body, coupled with gravity, to extract material from a predetermined column of ore. The caving column is weakened from beneath through the use of undercutting, after which the ore breaks up and is extracted from below in a continuous cycle. The nature of this method induces cyclical stresses on the pillars of excavations as stress is built up and released over time, which has a detrimental effect on both the installed ground support and the rock mass itself. Ground support capacity, especially on the production where excavation void ratio is highest, is subjected to heavy loading. Strain above threshold of the elongation of support capacity can yield resulting in damage to excavations. Geotechnical engineers must evaluate not only the remnant capacity of ground support systems but also investigate depth of rock mass yield within pillars, backs and floors. Ground Penetrating Radar (GPR) is a geophysical method that has the ability to evaluate rock mass damage using electromagnetic waves. This paper illustrates a case study from the Grasberg mining complex where non-invasive information on the depth of damage and condition of the remaining rock mass was required. GPR with 100 MHz antenna resolution was used to obtain images of the subsurface to determine rehabilitation requirements prior to recommencing production activities. The GPR surveys were used to calibrate the reflection coefficient response of varying rock mass conditions to known Rock Quality Designation (RQD) parameters observed at the mine. The calibrated GPR survey allowed site engineers to map subsurface conditions and plan rehabilitation accordingly.

Keywords: block caving, ground penetrating radar, reflectivity, RQD

Procedia PDF Downloads 107
3129 Study of Ambient Air Quality on Building's Roof of Dhaka City

Authors: Koninika Tanzim

Abstract:

The gaseous pollutants, SO2, NO2, CO and O3 affect the environment of Dhaka City. These pollutants are mainly released from stationary sources, like, fossil-fueled, power plants, industrial units and brickfields around the city. Suspended particulate matters including PM10 and PM2.5 are also contributing to air pollution in Dhaka City. SO2, NO2 and O3 are determined by using UV and visible spectrophotometry. The sensor type devised has been used for the determination of CO in ambient air. Lead in the suspended particulate matter was determined by using atomic absorption spectrometry. The samples were collected at ground level and on the roof of a seven-storied building. For all the criteria pollutants, the concentration at the roof was found to the lower than that at the ground level. The average concentration of PM10 and PM2.5 were found to the 241.5 and 81.1 mg/m3 at the ground level. On the roof of a 7 storied building was however 49.99 mg/m3 and 25.88 mg/m3 for PM10 and PM2.5 respectively. The concentration of Pb varied from 0.011 to 0.04 mg/m3 at the ground level. The values for Pb at the roof level were significantly lower. The values for SO2, NO2, CO and O3 were found to be higher than the USEPA values.

Keywords: gaseous air pollutant, PM, lead, gravimetry, spectrophotometry, atomic absorption, ambient air quality

Procedia PDF Downloads 386
3128 Effect of Type of Pile and Its Installation Method on Pile Bearing Capacity by Physical Modelling in Frustum Confining Vessel

Authors: Seyed Abolhasan Naeini, M. Mortezaee

Abstract:

Various factors such as the method of installation, the pile type, the pile material and the pile shape, can affect the final bearing capacity of a pile executed in the soil; among them, the method of installation is of special importance. The physical modeling is among the best options in the laboratory study of the piles behavior. Therefore, the current paper first presents and reviews the frustum confining vesel (FCV) as a suitable tool for physical modeling of deep foundations. Then, by describing the loading tests of two open-ended and closed-end steel piles, each of which has been performed in two methods, “with displacement" and "without displacement", the effect of end conditions and installation method on the final bearing capacity of the pile is investigated. The soil used in the current paper is silty sand of Firoozkooh. The results of the experiments show that in general the without displacement installation method has a larger bearing capacity in both piles, and in a specific method of installation the closed ended pile shows a slightly higher bearing capacity.

Keywords: physical modeling, frustum confining vessel, pile, bearing capacity, installation method

Procedia PDF Downloads 110
3127 Ground Response Analyses in Budapest Based on Site Investigations and Laboratory Measurements

Authors: Zsolt Szilvágyi, Jakub Panuska, Orsolya Kegyes-Brassai, Ákos Wolf, Péter Tildy, Richard P. Ray

Abstract:

Near-surface loose sediments and local ground conditions in general have a major influence on seismic response of structures. It is a difficult task to model ground behavior in seismic soil-structure-foundation interaction problems, fully account for them in seismic design of structures, or even properly consider them in seismic hazard assessment. In this study, we focused on applying seismic soil investigation methods, used for determining soil stiffness and damping properties, to response analysis used in seismic design. A site in Budapest, Hungary was investigated using Multichannel Analysis of Surface Waves, Seismic Cone Penetration Tests, Bender Elements, Resonant Column and Torsional Shear tests. Our aim was to compare the results of the different test methods and use the resulting soil properties for 1D ground response analysis. Often in practice, there are little-to no data available on dynamic soil properties and estimated parameters are used for design. Therefore, a comparison is made between results based on estimated parameters and those based on detailed investigations. Ground response results are also compared to Eurocode 8 design spectra.

Keywords: MASW, resonant column test, SCPT, site response analysis, torsional shear test

Procedia PDF Downloads 380
3126 Magnet Position Variation of the Electromagnetic Actuation System in a Torsional Scanner

Authors: Loke Kean Koay, Mani Maran Ratnam

Abstract:

A mechanically-resonant torsional spring scanner was developed in a recent study. Various methods were developed to improve the angular displacement of the scanner while maintaining the scanner frequency. However, the effects of rotor magnet radial position on scanner characteristics were not well investigated. In this study, the relationships between the magnet position and the scanner characteristics such as natural frequency, angular displacement and stress level were studied. A finite element model was created and an average deviation of 3.18% was found between the simulation and experimental results, qualifying the simulation results as a guide for further investigations. Three magnet positions on the transverse oscillating suspended plate were investigated by finite element analysis (FEA) and one of the positions were selected as the design position. The magnet position with the longest distance from the twist axis of the mirror was selected since it attains minimum stress level while exceeding the minimum critical flicker frequency and delivering the targeted angular displacement to the scanner.

Keywords: torsional scanner, design optimization, computer-aided design, magnet position variation

Procedia PDF Downloads 345
3125 Comparison of the Existing Damage Indices in Steel Moment-Resisting Frame Structures

Authors: Hamid Kazemi, Abbasali Sadeghi

Abstract:

Assessment of seismic behavior of frame structures is just done for evaluating life and financial damages or lost. The new structural seismic behavior assessment methods have been proposed, so it is necessary to define a formulation as a damage index, which the damage amount has been quantified and qualified. In this paper, four new steel moment-resisting frames with intermediate ductility and different height (2, 5, 8, and 12-story) with regular geometry and simple rectangular plan were supposed and designed. The three existing groups’ damage indices were studied, each group consisting of local index (Drift, Maximum Roof Displacement, Banon Failure, Kinematic, Banon Normalized Cumulative Rotation, Cumulative Plastic Rotation and Ductility), global index (Roufaiel and Meyer, Papadopoulos, Sozen, Rosenblueth, Ductility and Base Shear), and story (Banon Failure and Inter-story Rotation). The necessary parameters for these damage indices have been calculated under the effect of far-fault ground motion records by Non-linear Dynamic Time History Analysis. Finally, prioritization of damage indices is defined based on more conservative values in terms of more damageability rate. The results show that the selected damage index has an important effect on estimation of the damage state. Also, failure, drift, and Rosenblueth damage indices are more conservative indices respectively for local, story and global damage indices.

Keywords: damage index, far-fault ground motion records, non-linear time history analysis, SeismoStruct software, steel moment-resisting frame

Procedia PDF Downloads 272
3124 Effect of the Endotracheal Care Nursing Guideline Utilization on the Incidence of Endotracheal Tube Displacement, Oxygen Deficiency after Extubation, Re-intubation, and Nurses Satisfaction

Authors: Rabeab Khunpukdee, Aranya Sukchoui, Nonluk Somgit, Chitima Bunnaul

Abstract:

Endotracheal displacement is a major risk of life threatening among critically ill patients. Standard nursing protocol is needed to minimize this risk and to improve clinical outcomes. To evaluate the effectiveness of the endothacheal care nursing guideline. The incidence rates of endochacheal displacement, oxygen deficiency after extubation, re-intubation, and nurse’s satisfaction on the utilization of the endotracheal care nursing guideline. An evidence-based nursing practice framework was used to develop the endotracheal care nursing guideline. The guideline valid content was review by a 3 panel of experts. The index of item objective (IOC) of the guideline was 0.93. The guideline was implemented in 130 patients (guideline group) and 19 registered nurses at a medicine ward, Had Yai hospital, Thailand. Patient’s outcomes were evaluated by comparison with those 155 patients who received the routine nursing care (routine care group). Descriptive statistics, frequency, percentage, mean, standard deviation and Mann Whitney U-test was analyzed using the computer program. All significantly and better outcomes were found in the guideline group compared to the routine care group. The guideline group has less incidence rates of endotracheal displacement (1.54 % vs 9.03 %, p < 0.05), and none of the guideline group had oxygen deficiency after extubation (0 % vs 83.33%) compared to the routine care group. All of the 2 patients in the guideline group, compared to 6 of 14 patients in the routine care group were re-intubation. The overall rate of re-intubation in the total group (n = 130 vs 155) was seen less in the guideline group than the routine care group (1.54 % vs 3.87). Overall, nurses satisfaction was at high-level (89.50%) on the utilization of the guideline.

Keywords: endotracheal care, nursing guideline, re-intubation, satisfaction

Procedia PDF Downloads 491
3123 Investigating Changes in Hip and Knee Joints Position in Girls with Patellofemoral Syndrome

Authors: Taraneh Ashrafi Motlagh, Abdolrasoul Daneshjoo

Abstract:

Background and Aim: Increased fatigue causes injuries; the purpose of this article was to investigate the angular displacement of the hip and knee joints in girls with patellofemoral syndrome. Materials and Methods: Thirty girls with an average age (age 28.73±1.83, height 168.49±5.59, weight 63.73±12.73) participated in this study in two groups of 15, experimental and control. The jet evaluation test was taken from the subjects' knee and thigh angle, and then these tests were repeated with the application of different inclines of the treadmill; the tests were examined in a neutral position and in a positive and negative slope of 5 degrees. The mean and standard deviation were used to describe the data, and the Shapirovik test was used for the normalization of the data to compare and examine the variables in the two research groups using an independent t-test and repeated analysis of variance at a significance level of 0.05. Conclusion: In general, according to the current studies of people with patellofemoral syndrome, running on steep inclines, as well as running on a treadmill and making the incline angle of the treadmill within the limit of minus 5% to plus 5%, does not affect the improvement of this condition, and it is not recommended. And according to the research, girls with patellofemoral syndrome should be placed on the treadmill at an inclined angle to run.

Keywords: patellofemoral syndrome, angular displacement of the knee, angular displacement of the thigh

Procedia PDF Downloads 34
3122 Civil Engineering Tool Kit for Making Perfect Ellipses of Desired Dimensions on Very Large Surfaces

Authors: Karam Chand Gupta

Abstract:

If an ellipse is to be drawn of given dimensions on a large ground, there is no formula, method or set of calculations & procedure available which will help in drawing an ellipse of given length and width on ground. Whenever a field engineer is to start the work of an ellipse-shaped structure like elliptical conference hall, screening chamber and pump chamber in disposal work etc., it is cumbersome for him to give demarcation of the structure on the big surface of the ground. No procedure is available, even in Google. A set of formulas with calculations has been made which helps the field engineer to draw an true and perfect ellipse of given length and width on the large ground very easily so as to start the construction work of elliptical structure. Based on these formulas a civil Engineering tool kit has been made with the help of which we can make perfect ellipse of desired dimensions on very large surface. The Patent of the tool kit has been filed in Intellectual Property India with Patent Filing Number: 201611026153 and Patent Application Filing Date: 30.07.2016. An App named ‘KC’s Mesh Formula’ has also been made to ease the calculation work. This can be downloaded from Play Store. After adopting these formulas and tool kit, a field engineer will not face difficulty in drawing ellipse on the ground to start the work.

Keywords: ellipse, elliptical structure, foci, string, wooden peg

Procedia PDF Downloads 238
3121 Post Occupancy Evaluation of the Green Office Building with Different Air-Conditioning Systems

Authors: Ziwei Huang, Jian Ge, Jie Shen, Jiantao Weng

Abstract:

Retrofitting of existing buildings plays a critical role to achieve sustainable development. This is being considered as one of the approaches to achieving sustainability in the built environment. In order to evaluate the different air-conditioning systems effectiveness and user satisfaction of the existing building which had transformed into green building effectively and accurately. This article takes the green office building in Zhejiang province, China as an example, analyzing the energy consumption, occupant satisfaction and indoor environment quality (IEQ) from the perspective of the thermal environment. This building is special because it combines ground source heat pump system and Variable Refrigerant Flow (VRF) air-conditioning system. Results showed that the ground source heat pump system(EUIa≈25.6) consumes more energy than VRF(EUIb≈23.8). In terms of a satisfaction survey, the use of the VRF air-conditioning was more satisfactory in temperature. However, the ground source heat pump is more satisfied in air quality.

Keywords: post-occupancy evaluation, green office building, air-conditioning systems, ground source heat pump system

Procedia PDF Downloads 172
3120 The Effects of Damping Devices on Displacements, Velocities and Accelerations of Structures

Authors: Radhwane Boudjelthia

Abstract:

The most recent earthquakes occurred in the world have killed thousands of people and severe damage. For all the actors involved in the building process, the earthquake is the litmus test for construction. The goal we set ourselves is to contribute to the implementation of a thoughtful approach to the seismic protection of structures. For many engineers, the most conventional approach to protection works (buildings and bridges) the effects of earthquakes is to increase rigidity. This approach is not always effective, especially when there is a context that favors the phenomenon of resonance and amplification of seismic forces. Therefore, the field of earthquake engineering has made significant inroads, among others catalyzed by the development of computational techniques in computer form and the use of powerful test facilities. This has led to the emergence of several innovative technologies, such as the introduction of special devices insulation between infrastructure and superstructure. This approach, commonly known as "seismic isolation," to absorb the significant efforts without the structure is damaged and thus ensuring the protection of lives and property. In addition, the restraints to the construction by the ground shaking are located mainly at the supports. With these moves, the natural period of construction is increasing, and seismic loads are reduced. Thus, there is an attenuation of the seismic movement. Likewise, the insulation of the base mechanism may be used in combination with earthquake dampers in order to control the deformation of the insulation system and the absolute displacement of the superstructure located above the isolation interface. On the other hand, only can use these earthquake dampers to reduce the oscillation amplitudes and thus reduce seismic loads. The use of damping devices represents an effective solution for the rehabilitation of existing structures. Given all these acceleration reducing means considered passive, much research has been conducted for several years to develop an active control system of the response of buildings to earthquakes.

Keywords: earthquake, building, seismic forces, displacement, resonance, response.

Procedia PDF Downloads 44
3119 Starting Characteristic Analysis of LSPM for Pumping System Considering Demagnetization

Authors: Subrato Saha, Yun-Hyun Cho

Abstract:

This paper presents the design process of a high performance 3-phase 3.7 kW 2-pole line start permanent magnet synchronous motor for pumping system. A method was proposed to study the starting torque characteristics considering line start with high inertia load. A d-q model including cage was built to study the synchronization capability. Time-stepping finite element method analysis was utilized to accurately predict the dynamic and transient performance, efficiency, starting current, speed curve and, etc. Considering the load torque of pumps during starting stage, the rotor bar was designed with minimum demagnetization of permanent magnet caused by huge starting current.

Keywords: LSPM, starting analysis, demagnetization, FEA, pumping system

Procedia PDF Downloads 446
3118 Swarm Optimization of Unmanned Vehicles and Object Localization

Authors: Venkataramana Sovenahalli Badigar, B. M. Suryakanth, Akshar Prasanna, Karthik Veeramalai, Vishwak Ram Vishwak Ram

Abstract:

Technological advances have led to widespread autonomy in vehicles. Empowering these autonomous with the intelligence to cooperate amongst themselves leads to a more efficient use of the resources available to them. This paper proposes a demonstration of a swarm algorithm implemented on a group of autonomous vehicles. The demonstration involves two ground bots and an aerial drone which cooperate amongst them to locate an object of interest. The object of interest is modelled using a high-intensity light source which acts as a beacon. The ground bots are light sensitive and move towards the beacon. The ground bots and the drone traverse in random paths and jointly locate the beacon. This finds application in various scenarios in where human interference is difficult such as search and rescue during natural disasters, delivering crucial packages in perilous situations, etc. Experimental results show that the modified swarm algorithm implemented in this system has better performance compared to fully random based moving algorithm for object localization and tracking.

Keywords: swarm algorithm, object localization, ground bots, drone, beacon

Procedia PDF Downloads 226
3117 Characterization of Cement Mortar Based on Fine Quartz

Authors: K. Arroudj, M. Lanez, M. N. Oudjit

Abstract:

The introduction of siliceous mineral additions in cement production allows, in addition to the ecological and economic gain, improvement of concrete performance. This improvement is mainly due to the fixing of Portlandite, released during the hydration of cement, by fine siliceous, forming denser calcium silicate hydrates and therefore a more compact cementitious matrix. This research is part of the valuation of the Dune Sand (DS) in the cement industry in Algeria. The high silica content of DS motivated us to study its effect, at ground state, on the properties of mortars in fresh and hardened state. For this purpose, cement pastes and mortars based on ground dune sand (fine quartz) has been analyzed with a replacement to cement of 15%, 20% and 25%. This substitution has reduced the amount of heat of hydration and avoids any risk of initial cracking. In addition, the grinding of the dune sand provides amorphous thin populations adsorbed at the surface of the crystal particles of quartz. Which gives to ground quartz pozzolanic character. This character results an improvement of mechanical strength of mortar (66 MPa in the presence of 25% of ground quartz).

Keywords: mineralogical structure, pozzolanic reactivity, Quartz, mechanical strength

Procedia PDF Downloads 255
3116 Design Criteria for Achieving Acceptable Indoor Radon Concentration

Authors: T. Valdbjørn Rasmussen

Abstract:

Design criteria for achieving an acceptable indoor radon concentration are presented in this paper. The paper suggests three design criteria. These criteria have to be considered at the early stage of the building design phase to meet the latest recommendations from the World Health Organization in most countries. The three design criteria are; first, establishing a radon barrier facing the ground; second, lowering the air pressure in the lower zone of the slab on ground facing downwards; third, diluting the indoor air with outdoor air. The first two criteria can prevent radon from infiltrating from the ground, and the third criteria can dilute the indoor air. By combining these three criteria, the indoor radon concentration can be lowered achieving an acceptable level. In addition, a cheap and reliable method for measuring the radon concentration in the indoor air is described. The provision on radon in the Danish Building Regulations complies with the latest recommendations from the World Health Organization. Radon can cause lung cancer and it is not known whether there is a lower limit for when it is not harmful to human beings. Therefore, it is important to reduce the radon concentration as much as possible in buildings. Airtightness is an important factor when dealing with buildings. It is important to avoid air leakages in the building envelope both facing the atmosphere, e.g. in compliance with energy requirements, but also facing the ground, to meet the requirements to ensure and control the indoor environment. Infiltration of air from the ground underneath a building is the main providing source of radon to the indoor air.

Keywords: radon, natural radiation, barrier, pressure lowering, ventilation

Procedia PDF Downloads 326
3115 The Uniting Control Lyapunov Functions in Permanent Magnet Synchronous Linear Motor

Authors: Yi-Fei Yang, Nai-Bao He, Shao-Bang Xing

Abstract:

This study investigates the permanent magnet synchronous linear motor (PMSLM) chaotic motion under the specific physical parameters, the stability and the security of motor-driven system will be unavoidably influenced. Therefore, it is really necessary to investigate the methods of controlling or suppressing chaos in PMSLM. Firstly, we derive a chaotic model of PMSLM in the closed-loop system. Secondly, in order to realize the local asymptotic stabilization of the mechanical subsystem and the global stabilization of the motor-driven system including electrical subsystem, we propose an improved uniting control lyapunov functions by introducing backstepping approach. Finally, an illustrated example is also given to show the electiveness of the obtained results.

Keywords: linear motor, lyapunov functions, chao control, hybrid controller

Procedia PDF Downloads 309
3114 Reduced Vibration in a Levitating Motor

Authors: S. Kazadi, A. An, B. Shen

Abstract:

We investigate the fitness of a male and female permanent magnetic levitation support for use as an axle on a rotor for a levitating motor. The support enables passive thrust and axial support for the axle as a result of the unique arrangement of permanent magnets. As the axial and thrust bearing aspects are derived from magnetic repulsion, it is not immediately clear that the repulsion is stiff enough to enable even low power motors. This paper describes the design and performance of two low power motors based on the magnetic levitation support. We find that our low power motors, with rotational speeds of 618 and 833 rpms, exhibit performance free from excess vibrations that might hinder performance. This means that the actuation of the motors is adequately stabilized by the axle and results in motors capable of being utilized despite the levitation support.

Keywords: levitating motor, magnetic levitation support, fitness, axle

Procedia PDF Downloads 347
3113 The Application of Distributed Optical Strain Sensing to Measure Rock Bolt Deformation Subject to Bedding Shear

Authors: Thomas P. Roper, Brad Forbes, Jurij Karlovšek

Abstract:

Shear displacement along bedding defects is a well-recognised behaviour when tunnelling and mining in stratified rock. This deformation can affect the durability and integrity of installed rock bolts. In-situ monitoring of rock bolt deformation under bedding shear cannot be accurately derived from traditional strain gauge bolts as sensors are too large and spaced too far apart to accurately assess concentrated displacement along discrete defects. A possible solution to this is the use of fiber optic technologies developed for precision monitoring. Distributed Optic Sensor (DOS) embedded rock bolts were installed in a tunnel project with the aim of measuring the bolt deformation profile under significant shear displacements. This technology successfully measured the 3D strain distribution along the bolts when subjected to bedding shear and resolved the axial and lateral strain constituents in order to determine the deformational geometry of the bolts. The results are compared well with the current visual method for monitoring shear displacement using borescope holes, considering this method as suitable.

Keywords: distributed optical strain sensing, rock bolt, bedding shear, sandstone tunnel

Procedia PDF Downloads 135
3112 Time-Frequency Feature Extraction Method Based on Micro-Doppler Signature of Ground Moving Targets

Authors: Ke Ren, Huiruo Shi, Linsen Li, Baoshuai Wang, Yu Zhou

Abstract:

Since some discriminative features are required for ground moving targets classification, we propose a new feature extraction method based on micro-Doppler signature. Firstly, the time-frequency analysis of measured data indicates that the time-frequency spectrograms of the three kinds of ground moving targets, i.e., single walking person, two people walking and a moving wheeled vehicle, are discriminative. Then, a three-dimensional time-frequency feature vector is extracted from the time-frequency spectrograms to depict these differences. At last, a Support Vector Machine (SVM) classifier is trained with the proposed three-dimensional feature vector. The classification accuracy to categorize ground moving targets into the three kinds of the measured data is found to be over 96%, which demonstrates the good discriminative ability of the proposed micro-Doppler feature.

Keywords: micro-doppler, time-frequency analysis, feature extraction, radar target classification

Procedia PDF Downloads 380
3111 Design-Analysis and Optimization of 10 MW Permanent Magnet Surface Mounted Off-Shore Wind Generator

Authors: Mamidi Ramakrishna Rao, Jagdish Mamidi

Abstract:

With advancing technology, the market environment for wind power generation systems has become highly competitive. The industry has been moving towards higher wind generator power ratings, in particular, off-shore generator ratings. Current off-shore wind turbine generators are in the power range of 10 to 12 MW. Unlike traditional induction motors, slow-speed permanent magnet surface mounted (PMSM) high-power generators are relatively challenging and designed differently. In this paper, PMSM generator design features have been discussed and analysed. The focus attention is on armature windings, harmonics, and permanent magnet. For the power ratings under consideration, the generator air-gap diameters are in the range of 8 to 10 meters, and active material weigh ~60 tons and above. Therefore, material weight becomes one of the critical parameters. Particle Swarm Optimization (PSO) technique is used for weight reduction and performance improvement. Four independent variables have been considered, which are air gap diameter, stack length, magnet thickness, and winding current density. To account for core and teeth saturation, preventing demagnetization effects due to short circuit armature currents, and maintaining minimum efficiency, suitable penalty functions have been applied. To check for performance satisfaction, a detailed analysis and 2D flux plotting are done for the optimized design.

Keywords: offshore wind generator, PMSM, PSO optimization, design optimization

Procedia PDF Downloads 128
3110 Bowing of a Pipeline from Longitudinal Compressive Stress Induced by Ground Movement

Authors: Gennaro Marino

Abstract:

This paper concerns a case of a 10.75 inch diameter buried gas transmission line which was exposed to mine subsidence ground movements. The pipeline was buried about 4ft. below the surface with maximum operating pressure of 1440 psi. The mine subsidence movement was the result of long walling ore at a depth of approximately 1600 ft. As ore extraction progressed, the stress in the monitored pipeline worsened and was approaching unacceptable levels. The excessive pipe compression resulted when it was exposed to the compression zone of subsidence basin created by mining. The pipe stress reached a significant compressive level due to the extensive length of the pipe exposed to frictional ground-pipe slip resistance. The backfill ground movement slip resistance depends on normal stress around the pipe, the rate of slip, and the backfill characteristics. Normal stress depends on the burial depth of the backfill density and the lateral subsidence induced stress. The backfill in this site has a soil dry density of approximately 90 PCF. A suite of direct shear tests was conducted a residual friction angle of 36 was determined for the ambient backfill. These tests showed that the residual shearing resistance was reached within a fraction of an inch. The pipe was coated with fusion-bonded epoxy, so friction reduce factory of 0.6 can be considered. To relieve ground movement induced compressive stress, the line was uncovered. As more of the pipeline was exposed, the pipe abruptly bowed in the excavation. An analysis of this pipe formation which was performed is provided in this paper. Also discussed in this paper are ways to mitigate this pipe deformation or upheaval buckling from occurring. Keywords: Pipe Upheaval, Pipe Buckling, Ground subsidence, Buried Pipeline, Pipe Stress Mitigation.

Keywords: pipe upheaval, pipe buckling, ground subsidence, buried pipeline, pipe stress mitigation

Procedia PDF Downloads 138
3109 Effect of Installation Method on the Ratio of Tensile to Compressive Shaft Capacity of Piles in Dense Sand

Authors: A. C. Galvis-Castro, R. D. Tovar, R. Salgado, M. Prezzi

Abstract:

It is generally accepted that the shaft capacity of piles in the sand is lower for tensile loading that for compressive loading. So far, very little attention has been paid to the role of the influence of the installation method on the tensile to compressive shaft capacity ratio. The objective of this paper is to analyze the effect of installation method on the tensile to compressive shaft capacity of piles in dense sand as observed in tests on half-circular model pile tests in a half-circular calibration chamber with digital image correlation (DIC) capability. Model piles are either monotonically jacked, jacked with multiple strokes or pre-installed into the dense sand samples. Digital images of the model pile and sand are taken during both the installation and loading stages of each test and processed using the DIC technique to obtain the soil displacement and strain fields. The study provides key insights into the mobilization of shaft resistance in tensile and compressive loading for both displacement and non-displacement piles.

Keywords: digital image correlation, piles, sand, shaft resistance

Procedia PDF Downloads 241
3108 Lightweight Ceramics from Clay and Ground Corncobs

Authors: N.Quaranta, M. Caligaris, R. Varoli, A. Cristobal, M. Unsen, H. López

Abstract:

Corncobs are agricultural wastes and they can be used as fuel or as raw material in different industrial processes like cement manufacture, contaminant adsorption, chemical compound synthesis, etc. The aim of this work is to characterize this waste and analyze the feasibility of its use as a pore-forming material in the manufacture of lightweight ceramics for the civil construction industry. The characterization of raw materials is carried out by using various techniques: electron diffraction analysis X-ray, differential and gravimetric thermal analyses, FTIR spectroscopy, ecotoxicity evaluation, among others. The ground corncobs, particle size less than 2 mm, are mixed with clay up to 30% in volume and shaped by uniaxial pressure of 25 MPa, with 6% humidity, in moulds of 70mm x 40mm x 18mm. Then the green bodies are heat treated at 950°C for two hours following the treatment curves used in ceramic industry. The ceramic probes are characterized by several techniques: density, porosity and water absorption, permanent volumetric variation, loss on ignition, microscopies analysis, and mechanical properties. DTA-TGA analysis of corncobs shows in the range 20°-250°C a small loss in TGA curve and exothermic peaks at 250°-500°C. FTIR spectrum of the corncobs sample shows the characteristic pattern of this kind of organic matter with stretching vibration bands of adsorbed water, methyl groups, C–O and C–C bonds, and the complex form of the cellulose and hemicellulose glycosidic bonds. The obtained ceramic bodies present external good characteristics without loose edges and adequate properties for the market requirements. The porosity values of the sintered pieces are higher than those of the reference sample without waste addition. The results generally indicate that it is possible to use corncobs as porosity former in ceramic bodies without modifying the usual sintering temperatures employed in the industry.

Keywords: ceramic industry, biomass, recycling, hemicellulose glycosidic bonds

Procedia PDF Downloads 383
3107 Comparison of Proportional-Integral (P-I) and Integral-Propotional (I-P) Controllers for Speed Control in Vector Controlled Permanent Magnet Synchronous Motor Drive

Authors: V. Srikanth, K. Balasubramanian, Rajath R. Bhat, A. S. Arjun, Nandhu Venugopal, Ananthu Unnikrishnan

Abstract:

Indirect vector control is known to produce high performance in Permanent Magnet Synchronous Motor (PMSM) drives by decoupling flux and torque producing current components of stator current. The most commonly used controller or the vector control of AC motor is Proportional-Integral (P-I) controller. However, the P-I controller has some disadvantages such as high starting overshoot, sensitivity to controller gains and slower response to sudden disturbance. Therefore, the Integral-Proportional controller for PMSM drives to overcome the disadvantages of the P-I controller. Simulations results are presented and analyzed for both controllers and it is observed that Integral-Proportional (I-P) controllers give better responses than the traditional P-I controllers.

Keywords: PMSM, FOC, PI controller, IP controller

Procedia PDF Downloads 331
3106 Monitoring of Quantitative and Qualitative Changes in Combustible Material in the Białowieża Forest

Authors: Damian Czubak

Abstract:

The Białowieża Forest is a very valuable natural area, included in the World Natural Heritage at UNESCO, where, due to infestation by the bark beetle (Ips typographus), norway spruce (Picea abies) have deteriorated. This catastrophic scenario led to an increase in fire danger. This was due to the occurrence of large amounts of dead wood and grass cover, as light penetrated to the bottom of the stands. These factors in a dry state are materials that favour the possibility of fire and the rapid spread of fire. One of the objectives of the study was to monitor the quantitative and qualitative changes of combustible material on the permanent decay plots of spruce stands from 2012-2022. In addition, the size of the area with highly flammable vegetation was monitored and a classification of the stands of the Białowieża Forest by flammability classes was made. The key factor that determines the potential fire hazard of a forest is combustible material. Primarily its type, quantity, moisture content, size and spatial structure. Based on the inventory data on the areas of forest districts in the Białowieża Forest, the average fire load and its changes over the years were calculated. The analysis was carried out taking into account the changes in the health status of the stands and sanitary operations. The quantitative and qualitative assessment of fallen timber and fire load of ground cover used the results of the 2019 and 2021 inventories. Approximately 9,000 circular plots were used for the study. An assessment was made of the amount of potential fuel, understood as ground cover vegetation and dead wood debris. In addition, monitoring of areas with vegetation that poses a high fire risk was conducted using data from 2019 and 2021. All sub-areas were inventoried where vegetation posing a specific fire hazard represented at least 10% of the area with species characteristic of that cover. In addition to the size of the area with fire-prone vegetation, a very important element is the size of the fire load on the indicated plots. On representative plots, the biomass of the land cover was measured on an area of 10 m2 and then the amount of biomass of each component was determined. The resulting element of variability of ground covers in stands was their flammability classification. The classification developed made it possible to track changes in the flammability classes of stands over the period covered by the measurements.

Keywords: classification, combustible material, flammable vegetation, Norway spruce

Procedia PDF Downloads 63
3105 Individualized Emotion Recognition Through Dual-Representations and Ground-Established Ground Truth

Authors: Valentina Zhang

Abstract:

While facial expression is a complex and individualized behavior, all facial emotion recognition (FER) systems known to us rely on a single facial representation and are trained on universal data. We conjecture that: (i) different facial representations can provide different, sometimes complementing views of emotions; (ii) when employed collectively in a discussion group setting, they enable more accurate emotion reading which is highly desirable in autism care and other applications context sensitive to errors. In this paper, we first study FER using pixel-based DL vs semantics-based DL in the context of deepfake videos. Our experiment indicates that while the semantics-trained model performs better with articulated facial feature changes, the pixel-trained model outperforms on subtle or rare facial expressions. Armed with these findings, we have constructed an adaptive FER system learning from both types of models for dyadic or small interacting groups and further leveraging the synthesized group emotions as the ground truth for individualized FER training. Using a collection of group conversation videos, we demonstrate that FER accuracy and personalization can benefit from such an approach.

Keywords: neurodivergence care, facial emotion recognition, deep learning, ground truth for supervised learning

Procedia PDF Downloads 106
3104 A Study on Improvement of the Torque Ripple and Demagnetization Characteristics of a PMSM

Authors: Yong Min You

Abstract:

The study on the torque ripple of Permanent Magnet Synchronous Motors (PMSMs) has been rapidly progressed, which effects on the noise and vibration of the electric vehicle. There are several ways to reduce torque ripple, which are the increase in the number of slots and poles, the notch of the rotor and stator teeth, and the skew of the rotor and stator. However, the conventional methods have the disadvantage in terms of material cost and productivity. The demagnetization characteristic of PMSMs must be attained for electric vehicle application. Due to rare earth supply issue, the demand for Dy-free permanent magnet has been increasing, which can be applied to PMSMs for the electric vehicle. Dy-free permanent magnet has lower the coercivity; the demagnetization characteristic has become more significant. To improve the torque ripple as well as the demagnetization characteristics, which are significant parameters for electric vehicle application, an unequal air-gap model is proposed for a PMSM. A shape optimization is performed to optimize the design variables of an unequal air-gap model. Optimal design variables are the shape of an unequal air-gap and the angle between V-shape magnets. An optimization process is performed by Latin Hypercube Sampling (LHS), Kriging Method, and Genetic Algorithm (GA). Finite element analysis (FEA) is also utilized to analyze the torque and demagnetization characteristics. The torque ripple and the demagnetization temperature of the initial model of 45kW PMSM with unequal air-gap are 10 % and 146.8 degrees, respectively, which are reaching a critical level for electric vehicle application. Therefore, the unequal air-gap model is proposed, and then an optimization process is conducted. Compared to the initial model, the torque ripple of the optimized unequal air-gap model was reduced by 7.7 %. In addition, the demagnetization temperature of the optimized model was also increased by 1.8 % while maintaining the efficiency. From these results, a shape optimized unequal air-gap PMSM has shown the usefulness of an improvement in the torque ripple and demagnetization temperature for the electric vehicle.

Keywords: permanent magnet synchronous motor, optimal design, finite element method, torque ripple

Procedia PDF Downloads 252
3103 Innovative Three Wire Capacitor Circuit System for Efficiency and Comfort Improvement of Ceiling Fans

Authors: R. K. Saket, K. S. Anand Kumar

Abstract:

This paper presents an innovative 3-wire capacitor circuit system used to increase the efficiency and comfort improvement of permanent split-capacitor ceiling fan. In this innovative circuit, current has been reduced to save electrical power. The system could be used to replace standard single phase motor 2-wire capacitor configuration by cost effective split value X rated of optimized AC capacitors with the auxiliary winding to provide reliable ceiling fan operation and improved machine performance to save power. In basic system operations, comparisons with conventional ceiling fan are described.

Keywords: permanent split-capacitor motor, innovative 3-wire capacitor circuit system, standard 2-wire capacitor circuit system, metalized film X-rated capacitor

Procedia PDF Downloads 490
3102 A Study on the Improvement of Mobile Device Call Buzz Noise Caused by Audio Frequency Ground Bounce

Authors: Jangje Park, So Young Kim

Abstract:

The market demand for audio quality in mobile devices continues to increase, and audible buzz noise generated in time division communication is a chronic problem that goes against the market demand. In the case of time division type communication, the RF Power Amplifier (RF PA) is driven at the audio frequency cycle, and it makes various influences on the audio signal. In this paper, we measured the ground bounce noise generated by the peak current flowing through the ground network in the RF PA with the audio frequency; it was confirmed that the noise is the cause of the audible buzz noise during a call. In addition, a grounding method of the microphone device that can improve the buzzing noise was proposed. Considering that the level of the audio signal generated by the microphone device is -38dBV based on 94dB Sound Pressure Level (SPL), even ground bounce noise of several hundred uV will fall within the range of audible noise if it is induced by the audio amplifier. Through the grounding method of the microphone device proposed in this paper, it was confirmed that the audible buzz noise power density at the RF PA driving frequency was improved by more than 5dB under the conditions of the Printed Circuit Board (PCB) used in the experiment. A fundamental improvement method was presented regarding the buzzing noise during a mobile phone call.

Keywords: audio frequency, buzz noise, ground bounce, microphone grounding

Procedia PDF Downloads 113
3101 Modelling of Pipe Jacked Twin Tunnels in a Very Soft Clay

Authors: Hojjat Mohammadi, Randall Divito, Gary J. E. Kramer

Abstract:

Tunnelling and pipe jacking in very soft soils (fat clays), even with an Earth Pressure Balance tunnel boring machine (EPBM), can cause large ground displacements. In this study, the short-term and long-term ground and tunnel response is predicted for twin, pipe-jacked EPBM 3 meter diameter tunnels with a narrow pillar width. Initial modelling indicated complete closure of the annulus gap at the tail shield onto the centrifugally cast, glass-fiber-reinforced, polymer mortar jacking pipe (FRP). Numerical modelling was employed to simulate the excavation and support installation sequence, examine the ground response during excavation, confirm the adequacy of the pillar width and check the structural adequacy of the installed pipe. In the numerical models, Mohr-Coulomb constitutive model with the effect of unloading was adopted for the fat clays, while for the bedrock layer, the generalized Hoek-Brown was employed. The numerical models considered explicit excavation sequences and different levels of ground convergence prior to support installation. The well-studied excavation sequences made the analysis possible for this study on a very soft clay, otherwise, obtaining the convergency in the numerical analysis would be impossible. The predicted results indicate that the ground displacements around the tunnel and its effect on the pipe would be acceptable despite predictions of large zones of plastic behaviour around the tunnels and within the entire pillar between them due to excavation-induced ground movements.

Keywords: finite element modeling (FEM), pipe-jacked tunneling, very soft clay, EPBM

Procedia PDF Downloads 59