Search results for: passive designs
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1620

Search results for: passive designs

1530 An Analysis of Uncoupled Designs in Chicken Egg

Authors: Pratap Sriram Sundar, Chandan Chowdhury, Sagar Kamarthi

Abstract:

Nature has perfected her designs over 3.5 billion years of evolution. Research fields such as biomimicry, biomimetics, bionics, bio-inspired computing, and nature-inspired designs have explored nature-made artifacts and systems to understand nature’s mechanisms and intelligence. Learning from nature, the researchers have generated sustainable designs and innovation in a variety of fields such as energy, architecture, agriculture, transportation, communication, and medicine. Axiomatic design offers a method to judge if a design is good. This paper analyzes design aspects of one of the nature’s amazing object: chicken egg. The functional requirements (FRs) of components of the object are tabulated and mapped on to nature-chosen design parameters (DPs). The ‘independence axiom’ of the axiomatic design methodology is applied to analyze couplings and to evaluate if eggs’ design is good (i.e., uncoupled design) or bad (i.e., coupled design). The analysis revealed that eggs design is a good design, i.e., uncoupled design. This approach can be applied to any nature’s artifacts to judge whether their design is a good or a bad. This methodology is valuable for biomimicry studies. This approach can also be a very useful teaching design consideration of biology and bio-inspired innovation.

Keywords: uncoupled design, axiomatic design, nature design, design evaluation

Procedia PDF Downloads 143
1529 Digitalization of Functional Safety - Increasing Productivity while Reducing Risks

Authors: Michael Scott, Phil Jarrell

Abstract:

Digitalization seems to be everywhere these days. So if one was to digitalize Functional Safety, what would that require: • Ability to directly use data from intelligent P&IDs / process design in a PHA / LOPA • Ability to directly use data from intelligent P&IDs in the SIS Design to support SIL Verification Calculations, SRS, C&Es, Functional Test Plans • Ability to create Unit Operation / SIF Libraries to radically reduce engineering manhours while ensuring consistency and improving quality of SIS designs • Ability to link data directly from a PHA / LOPA to SIS Designs • Ability to leverage reliability models and SRS details from SIS Designs to automatically program the Safety PLC • Ability to leverage SIS Test Plans to automatically create Safety PLC application logic Test Plans for a virtual FAT • Ability to tie real-time data from Process Historians / CMMS to assumptions in the PHA / LOPA and SIS Designs to generate leading indicators on protection layer health • Ability to flag SIS bad actors for proactive corrective actions prior to a near miss or loss of containment event What if I told you all of this was available today? This paper will highlight how the digital revolution has revolutionized the way Safety Instrumented Systems are designed, configured, operated and maintained.

Keywords: IEC 61511, safety instrumented systems, functional safety, digitalization, IIoT

Procedia PDF Downloads 140
1528 The Effect of Supplementary Cementitious Materials on the Quality of Passive Oxide Film Developed on Steel Reinforcement Bars in Simulated Concrete Pore Solution

Authors: M. S. Ashraf, Raja Rizwan Hussain, A. M. Alhozaimy, A. I. Al-Negheimish

Abstract:

The effect of supplementary cementitious materials (SCMs) with concrete pore solution on the protective properties of the oxide films that form on reinforcing steel bars has been experimentally investigated using electrochemical impedance spectroscopy (EIS) and Tafel Scan. The tests were conducted on oxide films grown in saturated calcium hydroxide solutions that included different representative amounts of NaOH and KOH which are the compounds commonly observed in ordinary portland cement concrete pore solution. In addition to that, commonly used mineral admixtures (silica fume, natural pozzolan and fly ash) were also added to the simulated concrete pore solution. The results of electrochemical tests show that supplementary cementitious materials do have an effect on the protective properties of the passive oxide film. In particular, silica fume has been shown to have a negative influence on the film quality though it has positive effect on the concrete properties. Fly ash and natural pozzolan increase the protective qualities of the passive film. The research data in this area is very limited in the past and needed further investigation.

Keywords: supplementary cementitious materials (SCMs), passive film, EIS, Tafel scan, rebar, concrete, simulated concrete pore solution (SPS)

Procedia PDF Downloads 371
1527 Development of Application Architecture for RFID Based Indoor Tracking Using Passive RFID Tag

Authors: Sumaya Ismail, Aijaz Ahmad Rehi

Abstract:

Abstract The location tracking and positioning systems have technologically grown exponentially in recent decade. In particular, Global Position system (GPS) has become a universal norm to be a part of almost every software application directly or indirectly for the location based modules. However major drawback of GPS based system is their inability of working in indoor environments. Researchers are thus focused on the alternative technologies which can be used in indoor environments for a vast range of application domains which require indoor location tracking. One of the most popular technology used for indoor tracking is radio frequency identification (RFID). Due to its numerous advantages, including its cost effectiveness, it is considered as a technology of choice in indoor location tracking systems. To contribute to the emerging trend of the research, this paper proposes an application architecture of passive RFID tag based indoor location tracking system. For the proof of concept, a test bed will be developed to in this study. In addition, various indoor location tracking algorithms will be used to assess their appropriateness in the proposed application architecture.

Keywords: RFID, GPS, indoor location tracking, application architecture, passive RFID tag

Procedia PDF Downloads 79
1526 Designing Sustainable and Energy-Efficient Urban Network: A Passive Architectural Approach with Solar Integration and Urban Building Energy Modeling (UBEM) Tools

Authors: A. Maghoul, A. Rostampouryasouri, MR. Maghami

Abstract:

The development of an urban design and power network planning has been gaining momentum in recent years. The integration of renewable energy with urban design has been widely regarded as an increasingly important solution leading to climate change and energy security. Through the use of passive strategies and solar integration with Urban Building Energy Modeling (UBEM) tools, architects and designers can create high-quality designs that meet the needs of clients and stakeholders. To determine the most effective ways of combining renewable energy with urban development, we analyze the relationship between urban form and renewable energy production. The procedure involved in this practice include passive solar gain (in building design and urban design), solar integration, location strategy, and 3D models with a case study conducted in Tehran, Iran. The study emphasizes the importance of spatial and temporal considerations in the development of sector coupling strategies for solar power establishment in arid and semi-arid regions. The substation considered in the research consists of two parallel transformers, 13 lines, and 38 connection points. Each urban load connection point is equipped with 500 kW of solar PV capacity and 1 kWh of battery Energy Storage (BES) to store excess power generated from solar, injecting it into the urban network during peak periods. The simulations and analyses have occurred in EnergyPlus software. Passive solar gain involves maximizing the amount of sunlight that enters a building to reduce the need for artificial lighting and heating. Solar integration involves integrating solar photovoltaic (PV) power into smart grids to reduce emissions and increase energy efficiency. Location strategy is crucial to maximize the utilization of solar PV in an urban distribution feeder. Additionally, 3D models are made in Revit, and they are keys component of decision-making in areas including climate change mitigation, urban planning, and infrastructure. we applied these strategies in this research, and the results show that it is possible to create sustainable and energy-efficient urban environments. Furthermore, demand response programs can be used in conjunction with solar integration to optimize energy usage and reduce the strain on the power grid. This study highlights the influence of ancient Persian architecture on Iran's urban planning system, as well as the potential for reducing pollutants in building construction. Additionally, the paper explores the advances in eco-city planning and development and the emerging practices and strategies for integrating sustainability goals.

Keywords: energy-efficient urban planning, sustainable architecture, solar energy, sustainable urban design

Procedia PDF Downloads 41
1525 Dynamics of Chirped RZ Modulation Format in GEPON Fiber to the Home (FTTH) Network

Authors: Anurag Sharma, Manoj Kumar, Ashima, Sooraj Parkash

Abstract:

The work in this paper presents simulative comparison for different modulation formats such as NRZ, Manchester and CRZ in a 100 subscribers at 5 Gbps bit rate Gigabit Ethernet Passive Optical Network (GEPON) FTTH network. It is observed from the simulation results that the CRZ modulation format is best suited for the designed system. A link design for 1:100 splitter is used as Passive Optical Network (PON) element which creates communication between central offices to different users. The Bit Error Rate (BER) is found to be 2.8535e-10 at 5 Gbit/s systems for CRZ modulation format.

Keywords: PON , FTTH, OLT, ONU, CO, GEPON

Procedia PDF Downloads 669
1524 Of an 80 Gbps Passive Optical Network Using Time and Wavelength Division Multiplexing

Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Faizan Khan, Xiaodong Yang

Abstract:

Internet Service Providers are driving endless demands for higher bandwidth and data throughput as new services and applications require higher bandwidth. Users want immediate and accurate data delivery. This article focuses on converting old conventional networks into passive optical networks based on time division and wavelength division multiplexing. The main focus of this research is to use a hybrid of time-division multiplexing and wavelength-division multiplexing to improve network efficiency and performance. In this paper, we design an 80 Gbps Passive Optical Network (PON), which meets the need of the Next Generation PON Stage 2 (NGPON2) proposed in this paper. The hybrid of the Time and Wavelength division multiplexing (TWDM) is said to be the best solution for the implementation of NGPON2, according to Full-Service Access Network (FSAN). To co-exist with or replace the current PON technologies, many wavelengths of the TWDM can be implemented simultaneously. By utilizing 8 pairs of wavelengths that are multiplexed and then transmitted over optical fiber for 40 Kms and on the receiving side, they are distributed among 256 users, which shows that the solution is reliable for implementation with an acceptable data rate. From the results, it can be concluded that the overall performance, Quality Factor, and bandwidth of the network are increased, and the Bit Error rate is minimized by the integration of this approach.

Keywords: bit error rate, fiber to the home, passive optical network, time and wavelength division multiplexing

Procedia PDF Downloads 44
1523 Thermal Behaviour of a Low-Cost Passive Solar House in Somerset East, South Africa

Authors: Ochuko K. Overen, Golden Makaka, Edson L. Meyer, Sampson Mamphweli

Abstract:

Low-cost housing provided for people with small incomes in South Africa are characterized by poor thermal performance. This is due to inferior craftsmanship with no regard to energy efficient design during the building process. On average, South African households spend 14% of their total monthly income on energy needs, in particular space heating; which is higher than the international benchmark of 10% for energy poverty. Adopting energy efficient passive solar design strategies and superior thermal building materials can create a stable thermal comfort environment indoors. Thereby, reducing energy consumption for space heating. The aim of this study is to analyse the thermal behaviour of a low-cost house integrated with passive solar design features. A low-cost passive solar house with superstructure fly ash brick walls was designed and constructed in Somerset East, South Africa. Indoor and outdoor meteorological parameters of the house were monitored for a period of one year. The ASTM E741-11 Standard was adopted to perform ventilation test in the house. In summer, the house was found to be thermally comfortable for 66% of the period monitored, while for winter it was about 79%. The ventilation heat flow rate of the windows and doors were found to be 140 J/s and 68 J/s, respectively. Air leakage through cracks and openings in the building envelope was 0.16 m3/m2h with a corresponding ventilation heat flow rate of 24 J/s. The indoor carbon dioxide concentration monitored overnight was found to be 0.248%, which is less than the maximum range limit of 0.500%. The prediction percentage dissatisfaction of the house shows that 86% of the occupants will express the thermal satisfaction of the indoor environment. With a good operation of the house, it can create a well-ventilated, thermal comfortable and nature luminous indoor environment for the occupants. Incorporating passive solar design in low-cost housing can be one of the long and immediate solutions to the energy crisis facing South Africa.

Keywords: energy efficiency, low-cost housing, passive solar design, rural development, thermal comfort

Procedia PDF Downloads 234
1522 Development and Comparative Analysis of a New C-H Split and Recombine Micromixer

Authors: Vladimir Viktorov, Readul Mahmud, Carmen Visconte

Abstract:

In the present study, a new passive micromixer based on SAR principle, combining the operation concepts of known Chain and H mixers, called C-H micromixer, is developed and studied. The efficiency and the pressure drop of the C-H mixer along with two known SAR passive mixers named Chain and Tear-drop were investigated numerically at Reynolds numbers up to 100, taking into account species transport. At the same time experimental tests of the Chain and Tear-drop mixers were carried out at low Reynolds number, in the 0.1≤Re≤4.2 range. Numerical and experimental results coincide considerably, which validate the numerical simulation approach. Results show that mixing efficiency of the Tear-drop mixer is good except at the middle range of Reynolds number but pressure drop is too high; conversely the Chain mixer has moderate pressure drop but relatively low mixing efficiency at low and middle Re numbers. Whereas, the C-H mixer gives excellent mixing efficiency at all range of Re numbers. In addition, the C-H mixer shows respectively about 3 and 2 times lower pressure drop than the Tear-drop mixer and the Chain mixer.

Keywords: CFD, micromixing, passive micromixer, SAR

Procedia PDF Downloads 277
1521 A Technical Solution for Micro Mixture with Micro Fluidic Oscillator in Chemistry

Authors: Brahim Dennai, Abdelhak Bentaleb, Rachid Khelfaoui, Asma Abdenbi

Abstract:

The diffusion flux given by the Fick’s law characterizethe mixing rate. A passive mixing strategy is proposed to enhance mixing of two fluids through perturbed jet low. A numerical study of passive mixers has been presented. This paper is focused on the modeling of a micro-injection systems composed of passive amplifier without mechanical part. The micro-system modeling is based on geometrical oscillators form. An asymmetric micro-oscillator design based on a monostable fluidic amplifier is proposed. The characteristic size of the channels is generally about a few hundred of microns. The numerical results indicate that the mixing performance can be as high as 99 % within a typical mixing chamber of 0.20 mm diameter inlet and 2.0 mm distance of nozzle - spliter. In addition, the results confirm that self-rotation in the circular mixer significantly enhances the mixing performance. The novel micro mixing method presented in this study provides a simple solution to mixing problems in microsystem for application in chemistry.

Keywords: micro oscillator, modeling, micro mixture, diffusion, size effect, chemical equation

Procedia PDF Downloads 395
1520 Effect of Corrosion on the Shear Buckling Strength

Authors: Myoung-Jin Lee, Sung-Jin Lee, Young-Kon Park, Jin-Wook Kim, Bo-Kyoung Kim, Song-Hun Chong, Sun-Ii Kim

Abstract:

The ability to resist the shear strength arises mainly from the web panel of steel girders and as such, the shear buckling strength of these girders has been extensively investigated. For example, Blaser’s reported that when buckling occurs, the tension field has an effect after the buckling strength of the steel is reached. The findings of these studies have been applied by AASHTO, AISC, and to the European Code that provides guidelines for designs aimed at preventing shear buckling. Steel girders are susceptible to corrosion resulting from exposure to natural elements such as rainfall, humidity, and temperature. This corrosion leads to a reduction in the size of the web panel section, thereby resulting in a decrease in the shear strength. The decrease in the panel section has a significant effect on the maintenance section of the bridge. However, in most conventional designs, the influence of corrosion is overlooked during the calculation of the shear buckling strength and hence over-design is common. Therefore, in this study, a steel girder with an A/D of 1:1, as well as a 6-mm-, 16-mm-, and 12-mm-thick web panel, flange, and intermediate reinforcing material, respectively, were used. The total length was set to that (3200 mm) of the default model. The effect of corrosion shear buckling was investigated by determining the volume amount of corrosion, shape of the erosion patterns, and the angular change in the tensile field of the shear buckling strength. This study provides the basic data that will enable designs that incorporate values closer (than those used in most conventional designs) to the actual shear buckling strength.

Keywords: corrosion, shear buckling strength, steel girder, shear strength

Procedia PDF Downloads 342
1519 Simulation and Analysis of Passive Parameters of Building in eQuest: A Case Study in Istanbul, Turkey

Authors: Mahdiyeh Zafaranchi

Abstract:

With rapid development of urbanization and improvement of living standards in the world, energy consumption and carbon emissions of the building sector are expected to increase in the near future; because of that, energy-saving issues have become more important among the engineers. Besides, the building sector is a major contributor to energy consumption and carbon emissions. The concept of efficient building appeared as a response to the need for reducing energy demand in this sector which has the main purpose of shifting from standard buildings to low-energy buildings. Although energy-saving should happen in all steps of a building during the life cycle (material production, construction, demolition), the main concept of efficient energy building is saving energy during the life expectancy of a building by using passive and active systems, and should not sacrifice comfort and quality to reach these goals. The main aim of this study is to investigate passive strategies (do not need energy consumption or use renewable energy) to achieve energy-efficient buildings. Energy retrofit measures were explored by eQuest software using a case study as a base model. The study investigates predictive accuracy for the major factors like thermal transmittance (U-value) of the material, windows, shading devices, thermal insulation, rate of the exposed envelope, window/wall ration, lighting system in the energy consumption of the building. The base model was located in Istanbul, Turkey. The impact of eight passive parameters on energy consumption had been indicated. After analyzing the base model by eQuest, a final scenario was suggested which had a good energy performance. The results showed a decrease in the U-values of materials, the rate of exposing buildings, and windows had a significant effect on energy consumption. Finally, savings in electric consumption of about 10.5%, and gas consumption by about 8.37% in the suggested model were achieved annually.

Keywords: efficient building, electric and gas consumption, eQuest, Passive parameters

Procedia PDF Downloads 84
1518 Low-Cost Reversible Logic Serial Multipliers with Error Detection Capability

Authors: Mojtaba Valinataj

Abstract:

Nowadays reversible logic has received many attentions as one of the new fields for reducing the power consumption. On the other hand, the processing systems have weaknesses against different external effects. In this paper, some error detecting reversible logic serial multipliers are proposed by incorporating the parity-preserving gates. This way, the new designs are presented for signed parity-preserving serial multipliers based on the Booth's algorithm by exploiting the new arrangements of existing gates. The experimental results show that the proposed 4×4 multipliers in this paper reach up to 20%, 35%, and 41% enhancements in the number of constant inputs, quantum cost, and gate count, respectively, as the reversible logic criteria, compared to previous designs. Furthermore, all the proposed designs have been generalized for n×n multipliers with general formulations to estimate the main reversible logic criteria as the functions of the multiplier size.

Keywords: Booth’s algorithm, error detection, multiplication, parity-preserving gates, quantum computers, reversible logic

Procedia PDF Downloads 184
1517 Electrical and Thermal Characteristics of a Photovoltaic Solar Wall with Passive and Active Ventilation through a Room

Authors: Himanshu Dehra

Abstract:

An experimental study was conducted for ascertaining electrical and thermal characteristics of a pair of photovoltaic (PV) modules integrated with solar wall of an outdoor room. A pre-fabricated outdoor room was setup for conducting outdoor experiments on a PV solar wall with passive and active ventilation through the outdoor room. The selective operating conditions for glass coated PV modules were utilized for establishing their electrical and thermal characteristics. The PV solar wall was made up of glass coated PV modules, a ventilated air column, and an insulating layer of polystyrene filled plywood board. The measurements collected were currents, voltages, electric power, air velocities, temperatures, solar intensities, and thermal time constant. The results have demonstrated that: i) a PV solar wall installed on a wooden frame was of more heat generating capacity in comparison to a window glass or a standalone PV module; ii) generation of electric power was affected with operation of vertical PV solar wall; iii) electrical and thermal characteristics were not significantly affected by heat and thermal storage losses; and iv) combined heat and electricity generation were function of volume of thermal and electrical resistances developed across PV solar wall. Finally, a comparison of temperature plots of passive and active ventilation envisaged that fan pressure was necessary to avoid overheating of the PV solar wall. The active ventilation was necessary to avoid over-heating of the PV solar wall and to maintain adequate ventilation of room under mild climate conditions.

Keywords: photovoltaic solar wall, solar energy, passive ventilation, active ventilation

Procedia PDF Downloads 371
1516 Societal Acceptance of Trombe Wall in Buildings in Mediterranean Region: A Case Cyprus

Authors: Soad Abokhamis Mousavi

Abstract:

The Trombe wall is an ancient technique that continues to serve as an effective feature of a passive solar system. However, in practice, architects and their clients are not opting for the Trombe wall because of the view of the Trombe wall on the facades of the buildings. Therefore, this study has two main goals, and one of the goals is to find out why the Trombe wall is not considered in the buildings in the Mediterranean region. And the second goal is to find a solution to facilitate the societal acceptance of the Trombe walls in buildings. To cover the goals, the present work attempts to develop and design a different Trombe Wall with different Materials and views in the facades of the buildings. A qualitative data method was used in this article. The qualitative method was developed based on observation and questionnaires with different clients and expert architects in the selected region. Results indicate that the view of the Trombe wall in the facade of buildings can be used with different designs in order to not affect the beauty of the buildings.

Keywords: trombe wall, societal acceptance, building, energy efficacy

Procedia PDF Downloads 52
1515 Microsatellite Passive Thermal Design Using Anodized Titanium

Authors: Maged Assem Soliman Mossallam

Abstract:

Microsatellites' low available power limits the usage of active thermal control techniques in these categories of satellites. Passive thermal control techniques are preferred due to their high reliability and power saving which increase the satellite's survivability in orbit. Steady-state and transient simulations are applied to the microsatellite design in order to define severe conditions in orbit. Satellite thermal orbital three-dimensional simulation is performed using thermal orbit propagator coupled with Comsol Multiphysics finite element solver. Sensitivity study shows the dependence of the satellite temperatures on the internal heat dissipation and the thermooptical properties of anodization coatings. The critical case is defined as low power orbiting mode at the eclipse zone. Using black anodized aluminum drops the internal temperatures to severe values which exceed the permissible cold limits. Replacement with anodized titanium returns the internal subsystems' temperatures back to adequate temperature fluctuations limits.

Keywords: passive thermal control, thermooptical, anodized titanium, emissivity, absorbtiviy

Procedia PDF Downloads 106
1514 Comparison between the Performances of Different Boring Bars in the Internal Turning of Long Overhangs

Authors: Wallyson Thomas, Zsombor Fulop, Attila Szilagyi

Abstract:

Impact dampers are mainly used in the metal-mechanical industry in operations that generate too much vibration in the machining system. Internal turning processes become unstable during the machining of deep holes, in which the tool holder is used with long overhangs (high length-to-diameter ratios). The devices coupled with active dampers, are expensive and require the use of advanced electronics. On the other hand, passive impact dampers (PID – Particle Impact Dampers) are cheaper alternatives that are easier to adapt to the machine’s fixation system, once that, in this last case, a cavity filled with particles is simply added to the structure of the tool holder. The cavity dimensions and the diameter of the spheres are pre-determined. Thus, when passive dampers are employed during the machining process, the vibration is transferred from the tip of the tool to the structure of the boring bar, where it is absorbed by the fixation system. This work proposes to compare the behaviors of a conventional solid boring bar and a boring bar with a passive impact damper in turning while using the highest possible L/D (length-to-diameter ratio) of the tool and an Easy Fix fixation system (also called: Split Bushing Holding System). It is also intended to optimize the impact absorption parameters, as the filling percentage of the cavity and the diameter of the spheres. The test specimens were made of hardened material and machined in a Computer Numerical Control (CNC) lathe. The laboratory tests showed that when the cavity of the boring bar is totally filled with minimally spaced spheres of the largest diameter, the gain in absorption allowed of obtaining, with an L/D equal to 6, the same surface roughness obtained when using the solid boring bar with an L/D equal to 3.4. The use of the passive particle impact damper resulted in, therefore, increased static stiffness and reduced deflexion of the tool.

Keywords: active damper, fixation system, hardened material, passive damper

Procedia PDF Downloads 182
1513 Investigation of the Effects of Dry Needling With Stretching Upper Trapezius Muscle on Clinical Outcomes in Participants With Active Myofascial Trigger Point.

Authors: Marzieh Yassin, Fereshteh Navaee, Javad Sarrafzadeh, Reza Salehi

Abstract:

Introduction: Myofascial trigger point (MTrP) is one of the most common sources of musculoskeletal pain. Approximately 30-85% of the patients with musculoskeletal pains would experience MTrP in their life. The prevalence of MTrP has reported in the patients seen in a general orthopedic clinic, general medical clinic and specialty pain management centers, 21%, 30% and 93% respectively. Nowadays, dry needling is suggested as a standard treatment for MTrPs. The purpose of the present study was to examine the effectiveness of dry needling with stretching upper trapezius muscle on pain and pain pressure threshold in participants with active myofascial trigger point. Methods: Thirty participants with an active myofascial trigger point of the upper trapezius muscle were randomly divided into two groups: dry needling with passive stretch (n=15) and passive stretch alone (n=15). They received 5 sessions of the treatments for three weeks. The outcomes were pain intensity and pain pressure threshold that were assessed with visual analogue scale and algometer respectively. Results: Significant improvement in pain and pain pressure threshold was observed in both groups (P=0.0001) after the treatment. Also, the results showed a significant difference in measurements between two groups (P<0.05). Conclusion: Dry needling with passive stretch can be more effective on pain and pain pressure threshold than passive stretching alone in short term in participants with active myofascial trigger points.

Keywords: dry needling, myofascial pain syndrome, myofascial trigger point, stretching

Procedia PDF Downloads 31
1512 A New Method to Estimate the Low Income Proportion: Monte Carlo Simulations

Authors: Encarnación Álvarez, Rosa M. García-Fernández, Juan F. Muñoz

Abstract:

Estimation of a proportion has many applications in economics and social studies. A common application is the estimation of the low income proportion, which gives the proportion of people classified as poor into a population. In this paper, we present this poverty indicator and propose to use the logistic regression estimator for the problem of estimating the low income proportion. Various sampling designs are presented. Assuming a real data set obtained from the European Survey on Income and Living Conditions, Monte Carlo simulation studies are carried out to analyze the empirical performance of the logistic regression estimator under the various sampling designs considered in this paper. Results derived from Monte Carlo simulation studies indicate that the logistic regression estimator can be more accurate than the customary estimator under the various sampling designs considered in this paper. The stratified sampling design can also provide more accurate results.

Keywords: poverty line, risk of poverty, auxiliary variable, ratio method

Procedia PDF Downloads 428
1511 Comparison of the Dynamic Characteristics of Active and Passive Hybrid Bearings

Authors: Denis V. Shutin, Alexander Yu. Babin, Leonid A. Savin

Abstract:

One of the ways of reducing vibroactivity of rotor systems is to apply active hybrid bearings. Their design allows correction of the rotor’s location by means of separately controlling the supply pressure of the lubricant into the friction area. In a most simple case, the control system is based on a P-regulator. Increase of the gain coefficient allows decreasing the amplitude of rotor’s vibrations. The same effect can be achieved by means of increasing the pressure in the collector of a traditional passive hybrid bearing. However, these approaches affect the dynamic characteristics of the bearing differently. Theoretical studies show that the increase of the gain coefficient of an active bearing increases the stiffness of the bearing, as well as the increase of the pressure in the collector. Nevertheless, in case of a passive bearing, the damping properties deteriorate, whereas the active hybrid bearings obtain higher damping properties, which allow effectively providing the energy dissipation of the rotor vibrations and reducing the load on the constructional elements of a machine.

Keywords: active bearings, control system, damping, hybrid bearings, stiffness

Procedia PDF Downloads 350
1510 The Impact of Passive Design Factors on House Energy Efficiency for New Cities in Egypt

Authors: Mahmoud Mourad, Ahmad Hamza H. Ali, S.Ookawara, Ali Kamel Abdel-Rahman, Nady M. Abdelkariem

Abstract:

The energy consumption of a house can be affected simultaneously by many building design factors related to its main architectural features, building elements and materials. This study focuses on the impact of passive design factors on the annual energy consumption of a suggested prototype house for single-family detached houses of 240 m2 in two floors, each floor of 120 m2 in new Egyptian cities located in (Alexandria - Cairo - Siwa - Assuit – Aswan) which resemble five different climatic zones (Northern coast – Northern upper Egypt - dessert region- Southern upper Egypt – South Egypt) respectively. This study present the effect of the passive design factors affecting the building energy consumption as building orientation, building material (walls, roof and slabs), building type (residential, educational, commercial), building occupancy (type of occupant, no. of occupant, age), building landscape and site selection, building envelope and fenestration (glazing material, shading), and building plan form. This information can be used to estimate the approximate saving in energy consumption, which would result on a change in the design datum for the future houses development, and to identify the major design problems for energy efficiency. To achieve the above objective, this paper presents a study for the factors affecting on the building energy consumption in the hot arid area in new Egyptian cities in five different climatic zones , followed by defining the energy needs for different utilization in this suggested prototype house. Consequently, a detailed analysis of the available Renewable Energy utilizations technologies used in the suggested home, and a calculation of the energy as a function of yearly distribution that required for this home will presented. The results obtained from building annual energy analyses show that architecture passive design factors saves about 35% of the annual energy consumption. It shows also passive cooling techniques saves about 45%, and renewable energy systems saves about 40% of the annual energy needs for this proposed home depending on the cities location on the climatic zones.

Keywords: architecture passive design factors, energy efficient homes, Egypt new cites, renewable energy technologies

Procedia PDF Downloads 370
1509 A Tunable Long-Cavity Passive Mode-Locked Fiber Laser Based on Nonlinear Amplifier Loop Mirror

Authors: Pinghe Wang

Abstract:

In this paper, we demonstrate a tunable long-cavity passive mode-locked fiber laser. The mode locker is a nonlinear amplifying loop mirror (NALM). The cavity frequency of the laser is 465 kHz because that 404m SMF is inserted in the cavity. A tunable bandpass filter with ~1nm 3dB bandwidth is inserted into the cavity to realize tunable mode locking. The passive mode-locked laser at a fixed wavelength is investigated in detail. The experimental results indicate that the laser operates in dissipative soliton resonance (DSR) region. When the pump power is 400mW, the laser generates the rectangular pulses with 10.58 ns pulse duration, 70.28nJ single-pulse energy. When the pump power is 400mW, the laser keeps stable mode locking status in the range from 1523.4nm to 1575nm. During the whole tuning range, the SNR, the pulse duration, the output power and single pulse energy have a little fluctuation because that the gain of the EDF changes with the wavelength.

Keywords: fiber laser, dissipative soliton resonance, mode locking, tunable

Procedia PDF Downloads 209
1508 Exploring the Potential of Modular Housing Designs for the Emergency Housing Need in Türkiye after the February Earthquake in 2023

Authors: Hailemikael Negussie, Sebla Arın Ensarioğlu

Abstract:

In February 2023 Southeastern Türkiye and Northwestern Syria were hit by two consecutive earthquakes with high magnitude leaving thousands dead and thousands more homeless. The housing crisis in the affected areas has resulted in the need for a fast and qualified solution. There are a number of solutions, one of which is the use of modular designs to rebuild the cities that have been affected. Modular designs are prefabricated building components that can be quickly and efficiently assembled on-site, making them ideal to build structures with faster speed and higher quality. These structures are flexible, adaptable, and can be customized to meet the specific needs of the inhabitants, in addition to being more energy-efficient and sustainable. The prefabricated nature also assures that the quality of the products can be easily controlled. The reason for the collapse of most of the buildings during the earthquakes was found out to be the lack of quality during the construction stage. Using modular designs allows a higher control over the quality of the construction materials being used. The use of modular designs for a project of this scale presents some challenges, including the high upfront cost to design and manufacture components. However, if implemented correctly, modular designs can offer an effective and efficient solution to the urgent housing needs. The aim of this paper is to explore the potential of modular housing for mid- and long-term earthquake-resistant housing needs in the affected disaster zones after the earthquakes of February 2023. In the scope of this paper the adaptability of modular, prefabricated housing designs for the post-disaster environment, the advantages and disadvantages of this system will be examined. Elements such as; the current conditions of the region where the destruction happened, climatic data, topographic factors will be examined. Additionally, the paper will examine; examples of similar local and international modular post-earthquake housing projects. The region is projected to enter a rapid reconstruction phase in the following periods. Therefore, this paper will present a proposal for a system that can be used to produce safe and healthy urbanization policies without causing new aggrievements while meeting the housing needs of the people in the affected regions.

Keywords: post-disaster housing, earthquake-resistant design, modular design, housing, Türkiye

Procedia PDF Downloads 55
1507 Transfer Rate of Organic Water Contaminants through a Passive Sampler Membrane of Polyethersulfone (PES)

Authors: Hamidreza Sharifan, Audra Morse

Abstract:

Accurate assessments of contaminant concentrations based on traditional grab sampling methods are not always possible. Passive samplers offer an attractive alternative to traditional sampling methods that overcomes these limitations. The POCIS approach has been used as a screening tool for determining the presence/absence, possible sources and relative amounts of organic compounds at field sites. The objective for the present research is on mass transfer of five water contaminants (atrazine, caffeine, bentazon, ibuprofen, atenolol) through the Water Boundary Layer (WBL) and membrane. More specific objectives followed by establishing a relationship between the sampling rate and water solubility of the compounds, as well as comparing the molecular weight of the compounds and concentration of the compounds at the time of equilibrium. To determine whether water boundary layer effects transport rate through the membrane is another main objective in this paper. After GC mass analysis of compounds, regarding the WBL effect in this experiment, Sherwood number for the experimental tank developed. A close relationship between feed concentration of compound and sampling rate has been observed.

Keywords: passive sampler, water contaminants, PES-transfer rate, contaminant concentrations

Procedia PDF Downloads 428
1506 Using Data Mining in Automotive Safety

Authors: Carine Cridelich, Pablo Juesas Cano, Emmanuel Ramasso, Noureddine Zerhouni, Bernd Weiler

Abstract:

Safety is one of the most important considerations when buying a new car. While active safety aims at avoiding accidents, passive safety systems such as airbags and seat belts protect the occupant in case of an accident. In addition to legal regulations, organizations like Euro NCAP provide consumers with an independent assessment of the safety performance of cars and drive the development of safety systems in automobile industry. Those ratings are mainly based on injury assessment reference values derived from physical parameters measured in dummies during a car crash test. The components and sub-systems of a safety system are designed to achieve the required restraint performance. Sled tests and other types of tests are then carried out by car makers and their suppliers to confirm the protection level of the safety system. A Knowledge Discovery in Databases (KDD) process is proposed in order to minimize the number of tests. The KDD process is based on the data emerging from sled tests according to Euro NCAP specifications. About 30 parameters of the passive safety systems from different data sources (crash data, dummy protocol) are first analysed together with experts opinions. A procedure is proposed to manage missing data and validated on real data sets. Finally, a procedure is developed to estimate a set of rough initial parameters of the passive system before testing aiming at reducing the number of tests.

Keywords: KDD process, passive safety systems, sled test, dummy injury assessment reference values, frontal impact

Procedia PDF Downloads 353
1505 Optimal Tetra-Allele Cross Designs Including Specific Combining Ability Effects

Authors: Mohd Harun, Cini Varghese, Eldho Varghese, Seema Jaggi

Abstract:

Hybridization crosses find a vital role in breeding experiments to evaluate the combining abilities of individual parental lines or crosses for creation of lines with desirable qualities. There are various ways of obtaining progenies and further studying the combining ability effects of the lines taken in a breeding programme. Some of the most common methods are diallel or two-way cross, triallel or three-way cross, tetra-allele or four-way cross. These techniques help the breeders to improve the quantitative traits which are of economical as well as nutritional importance in crops and animals. Amongst these methods, tetra-allele cross provides extra information in terms of the higher specific combining ability (sca) effects and the hybrids thus produced exhibit individual as well as population buffering mechanism because of the broad genetic base. Most of the common commercial hybrids in corn are either three-way or four-way cross hybrids. Tetra-allele cross came out as the most practical and acceptable scheme for the production of slaughter pigs having fast growth rate, good feed efficiency, and carcass quality. Tetra-allele crosses are mostly used for exploitation of heterosis in case of commercial silkworm production. Experimental designs involving tetra-allele crosses have been studied extensively in literature. Optimality of designs has also been considered as a researchable issue. In practical situations, it is advisable to include sca effects in the model as this information is needed by the breeder to improve economically and nutritionally important quantitative traits. Thus, a model that provides information regarding the specific traits by utilizing sca effects along with general combining ability (gca) effects may help the breeders to deal with the problem of various stresses. In this paper, a model for experimental designs involving tetra-allele crosses that incorporates both gca and sca has been defined. Optimality aspects of such designs have been discussed incorporating sca effects in the model. Orthogonality conditions have been derived for block designs ensuring estimation of contrasts among the gca effects, after eliminating the nuisance factors, independently from sca effects. User friendly SAS macro and web solution (webPTC) have been developed for the generation and analysis of such designs.

Keywords: general combining ability, optimality, specific combining ability, tetra-allele cross, webPTC

Procedia PDF Downloads 105
1504 Experimental Study of Reflective Roof as a Passive Cooling Method in Homes Under the Paradigm of Appropriate Technology

Authors: Javier Ascanio Villabona, Brayan Eduardo Tarazona Romero, Camilo Leonardo Sandoval Rodriguez, Arly Dario Rincon, Omar Lengerke Perez

Abstract:

Efficient energy consumption in the housing sector in relation to refrigeration is a concern in the construction and rehabilitation of houses in tropical areas. Thermal comfort is aggravated by heat gain on the roof surface by heat gains. Thus, in the group of passive cooling techniques, one of the practices and technologies in solar control that provide improvements in comfortable conditions are thermal insulation or geometric changes of the roofs. On the other hand, methods with reflection and radiation are the methods used to decrease heat gain by facilitating the removal of excess heat inside a building to maintain a comfortable environment. Since the potential of these techniques varies in different climatic zones, their application in different zones should be examined. This research is based on the experimental study of a prototype of a roof radiator as a method of passive cooling in homes, which was developed through an experimental research methodology making measurements in a prototype built by means of the paradigm of appropriate technology, with the aim of establishing an initial behavior of the internal temperature resulting from the climate of the external environment. As a starting point, a selection matrix was made to identify the typologies of passive cooling systems to model the system and its subsequent implementation, establishing its constructive characteristics. Step followed by the measurement of the climatic variables (outside the prototype) and microclimatic variables (inside the prototype) to obtain a database to be analyzed. As a final result, the decrease in temperature that occurs inside the chamber with respect to the outside temperature was evidenced. likewise, a linearity in its behavior in relation to the variations of the climatic variables.

Keywords: appropriate technology, enveloping, energy efficiency, passive cooling

Procedia PDF Downloads 69
1503 Design and Thermal Analysis of a Concrete House in Libya Using BEopt

Authors: Gamal Alamri, Tariq Iqbal

Abstract:

This paper presents an optimum designs and thermal analysis of concrete house in the hot climate of Libya. For this goal we have used BEopt software (building energy optimization) that provides capabilities for estimating residential building design and thermal analysis. The most area of the house that is exposed to the sunlight’s is the roof leading to heat gain. Therefore, house cooling consumes high energy. The cooling energy consumption is three times the heating energy consumption. In order to maintain comfortable indoor conditions in a low-energy house, the entire building envelope needs to be perfectly insulated and prevented from air leakages. Insulated roof is selected to reduce cooling demand, and the paper presents details and BEopt simulation results. Designed house needs 12.02mmbtus/year. Furthermore, the modeling indicates that the designed house is close to achieving the Passive standard.

Keywords: concrete house design, thermal analysis, hot climate, BEopt software

Procedia PDF Downloads 384
1502 Passive Greenhouse Systems in Poland

Authors: Magdalena Grudzińska

Abstract:

Passive systems allow solar radiation to be converted into thermal energy thanks to appropriate building construction. Greenhouse systems are particularly worth attention, due to the low costs of their realization and strong architectural appeal. The paper discusses the energy effects of using passive greenhouse systems, such as glazed balconies, in an example residential building. The research was carried out for five localities in Poland, belonging to climatic zones different in terms of external air temperature and insolation: Koszalin, Poznań, Lublin, Białystok and Zakopane The analysed apartment had a floor area of approximately 74 m² Three thermal zones were distinguished in the flat - the balcony, the room adjacent to it, and the remaining space, for which various internal conditions were defined. Calculations of the energy demand were made using the dynamic simulation program, based on the control volume method. The climatic data were represented by Typical Meteorological Years, prepared on the basis of source data collected from 1971 to 2000. In each locality, the introduction of a passive greenhouse system led to a lower demand for heating in the apartment, and the shortening of the heating season. The smallest effectiveness of passive solar energy systems was noted in Białystok. Demand for heating was reduced there by 14.5% and the heating season remained the longest, due to low temperatures of external air and small sums of solar radiation intensity. In Zakopane, energy savings came to 21% and the heating season was reduced to 107 days, thanks to the greatest insolation during winter. The introduction of greenhouse systems caused an increase in cooling demand in the warmer part of the year, but total energy demand declined in each of the discussed places. However, potential energy savings are smaller if the building's annual life cycle is taken into consideration, and amount from 5.6% up to 14%. Koszalin and Zakopane are localities in which the greenhouse system allows the best energy results to be achieved. It should be emphasized that favourable conditions for introducing greenhouse systems are connected with different climatic conditions. In the seaside area (Koszalin) they result from high temperatures in the heating season and the smallest insolation in the summer period, while in the mountainous area (Zakopane) they result from high insolation in the winter and low temperatures in the summer. In the region of middle and middle-eastern Poland active systems (such as solar energy collectors or photovoltaic panels) could be more beneficial, due to high insolation during summer. It is assessed that passive systems do not eliminate the need for traditional heating in Poland. They can, however, substantially contribute to lower use of non-renewable fuels and the shortening of the heating season. The calculations showed diversification in the effectiveness of greenhouse systems resulting from climatic conditions, and allowed to identify areas which are the most suitable for the passive use of solar radiation.

Keywords: solar energy, passive greenhouse systems, glazed balconies, climatic conditions

Procedia PDF Downloads 343
1501 Aspects of Semiotics in Contemporary Design: A Case Study on Dice Brand

Authors: Laila Zahran Mohammed Alsibani

Abstract:

The aim of the research is to understand the aspects of semiotics in contemporary designs by redesigning an Omani donut brand with localized cultural identity. To do so, visual identity samples of Dice brand of donuts in Oman has been selected to be a case study. This study conducted based on semiotic theory by using mixed method research tools which are: documentation analysis, interview and survey. The literature review concentrates on key areas of semiotics in visual elements used in the brand designs. Also, it spotlights on the categories of semiotics in visual design. In addition, this research explores the visual cues in brand identity. The objectives of the research are to investigate the aspects of semiotics in providing meaning to visual cues and to identify visual cues for each visual element. It is hoped that this study will have the contribution to a better understanding of the different ways of using semiotics in contemporary designs. Moreover, this research can be a review of further studies in understanding and explaining current and future design trends. Future research can also focus on how brand-related signs are perceived by consumers.

Keywords: brands, semiotics, visual arts, visual communication

Procedia PDF Downloads 118