Search results for: particle filter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2387

Search results for: particle filter

2357 The Effect of Filter Design and Face Velocity on Air Filter Performance

Authors: Iyad Al-Attar

Abstract:

Air filters installed in HVAC equipment and gas turbine for power generation confront several atmospheric contaminants with various concentrations while operating in different environments (tropical, coastal, hot). This leads to engine performance degradation, as contaminants are capable of deteriorating components and fouling compressor assembly. Compressor fouling is responsible for 70 to 85% of gas turbine performance degradation leading to reduction in power output and availability and an increase in the heat rate and fuel consumption. Therefore, filter design must take into account face velocities, pleat count and its corresponding surface area; to verify filter performance characteristics (Efficiency and Pressure Drop). The experimental work undertaken in the current study examined two groups of four filters with different pleating densities were investigated for the initial pressure drop response and fractional efficiencies. The pleating densities used for this study is 28, 30, 32 and 34 pleats per 100mm for each pleated panel and measured for ten different flow rates ranging from 500 to 5000 m3/h with increment of 500m3/h. This experimental work of the current work has highlighted the underlying reasons behind the reduction in filter permeability due to the increase in face velocity and pleat density. The reasons that led to surface area losses of filtration media are due to one or combination of the following effects: pleat-crowding, deflection of the entire pleated panel, pleat distortion at the corner of the pleat and/or filtration medium compression. It is evident from entire array of experiments that as the particle size increases, the efficiency decreases until the MPPS is reached. Beyond the MPPS, the efficiency increases with increase in particle size. The MPPS shifts to a smaller particle size as the face velocity increases, while the pleating density and orientation did not have a pronounced effect on the MPPS. Throughout the study, an optimal pleat count which satisfies initial pressure drop and efficiency requirements may not have necessarily existed. The work has also suggested that a valid comparison of the pleat densities should be based on the effective surface area that participates in the filtration action and not the total surface area the pleat density provides.

Keywords: air filters, fractional efficiency, gas cleaning, glass fibre, HEPA filter, permeability, pressure drop

Procedia PDF Downloads 114
2356 Design of Decimation Filter Using Cascade Structure for Sigma Delta ADC

Authors: Misbahuddin Mahammad, P. Chandra Sekhar, Metuku Shyamsunder

Abstract:

The oversampled output of a sigma-delta modulator is decimated to Nyquist sampling rate by decimation filters. The decimation filters work twofold; they decimate the sampling rate by a factor of OSR (oversampling rate) and they remove the out band quantization noise resulting in an increase in resolution. The speed, area and power consumption of oversampled converter are governed largely by decimation filters in sigma-delta A/D converters. The scope of the work is to design a decimation filter for sigma-delta ADC and simulation using MATLAB. The decimation filter structure is based on cascaded-integrated comb (CIC) filter. A second decimation filter is using CIC for large rate change and cascaded FIR filters, for small rate changes, to improve the frequency response. The proposed structure is even more hardware efficient.

Keywords: sigma delta modulator, CIC filter, decimation filter, compensation filter, noise shaping

Procedia PDF Downloads 433
2355 Binarized-Weight Bilateral Filter for Low Computational Cost Image Smoothing

Authors: Yu Zhang, Kohei Inoue, Kiichi Urahama

Abstract:

We propose a simplified bilateral filter with binarized coefficients for accelerating it. Its computational cost is further decreased by sampling pixels. This computationally low cost filter is useful for smoothing or denoising images by using mobile devices with limited computational power.

Keywords: bilateral filter, binarized-weight bilateral filter, image smoothing, image denoising, pixel sampling

Procedia PDF Downloads 447
2354 Effect of Filter Paper Technique in Measuring Hydraulic Capacity of Unsaturated Expansive Soil

Authors: Kenechi Kurtis Onochie

Abstract:

This paper shows the use of filter paper technique in the measurement of matric suction of unsaturated expansive soil around the Haspolat region of Lefkosa, North Cyprus in other to establish the soil water characteristics curve (SWCC) or soil water retention curve (SWRC). The dry filter paper approach which is standardized by ASTM, 2003, D 5298-03 in which the filter paper is initially dry was adopted. The whatman No. 42 filter paper was used in the matric suction measurement. The maximum dry density of the soil was obtained as 2.66kg/cm³ and the optimum moisture content as 21%. The soil was discovered to have high air entry value of 1847.46KPa indicating finer particles and 25% hydraulic capacity using filter paper technique. The filter paper technique proved to be very useful for measuring the hydraulic capacity of unsaturated expansive soil.

Keywords: SWCC, matric suction, filter paper, expansive soil

Procedia PDF Downloads 140
2353 Additive White Gaussian Noise Filtering from ECG by Wiener Filter and Median Filter: A Comparative Study

Authors: Hossein Javidnia, Salehe Taheri

Abstract:

The Electrocardiogram (ECG) is the recording of the heart’s electrical potential versus time. ECG signals are often contaminated with noise such as baseline wander and muscle noise. As these signals have been widely used in clinical studies to detect heart diseases, it is essential to filter these noises. In this paper we compare performance of Wiener Filtering and Median Filtering methods to filter Additive White Gaussian (AWG) noise with the determined signal to noise ratio (SNR) ranging from 3 to 5 dB applied to long-term ECG recordings samples. Root mean square error (RMSE) and coefficient of determination (R2) between the filtered ECG and original ECG was used as the filter performance indicator. Experimental results show that Wiener filter has better noise filtering performance than Median filter.

Keywords: ECG noise filtering, Wiener filtering, median filtering, Gaussian noise, filtering performance

Procedia PDF Downloads 496
2352 FPGA Based IIR Filter Design Using MAC Algorithm

Authors: Rajesh Mehra, Bharti Thakur

Abstract:

In this paper, an IIR filter has been designed and simulated on an FPGA. The implementation is based on MAC algorithm which uses multiply-and-accumulate operations IIR filter design implementation. Parallel Pipelined structure is used to implement the proposed IIR Filter taking optimal advantage of the look up table of the FPGA device. The designed filter has been synthesized on DSP slice based FPGA to perform multiplier function of MAC unit. The DSP slices are useful to enhance the speed performance. The developed IIR filter is designed and simulated with Matlab and synthesized with Xilinx Synthesis Tool (XST), and implemented on Virtex 5 and Spartan 3 ADSP FPGA devices. The IIR filter implemented on Virtex 5 FPGA can operate at an estimated frequency of 81.5 MHz as compared to 40.5 MHz in case of Spartan 3 ADSP FPGA. The Virtex 5 based implementation also consumes less slices and slice flip flops of target FPGA in comparison to Spartan 3 ADSP based implementation to provide cost effective solution for signal processing applications.

Keywords: Butterworth filter, DSP, IIR, MAC, FPGA

Procedia PDF Downloads 356
2351 Growth Performance and Critical Supersaturation of Heterogeneous Condensation for High Concentration of Insoluble Sub-Micron Particles

Authors: Jie Yin, Jun Zhang

Abstract:

Measuring the growth performance and critical supersaturation of particle group have a high reference value for constructing a supersaturated water vapor environment that can improve the removal efficiency of the high-concentration particle group. The critical supersaturation and the variation of the growth performance with supersaturation for high-concentration particles were measured by a flow cloud chamber. Findings suggest that the influence of particle concentration on the growth performance will reduce with the increase of supersaturation. Reducing residence time and increasing particle concentration have similar effects on the growth performance of the high-concentration particle group. Increasing particle concentration and shortening residence time will increase the critical supersaturation of the particle group. The critical supersaturation required to activate a high-concentration particle group is lower than that of the single-particle when the minimum particle size in the particle group is the same as that of a single particle.

Keywords: sub-micron particles, heterogeneous condensation, critical supersaturation, nucleation

Procedia PDF Downloads 124
2350 Impact of Activated Carbon and Magnetic Field in Slow Sand Filter on Water Purification for Rural Dwellers

Authors: Baiyeri R. M, Oloriegbe Y. A., Saad A. O., Yusuf, K. O.

Abstract:

Most farmers that produce food crops in Nigeria live in rural areas where potable water is not available. The farmers in some areas have problem of water borne diseases which could affect their health and could lead to death. This study was conducted to determine the impact of incorporating Granular Activated Carbon(GAC) and Magnetic Field(MF) in Slow Sand Filter(SSF) on the purification of water for rural dwellers. The SSF was developed using PVC pipe with diameter 152.4 mm and 1100 mm long, with layers of fine sand with size 0.25 mm and 350 mm depth, followed by GAC 10 mm size and 100 mm depth, fine sand 0.25mm with 500 mm depth and gravel grain size 10-14 mm and 100 mm depth. The SSF was kept moist for 21 days for biofilm layer (schmutzdecke) to fully develop, which is essential for trapping bacteria. Two SSFs fabricated consist of SSF+GAC as Filter 1, SSF+GAC+MF as Filter 2 and Control (Raw water without passing through filter. Water samples were collected from the filter and analyzed. The flow rate of Filter was 25 litres/h Total bacteria counts(TBC) for Filter 1 and Filter 2 and control were 2.4, 4.6 and 8.1 cfu/mg, respectively. Total coliform count for Filter 1 and Filter 2 and control were 1.7, 3.0 and 6.4 cfu/100mL, respectively. The filters reduced water hardness, turbidity, lead, copper, electrical conductivity and TBC by 53.13-73.44% but increased pH from 5.8 to 7.1-7.3. SSF is recommended for water purification in the rural areas.

Keywords: magnetised water, sow sand filter, portable water, activated carbon

Procedia PDF Downloads 84
2349 Linear MIMO Model Identification Using an Extended Kalman Filter

Authors: Matthew C. Best

Abstract:

Linear Multi-Input Multi-Output (MIMO) dynamic models can be identified, with no a priori knowledge of model structure or order, using a new Generalised Identifying Filter (GIF). Based on an Extended Kalman Filter, the new filter identifies the model iteratively, in a continuous modal canonical form, using only input and output time histories. The filter’s self-propagating state error covariance matrix allows easy determination of convergence and conditioning, and by progressively increasing model order, the best fitting reduced-order model can be identified. The method is shown to be resistant to noise and can easily be extended to identification of smoothly nonlinear systems.

Keywords: system identification, Kalman filter, linear model, MIMO, model order reduction

Procedia PDF Downloads 566
2348 Bird-Adapted Filter for Avian Species and Individual Identification Systems Improvement

Authors: Ladislav Ptacek, Jan Vanek, Jan Eisner, Alexandra Pruchova, Pavel Linhart, Ludek Muller, Dana Jirotkova

Abstract:

One of the essential steps of avian song processing is signal filtering. Currently, the standard methods of filtering are the Mel Bank Filter or linear filter distribution. In this article, a new type of bank filter called the Bird-Adapted Filter is introduced; whereby the signal filtering is modifiable, based upon a new mathematical description of audiograms for particular bird species or order, which was named the Avian Audiogram Unified Equation. According to the method, filters may be deliberately distributed by frequency. The filters are more concentrated in bands of higher sensitivity where there is expected to be more information transmitted and vice versa. Further, it is demonstrated a comparison of various filters for automatic individual recognition of chiffchaff (Phylloscopus collybita). The average Equal Error Rate (EER) value for Linear bank filter was 16.23%, for Mel Bank Filter 18.71%, the Bird-Adapted Filter gave 14.29%, and Bird-Adapted Filter with 1/3 modification was 12.95%. This approach would be useful for practical use in automatic systems for avian species and individual identification. Since the Bird-Adapted Filter filtration is based on the measured audiograms of particular species or orders, selecting the distribution according to the avian vocalization provides the most precise filter distribution to date.

Keywords: avian audiogram, bird individual identification, bird song processing, bird species recognition, filter bank

Procedia PDF Downloads 356
2347 Fast Accurate Detection of Frequency Jumps Using Kalman Filter with Non Linear Improvements

Authors: Mahmoud E. Mohamed, Ahmed F. Shalash, Hanan A. Kamal

Abstract:

In communication systems, frequency jump is a serious problem caused by the oscillators used. Kalman filters are used to detect that jump, Despite the tradeoff between the noise level and the speed of the detection. In this paper, An improvement is introduced in the Kalman filter, Through a nonlinear change in the bandwidth of the filter. Simulation results show a considerable improvement in the filter speed with a very low noise level. Additionally, The effect on the response to false alarms is also presented and false alarm rate show improvement.

Keywords: Kalman filter, innovation, false detection, improvement

Procedia PDF Downloads 564
2346 Particle Concentration Distribution under Idling Conditions in a Residential Underground Garage

Authors: Yu Zhao, Shinsuke Kato, Jianing Zhao

Abstract:

Particles exhausted from cars have an adverse impacts on human health. The study developed a three-dimensional particle dispersion numerical model including particle coagulation to simulate the particle concentration distribution under idling conditions in a residential underground garage. The simulation results demonstrate that particle disperses much faster in the vertical direction than that in horizontal direction. The enhancement of particle dispersion in the vertical direction due to the increase of cars with engine running is much stronger than that in the car exhaust direction. Particle dispersion from each pair of adjacent cars has little influence on each other in the study. Average particle concentration after 120 seconds exhaust is 1.8-4.5 times higher than the initial total particles at ambient environment. Particle pollution in the residential underground garage is severe.

Keywords: dispersion, idling conditions, particle concentration, residential underground garage

Procedia PDF Downloads 508
2345 Design of Compact UWB Multilayered Microstrip Filter with Wide Stopband

Authors: N. Azadi-Tinat, H. Oraizi

Abstract:

Design of compact UWB multilayered microstrip filter with E-shape resonator is presented, which provides wide stopband up to 20 GHz and arbitrary impedance matching. The design procedure is developed based on the method of least squares and theory of N-coupled transmission lines. The dimensions of designed filter are about 11 mm × 11 mm and the three E-shape resonators are placed among four dielectric layers. The average insertion loss in the passband is less than 1 dB and in the stopband is about 30 dB up to 20 GHz. Its group delay in the UWB region is about 0.5 ns. The performance of the optimized filter design perfectly agrees with the microwave simulation softwares.

Keywords: method of least square, multilayer microstrip filter, n-coupled transmission lines, ultra-wideband

Procedia PDF Downloads 359
2344 Cold Flow Investigation of Silicon Carbide Cylindrical Filter Element

Authors: Mohammad Alhajeri

Abstract:

This paper reports a computational fluid dynamics (CFD) investigation of cylindrical filter. Silicon carbide cylindrical filter elements have proven to be an effective mean of removing particulates to levels exceeding the new source performance standard. The CFD code is used here to understand the deposition process and the factors that affect the particles distribution over the filter element surface. Different approach cross flow velocity to filter face velocity ratios and different face velocities (ranging from 2 to 5 cm/s) are used in this study. Particles in the diameter range 1 to 100 microns are tracked through the domain. The radius of convergence (or the critical trajectory) is compared and plotted as a function of many parameters.

Keywords: filtration, CFD, CCF, hot gas filtration

Procedia PDF Downloads 438
2343 An Efficient FPGA Realization of Fir Filter Using Distributed Arithmetic

Authors: M. Iruleswari, A. Jeyapaul Murugan

Abstract:

Most fundamental part used in many Digital Signal Processing (DSP) application is a Finite Impulse Response (FIR) filter because of its linear phase, stability and regular structure. Designing a high-speed and hardware efficient FIR filter is a very challenging task as the complexity increases with the filter order. In most applications the higher order filters are required but the memory usage of the filter increases exponentially with the order of the filter. Using multipliers occupy a large chip area and need high computation time. Multiplier-less memory-based techniques have gained popularity over past two decades due to their high throughput processing capability and reduced dynamic power consumption. This paper describes the design and implementation of highly efficient Look-Up Table (LUT) based circuit for the implementation of FIR filter using Distributed arithmetic algorithm. It is a multiplier less FIR filter. The LUT can be subdivided into a number of LUT to reduce the memory usage of the LUT for higher order filter. Analysis on the performance of various filter orders with different address length is done using Xilinx 14.5 synthesis tool. The proposed design provides less latency, less memory usage and high throughput.

Keywords: finite impulse response, distributed arithmetic, field programmable gate array, look-up table

Procedia PDF Downloads 432
2342 Fractional Order Sallen-Key Filters

Authors: Ahmed Soltan, Ahmed G. Radwan, Ahmed M. Soliman

Abstract:

This work aims to generalize the integer order Sallen-Key filters into the fractional-order domain. The analysis in the case of two different fractional-order elements introduced where the general transfer function becomes four terms which are unusual in the conventional case. In addition, the effect of the transfer function parameters on the filter poles and hence the stability is introduced and closed forms for the filter critical frequencies are driven. Finally, different examples of the fractional order Sallen-Key filter design are presented with circuit simulations using ADS where a great matching between the numerical and simulation results is obtained.

Keywords: Sallen-Key, fractance, stability, low-pass filter, analog filter

Procedia PDF Downloads 670
2341 Reconfigurable Efficient IIR Filter Design Using MAC Algorithm

Authors: Rajesh Mehra

Abstract:

In this paper an IIR filter has been designed and simulated on an FPGA. The implementation is based on MAC algorithm which uses multiply-and-accumulate operations IIR filter design implementation. Parallel Pipelined structure is used to implement the proposed IIR Filter taking optimal advantage of the look up table of the FPGA device. The designed filter has been synthesized on DSP slice based FPGA to perform multiplier function of MAC unit. The DSP slices are useful to enhance the speed performance. The developed IIR filter is designed and simulated with MATLAB and synthesized with Xilinx Synthesis Tool (XST), and implemented on Virtex 5 and Spartan 3 ADSP FPGA devices. The IIR filter implemented on Virtex 5 FPGA can operate at an estimated frequency of 81.5 MHz as compared to 40.5 MHz in case of Spartan 3 ADSP FPGA. The Virtex 5 based implementation also consumes less slices and slice flip flops of target FPGA in comparison to Spartan 3 ADSP based implementation to provide cost effective solution for signal processing applications.

Keywords: butterworth, DSP, IIR, MAC, FPGA

Procedia PDF Downloads 328
2340 Two-Dimensional Symmetric Half-Plane Recursive Doubly Complementary Digital Lattice Filters

Authors: Ju-Hong Lee, Chong-Jia Ciou, Yuan-Hau Yang

Abstract:

This paper deals with the problem of two-dimensional (2-D) recursive doubly complementary (DC) digital filter design. We present a structure of 2-D recursive DC filters by using 2-D symmetric half-plane (SHP) recursive digital all-pass lattice filters (DALFs). The novelty of using 2-D SHP recursive DALFs to construct a 2-D recursive DC digital lattice filter is that the resulting 2-D SHP recursive DC digital lattice filter provides better performance than the existing 2-D SHP recursive DC digital filter. Moreover, the proposed structure possesses a favorable 2-D DC half-band (DC-HB) property that allows about half of the 2-D SHP recursive DALF’s coefficients to be zero. This leads to considerable savings in computational burden for implementation. To ensure the stability of a designed 2-D SHP recursive DC digital lattice filter, some necessary constraints on the phase of the 2-D SHP recursive DALF during the design process are presented. Design of a 2-D diamond-shape decimation/interpolation filter is presented for illustration and comparison.

Keywords: all-pass digital filter, doubly complementary, lattice structure, symmetric half-plane digital filter, sampling rate conversion

Procedia PDF Downloads 407
2339 Filter for the Measurement of Supraharmonics in Distribution Networks

Authors: Sivaraman Karthikeyan

Abstract:

Due to rapidly developing power electronics devices and technologies such as power line communication or self-commutating converters, voltage and current distortion, as well as interferences, have increased in the frequency range of 2 kHz to 150 kHz; there is an urgent need for regulation of electromagnetic compatibility (EMC) standards in this frequency range. Measuring or testing compliance with emission and immunity limitations necessitates the use of precise, repeatable measuring methods. Appropriate filters to minimize the fundamental component and its harmonics below 2 kHz in the measuring signal would improve the measurement accuracy in this frequency range leading to better analysis. This paper discusses filter suggestions in the current measurement standard and proposes an infinite impulse response (IIR) filter design that is optimized for a low number of poles, strong fundamental damping, and high accuracy above 2 kHz. The new filter’s transfer function is delivered as a result. An analog implementation is derived from the overall design.

Keywords: supraharmonics, 2 kHz, 150 kHz, filter, analog filter

Procedia PDF Downloads 112
2338 Real-World PM, PN and NOx Emission Differences among DOC+CDPF Retrofit Diesel-, Diesel- And Natural Gas-Fueled Bus

Authors: Zhiwen Yang, Jingyuan Li, Zhenkai Xie, Jian Ling, Jiguang Wang, Mengliang Li

Abstract:

To reflect the effects of different emission control strategies, such as retrofitting after-treatment system and replacing with natural gas-fueled vehicles, on particle number (PN), particle mass (PM) and nitrogen oxides (NOx) emissions emitted by urban bus, a portable emission measurement system (PEMS) was employed herein to conduct real-world driving emission measurements on a diesel oxidation catalytic converter (DOC) and catalyzed diesel particulate filter (CDPF) retrofitting China IV diesel bus, a China IV diesel bus, and a China V natural gas bus. The results show that both tested diesel buses possess markedly advantages in NOx emission control when compared to the lean-burn natural gas bus equipped without any NOx after-treatment system. As to PN and PM, only the DOC+CDPF retrofitting diesel bus exhibits enormous benefits on emission control relate to the natural gas bus, especially the normal diesel bus. Meanwhile, the differences in PM and PN emissions between retrofitted and normal diesel buses generally increase with the increase in vehicle-specific power (VSP). Furthermore, the differences in PM emissions, especially those in the higher VSP ranges, are more significant than those in PN. In addition, the maximum peak PN particle size (32 nm) of the retrofitted diesel bus was significantly lower than that of the normal diesel bus (100 nm). These phenomena indicate that the CDPF retrofitting can effectively reduce diesel bus exhaust particle emissions, especially those with large particle sizes.

Keywords: CDPF, diesel, natural gas, real-world emissions

Procedia PDF Downloads 259
2337 Microstrip Bandpass Filter with Wide Stopband and High Out-of-Band Rejection Based on Inter-Digital Capacitor

Authors: Mohamad Farhat, Bal Virdee

Abstract:

This paper present a compact Microstrip Bandpass filter exhibiting a very wide stop band and high selectivity. The filter comprises of asymmetric resonator structures, which are interconnected by an inter-digital capacitor to enable the realization of a wide bandwidth with high rejection level. High selectivity is obtained by optimizing the parameters of the interdigital capacitor. The filter has high out-of-band rejection (> 30 dB), less than 0.6 dB of insertion-loss, up to 5.5 GHz spurii free, and about 18 dB of return-loss. Full-wave electromagnetic simulator ADSTM (Mom) is used to analyze and optimize the prototype bandpass filter. The proposed technique was verified practically to validate the design methodology. The experimental results of the prototype circuit are presented and a good agreement was obtained comparing with the simulation results. The dimensions of the proposed filter are 32 x 24 mm2.The filter’s characteristics and compact size make it suitable for wireless communication systems.

Keywords: asymmetric resonator, bandpass filter, microstrip, spurious suppression, ultra-wide stop band

Procedia PDF Downloads 160
2336 Transforming Butterworth Low Pass Filter into Microstrip Line Form at LC-Band Applications

Authors: Liew Hui Fang, Syed Idris Syed Hassan, Mohd Fareq Abd. Malek, Yufridin Wahab, Norshafinash Saudin

Abstract:

The paper implementation new approach method applied into transforming lumped element circuit into microstrip line form for Butterworth low pass filter which is operating at LC band. The filter’s lumped element circuits and microstrip line form were first designed and simulated using Advanced Design Software (ADS) to obtain the best filter characteristic based on S-parameter and implemented on FR4 substrate for order N=3,4,5,6,7,8 and 9. The importance of a new approach of transforming method as a correction factor has been considered into designed microstrip line. From ADS simulation results proved that the response of microstrip line circuit of Butterworth low pass filter with fringing correction factor has an excellent agreement with its lumped circuit. This shows that the new approach of transforming lumped element circuit into microstrip line is able to solve the conventional design of complexity size of circuit of Butterworth low pass filter (LPF) into microstrip line.

Keywords: Butterworth low pass filter, number of order, microstrip line, microwave filter, maximally flat

Procedia PDF Downloads 300
2335 A Filtering Algorithm for a Nonlinear State-Space Model

Authors: Abdullah Eqal Al Mazrooei

Abstract:

Kalman filter is a famous algorithm that utilizes to estimate the state in the linear systems. It has numerous applications in technology and science. Since of the most of applications in real life can be described by nonlinear systems. So, Kalman filter does not work with the nonlinear systems because it is suitable to linear systems only. In this work, a nonlinear filtering algorithm is presented which is suitable to use with the special kinds of nonlinear systems. This filter generalizes the Kalman filter. This means that this filter also can be used for the linear systems. Our algorithm depends on a special linearization of the second degree. We introduced the nonlinear algorithm with a bilinear state-space model. A simulation example is presented to illustrate the efficiency of the algorithm.

Keywords: Kalman filter, filtering algorithm, nonlinear systems, state-space model

Procedia PDF Downloads 347
2334 A New Sign Subband Adaptive Filter Based on Dynamic Selection of Subbands

Authors: Mohammad Shams Esfand Abadi, Mehrdad Zalaghi, Reza ebrahimpour

Abstract:

In this paper, we propose a sign adaptive filter algorithm with the ability of dynamic selection of subband filters which leads to low computational complexity compared with conventional sign subband adaptive filter (SSAF) algorithm. Dynamic selection criterion is based on largest reduction of the mean square deviation at each adaption. We demonstrate that this simple proposed algorithm has the same performance of the conventional SSAF and somewhat faster than it. In the presence of impulsive interferences robustness of the simple proposed algorithm as well as the conventional SSAF and outperform the conventional normalized subband adaptive filter (NSAF) algorithm. Therefore, it is preferred for environments under impulsive interferences. Simulation results are presented to verify these above considerations very well have been achieved.

Keywords: acoustic echo cancellation (AEC), normalized subband adaptive filter (NSAF), dynamic selection subband adaptive filter (DS-NSAF), sign subband adaptive filter (SSAF), impulsive noise, robust filtering

Procedia PDF Downloads 565
2333 Development of 3D Particle Method for Calculating Large Deformation of Soils

Authors: Sung-Sik Park, Han Chang, Kyung-Hun Chae, Sae-Byeok Lee

Abstract:

In this study, a three-dimensional (3D) Particle method without using grid was developed for analyzing large deformation of soils instead of using ordinary finite element method (FEM) or finite difference method (FDM). In the 3D Particle method, the governing equations were discretized by various particle interaction models corresponding to differential operators such as gradient, divergence, and Laplacian. The Mohr-Coulomb failure criterion was incorporated into the 3D Particle method to determine soil failure. The yielding and hardening behavior of soil before failure was also considered by varying viscosity of soil. First of all, an unconfined compression test was carried out and the large deformation following soil yielding or failure was simulated by the developed 3D Particle method. The results were also compared with those of a commercial FEM software PLAXIS 3D. The developed 3D Particle method was able to simulate the 3D large deformation of soils due to soil yielding and calculate the variation of normal and shear stresses following clay deformation.

Keywords: particle method, large deformation, soil column, confined compressive stress

Procedia PDF Downloads 547
2332 A Reconfigurable Microstrip Patch Antenna with Polyphase Filter for Polarization Diversity and Cross Polarization Filtering Operation

Authors: Lakhdar Zaid, Albane Sangiovanni

Abstract:

A reconfigurable microstrip patch antenna with polyphase filter for polarization diversity and cross polarization filtering operation is presented in this paper. In our approach, a polyphase filter is used to obtain the four 90° phase shift outputs to feed a square microstrip patch antenna. The antenna can be switched between four states of polarization in transmission as well as in receiving mode. Switches are interconnected with the polyphase filter network to produce left-hand circular polarization, right-hand circular polarization, horizontal linear polarization, and vertical linear polarization. Additional advantage of using polyphase filter is its filtering capability for cross polarization filtering in right-hand circular polarization and left-hand circular polarization operation. The theoretical and simulated results demonstrated that polyphase filter is a good candidate to drive microstrip patch antenna to accomplish polarization diversity and cross polarization filtering operation.

Keywords: active antenna, polarization diversity, patch antenna, polyphase filter

Procedia PDF Downloads 385
2331 A High Quality Factor Filter Based on Quasi- Periodic Photonic Structure

Authors: Hamed Alipour-Banaei, Farhad Mehdizadeh

Abstract:

We report the design and characterization of ultra high quality factor filter based on one-dimensional photonic-crystal Thue-Morse sequence structure. The behavior of aperiodic array of photonic crystal structure is numerically investigated and we show that by changing the angle of incident wave, desired wavelengths could be tuned and a tunable filter is realized. Also it is shown that high quality factor filter be achieved in the telecommunication window around 1550 nm, with a device based on Thue-Morse structure. Simulation results show that the proposed structure has a quality factor more than 100000 and it is suitable for DWDM communication applications.

Keywords: Thue-Morse, filter, quality factor, photonic

Procedia PDF Downloads 524
2330 The Creep Analysis of a Varying Thickness on a Rotating Composite Disk with Different Particle Size by Using Sherby’s Law

Authors: Rupinder Kaur, Harjot Kaur

Abstract:

The objective of this paper is to present the study of the effect of varying thickness on rotating composite disks made from Al-SiC_P having different particle sizes. Mathematical modeling is used to calculate the effect of varying thickness with different particle sizes on rotating composite disks in radial as well as tangential directions with thermal gradients. In comparison to various particle sizes with varied thicknesses, long-term deformation occurs. The results are displayed visually, demonstrating how creep deformation decreases with changing particle size and thickness.

Keywords: creep, varying thickness, particle size, stresses and strain rates

Procedia PDF Downloads 52
2329 Lateral Buckling of Nanoparticle Additive Composite Beams

Authors: Gürkan Şakar, Akgün Alsaran, Emrah E. Özbaldan

Abstract:

In this study, lateral buckling analysis of composite beams with particle additive was carried out experimentally and numerically. The effects of particle type, particle addition ratio on buckling loads of composite beams were determined. The numerical studies were performed with ANSYS package. In the analyses, clamped-free boundary condition was assumed. The load carrying capabilities of composite beams were influenced by different particle types and particle addition ratios.

Keywords: lateral buckling, nanoparticle, composite beam, numeric analysis

Procedia PDF Downloads 440
2328 Function Approximation with Radial Basis Function Neural Networks via FIR Filter

Authors: Kyu Chul Lee, Sung Hyun Yoo, Choon Ki Ahn, Myo Taeg Lim

Abstract:

Recent experimental evidences have shown that because of a fast convergence and a nice accuracy, neural networks training via extended Kalman filter (EKF) method is widely applied. However, as to an uncertainty of the system dynamics or modeling error, the performance of the method is unreliable. In order to overcome this problem in this paper, a new finite impulse response (FIR) filter based learning algorithm is proposed to train radial basis function neural networks (RBFN) for nonlinear function approximation. Compared to the EKF training method, the proposed FIR filter training method is more robust to those environmental conditions. Furthermore, the number of centers will be considered since it affects the performance of approximation.

Keywords: extended Kalman filter, classification problem, radial basis function networks (RBFN), finite impulse response (FIR) filter

Procedia PDF Downloads 429