Search results for: optimize
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1238

Search results for: optimize

1208 Numerical Method for Fin Profile Optimization

Authors: Beghdadi Lotfi

Abstract:

In the present work a numerical method is proposed in order to optimize the thermal performance of finned surfaces. The bidimensional temperature distribution on the longitudinal section of the fin is calculated by restoring to the finite volumes method. The heat flux dissipated by a generic profile fin is compared with the heat flux removed by the rectangular profile fin with the same length and volume. In this study, it is shown that a finite volume method for quadrilaterals unstructured mesh is developed to predict the two dimensional steady-state solutions of conduction equation, in order to determine the sinusoidal parameter values which optimize the fin effectiveness. In this scheme, based on the integration around the polygonal control volume, the derivatives of conduction equation must be converted into closed line integrals using same formulation of the Stokes theorem. The numerical results show good agreement with analytical results. To demonstrate the accuracy of the method, the absolute and root-mean square errors versus the grid size are examined quantitatively.

Keywords: Stokes theorem, unstructured grid, heat transfer, complex geometry, effectiveness

Procedia PDF Downloads 239
1207 Numerical Analysis of Various V- rib Cross-section to Optimize Thermal Performance of the Rocket Engine

Authors: Hisham Elmouazen, Xiaobing Zhang

Abstract:

In regenerative-cooled rocket engines, understanding the coolant behaviour within cooling channels is essential to enhance engine performance and maintain chamber walls at low temperatures. However, modelling and testing the rocket engine's cooling channels is challenging due to the high temperature of the chamber walls, supercritical flow, and high Reynolds number. Therefore, a numerical analysis of five different V-rib cross-sections to optimize rocket engine cooling channels' performance is developed and validated in this work. Three-dimensional CFD simulations are employed by the Shear Stress Transport (k- ω) turbulent model at Reynolds number 42,500. The study findings illustrate that the V-ribbed channel performance is optimized by 59.5% relative to the plain/flat channel. Additionally, the chamber wall temperature is decreased to 726.4 K, and the right-angle trapezoidal V-rib (Case 4) improves thermal augmentation up to 74.3 % with a slightly high friction factor.

Keywords: computational fluid dynamics CFD, regenerative-cooled system, thermal performance, V-rib cross-sections

Procedia PDF Downloads 41
1206 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings

Authors: Hyunchul Ahn, William X. S. Wong

Abstract:

Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.

Keywords: corporate credit rating prediction, Feature selection, genetic algorithms, instance selection, multiclass support vector machines

Procedia PDF Downloads 265
1205 Sustainable Intensification of Agriculture in Victoria’s Food Bowl: Optimizing Productivity with the use of Decision-Support Tools

Authors: M. Johnson, R. Faggian, V. Sposito

Abstract:

A participatory and engaged approach is key in connecting agricultural managers to sustainable agricultural systems to support and optimize production in Victoria’s food bowl. A sustainable intensification (SI) approach is well documented globally, but participation rates amongst Victorian farmers is fragmentary, and key outcomes and implementation strategies are poorly understood. Improvement in decision-support management tools and a greater understanding of the productivity gains available upon implementation of SI is necessary. This paper reviews the current understanding and uptake of SI practices amongst farmers in one of Victoria’s premier food producing regions, the Goulburn Broken; and it spatially analyses the potential for this region to adapt to climate change and optimize food production. A Geographical Information Systems (GIS) approach is taken to develop an interactive decision-support tool that can be accessible to on-ground agricultural managers. The tool encompasses multiple criteria analysis (MCA) that identifies factors during the construction phase of the tool, using expert witnesses and regional knowledge, framed within an Analytical Hierarchy Process. Given the complexities of the interrelations between each of the key outcomes, this participatory approach, in which local realities and factors inform the key outcomes and help to strategies for a particular region, results in a robust strategy for sustainably intensifying production in key food producing regions. The creation of an interactive, locally embedded, decision-support management and education tool can help to close the gap between farmer knowledge and production, increase on-farm adoption of sustainable farming strategies and techniques, and optimize farm productivity.

Keywords: agriculture, decision-support management tool, Geographic Information System, GIS, sustainable intensification

Procedia PDF Downloads 135
1204 The Importance of Optimization of Halal Tourism: A Study of the Development of Halal Tourism in Indonesia

Authors: Rizqi W. Romadhon, Nur Arifan

Abstract:

Halal Tourism is a part of tourism industry which is based on Islamic Principle and addressed to the Muslim tourist. The potency of halal tourism is very broad to be developed, because the growth of Muslim populations is rapidly increasing. Indonesia is one of the biggest countries with Majority of its population is Muslim, therefore human resources and natural resources have very good potential to be part of the Halal tourism industry. But the fact is Indonesia can not optimize the potential of human resources and natural resources as well as neighboring countries carried out. This paper will discuss the reasons of the importance of developing Halal tourism, and the factors influencing the success of developing halal tourism in Indonesia, and also the optimization strategies which can be adopted by the government so that the Halal tourism industry in Indonesia has a sustainable competitive advantage. The existence of this research is expected to government, tourism agents and others can optimize the potency of Indonesia’s Human resources and natural resources for developing Halal tourism industry in Indonesia.

Keywords: halal tourism, Islamic principle, optimization, sustainable competitive advantage

Procedia PDF Downloads 349
1203 Control Strategy for a Solar Vehicle Race

Authors: Francois Defay, Martim Calao, Jean Francois Dassieu, Laurent Salvetat

Abstract:

Electrical vehicles are a solution for reducing the pollution using green energy. The shell Eco-Marathon provides rules in order to minimize the battery use for the race. The use of solar panel combined with efficient motor control and race strategy allow driving a 60kg vehicle with one pilot using only the solar energy in the best case. This paper presents a complete modelization of a solar vehicle used for the shell eco-marathon. This project called Helios is cooperation between non-graduated students, academic institutes, and industrials. The prototype is an ultra-energy-efficient vehicle based on one-meter square solar panel and an own-made brushless controller to optimize the electrical part. The vehicle is equipped with sensors and embedded system to provide all the data in real time in order to evaluate the best strategy for the course. A complete modelization with Matlab/Simulink is used to test the optimal strategy to increase the global endurance. Experimental results are presented to validate the different parts of the model: mechanical, aerodynamics, electrical, solar panel. The major finding of this study is to provide solutions to identify the model parameters (Rolling Resistance Coefficient, drag coefficient, motor torque coefficient, etc.) by means of experimental results combined with identification techniques. One time the coefficients are validated, the strategy to optimize the consumption and the average speed can be tested first in simulation before to be implanted for the race. The paper describes all the simulation and experimental parts and provides results in order to optimize the global efficiency of the vehicle. This works have been started four years ago and evolved many students for the experimental and theoretical parts and allow to increase the knowledge on electrical self-efficient vehicle.

Keywords: electrical vehicle, endurance, optimization, shell eco-marathon

Procedia PDF Downloads 236
1202 Optimization Analysis of Controlled Cooling Process for H-Shape Steam Beams

Authors: Jiin-Yuh Jang, Yu-Feng Gan

Abstract:

In order to improve the comprehensive mechanical properties of the steel, the cooling rate, and the temperature distribution must be controlled in the cooling process. A three-dimensional numerical model for the prediction of the heat transfer coefficient distribution of H-beam in the controlled cooling process was performed in order to obtain the uniform temperature distribution and minimize the maximum stress and the maximum deformation after the controlled cooling. An algorithm developed with a simplified conjugated-gradient method was used as an optimizer to optimize the heat transfer coefficient distribution. The numerical results showed that, for the case of air cooling 5 seconds followed by water cooling 6 seconds with uniform the heat transfer coefficient, the cooling rate is 15.5 (℃/s), the maximum temperature difference is 85℃, the maximum the stress is 125 MPa, and the maximum deformation is 1.280 mm. After optimize the heat transfer coefficient distribution in control cooling process with the same cooling time, the cooling rate is increased to 20.5 (℃/s), the maximum temperature difference is decreased to 52℃, the maximum stress is decreased to 82MPa and the maximum deformation is decreased to 1.167mm.

Keywords: controlled cooling, H-Beam, optimization, thermal stress

Procedia PDF Downloads 338
1201 Coupling Static Multiple Light Scattering Technique With the Hansen Approach to Optimize Dispersibility and Stability of Particle Dispersions

Authors: Guillaume Lemahieu, Matthias Sentis, Giovanni Brambilla, Gérard Meunier

Abstract:

Static Multiple Light Scattering (SMLS) has been shown to be a straightforward technique for the characterization of colloidal dispersions without dilution, as multiply scattered light in backscattered and transmitted mode is directly related to the concentration and size of scatterers present in the sample. In this view, the use of SMLS for stability measurement of various dispersion types has already been widely described in the literature. Indeed, starting from a homogeneous dispersion, the variation of backscattered or transmitted light can be attributed to destabilization phenomena, such as migration (sedimentation, creaming) or particle size variation (flocculation, aggregation). In a view to investigating more on the dispersibility of colloidal suspensions, an experimental set-up for “at the line” SMLS experiment has been developed to understand the impact of the formulation parameters on particle size and dispersibility. The SMLS experiment is performed with a high acquisition rate (up to 10 measurements per second), without dilution, and under direct agitation. Using such experimental device, SMLS detection can be combined with the Hansen approach to optimize the dispersing and stabilizing properties of TiO₂ particles. It appears that the dispersibility and the stability spheres generated are clearly separated, arguing that lower stability is not necessarily a consequence of poor dispersibility. Beyond this clarification, this combined SMLS-Hansen approach is a major step toward the optimization of dispersibility and stability of colloidal formulations by finding solvents having the best compromise between dispersing and stabilizing properties. Such study can be intended to find better dispersion media, greener and cheaper solvents to optimize particles suspensions, reduce the content of costly stabilizing additives or satisfy product regulatory requirements evolution in various industrial fields using suspensions (paints & inks, coatings, cosmetics, energy).

Keywords: dispersibility, stability, Hansen parameters, particles, solvents

Procedia PDF Downloads 73
1200 Optimizing the Elevated Nitritation for Autotrophic/Heterotrophic Denitritation in CSTR by Treating STP Wastewater

Authors: Hammad Khan, Wookeun Bae

Abstract:

The objective of this study was to optimize and control the highly loaded and efficient nitrite production having suitability for autotrophic and heterotrophic denitritation. A lab scale CSTR for partial and full nitritation was operated to treat the livestock manure digester liquor having an ammonium concentration of ~600 mg-NH4+-N/L and biodegradable contents of ~0.35 g-COD/L. The experiments were performed at 30°C, pH: 8.0, DO: 1.5 mg/L and SRT ranging from 7-20 days. After 125 days operation, >95% nitrite buildup having the ammonium loading rate of ~3.2 kg-NH4+-N/m3-day was seen with almost complete ammonium conversion. On increasing the loading rate further (i-e, from 3.2-6.2 kg-NH4+-N/m3-day), stability of the system remained unaffected. On decreasing the pH from 8 to 7.5 and further 7.2, removal rate can be easily controlled as 95%, 75%, and even 50%. Results demonstrated that nitritation stability and desired removal rates are controlled by a balance of simultaneous inhibition by FA & FNA, pH effect and DO limitation. These parameters proved to be effective even to produce an appropriate influent for anammox. In addition, a mathematical model, identified through the occurring biological reactions, is proposed to optimize the full and partial nitritation process. The proposed model present relationship between pH, ammonium and produced nitrite for full and partial nitritation under the varying concentrations of DO, and simultaneous inhibition by FA and FNA.

Keywords: stable nitritation, high loading, autrophic denitritation, hetrotrophic denitritation

Procedia PDF Downloads 284
1199 Achieving the Elevated Nitritation for Autotrophic/Heterotrophic Denitritation in CSTR by Treating STP Wastewater

Authors: Hammad Khan, Wookeun Bae

Abstract:

The objective of this study was to optimize, achieve and control the highly loaded and efficient nitrite production having suitability for autotrophic and heterotrophic denitritation. A lab scale CSTR for partial and full nitritation was operated to treat the livestock manure digester liquor having an ammonium concentration of ~600 mg-NH4+-N/L and biodegradable contents of ~0.35 g-COD/L. The experiments were performed at 30°C, pH: 8.0, DO: 1.5 mg/L and SRT ranging from 7-20 days. After 125 days operation, >95% nitrite buildup having the ammonium loading rate of ~3.2 kg-NH4+-N/m3-day was seen with almost complete ammonium conversion. On increasing the loading rate further (i-e, from 3.2-6.2 kg-NH4+-N/m3-day), stability of the system remained unaffected. On decreasing the pH from 8 to7.5 and further 7.2, removal rate can be easily controlled as 95%, 75%, and even 50%. Results demonstrated that nitritation stability and desired removal rates are controlled by a balance of simultaneous inhibition by FA & FNA, pH affect and DO limitation. These parameters proved to be effective even to produce an appropriate influent for anammox. In addition, a mathematical model, identified through the occurring biological reactions, is proposed to optimize the full and partial nitritation process. The proposed model present relationship between pH, ammonium and produced nitrite for full and partial nitritation under the varying concentrations of DO, and simultaneous inhibition by FA and FNA.

Keywords: stable nitritation, high loading, autrophic denitritation, CSTR

Procedia PDF Downloads 206
1198 Reliability Enhancement by Parameter Design in Ferrite Magnet Process

Authors: Won Jung, Wan Emri

Abstract:

Ferrite magnet is widely used in many automotive components such as motors and alternators. Magnets used inside the components must be in good quality to ensure the high level of performance. The purpose of this study is to design input parameters that optimize the ferrite magnet production process to ensure the quality and reliability of manufactured products. Design of Experiments (DOE) and Statistical Process Control (SPC) are used as mutual supplementations to optimize the process. DOE and SPC are quality tools being used in the industry to monitor and improve the manufacturing process condition. These tools are practically used to maintain the process on target and within the limits of natural variation. A mixed Taguchi method is utilized for optimization purpose as a part of DOE analysis. SPC with proportion data is applied to assess the output parameters to determine the optimal operating conditions. An example of case involving the monitoring and optimization of ferrite magnet process was presented to demonstrate the effectiveness of this approach. Through the utilization of these tools, reliable magnets can be produced by following the step by step procedures of proposed framework. One of the main contributions of this study was producing the crack free magnets by applying the proposed parameter design.

Keywords: ferrite magnet, crack, reliability, process optimization, Taguchi method

Procedia PDF Downloads 481
1197 Internet Optimization by Negotiating Traffic Times

Authors: Carlos Gonzalez

Abstract:

This paper describes a system to optimize the use of the internet by clients requiring downloading of videos at peak hours. The system consists of a web server belonging to a provider of video contents, a provider of internet communications and a software application running on a client’s computer. The client using the application software will communicate to the video provider a list of the client’s future video demands. The video provider calculates which videos are going to be more in demand for download in the immediate future, and proceeds to request the internet provider the most optimal hours to do the downloading. The times of the downloading will be sent to the application software, which will use the information of pre-established hours negotiated between the video provider and the internet provider to download those videos. The videos will be saved in a special protected section of the user’s hard disk, which will only be accessed by the application software in the client’s computer. When the client is ready to see a video, the application will search the list of current existent videos in the area of the hard disk; if it does exist, it will use this video directly without the need for internet access. We found that the best way to optimize the download traffic of videos is by negotiation between the internet communication provider and the video content provider.

Keywords: internet optimization, video download, future demands, secure storage

Procedia PDF Downloads 113
1196 Optimizing the Elevated Nitritation for Autotrophic/Heterotrophic Denitritation in CSTR by Treating Livestock Wastewater

Authors: Hammad Khan, Wookeun Bae

Abstract:

The objective of this study was to optimize and control the highly loaded and efficient nitrite production having suitability for autotrophic and heterotrophic denitritation. A lab scale CSTR for partial and full nitritation was operated to treat the livestock manure digester liquor having an ammonium concentration of ~2000 mg-NH4+-N/L and biodegradable contents of ~0.8 g-COD/L. The experiments were performed at 30°C, pH: 8.0 DO: 1.5 mg/L and SRT ranging from 7-20 days. After 125 days operation, >95% nitrite buildup having the ammonium loading rate of ~3.2 kg-NH4+-N/m3-day was seen with almost complete ammonium conversion. On increasing the loading rate further (i.e. from 3.2-6.2 kg-NH4+-N/m3-day), stability of the system remained unaffected. On decreasing the pH from 8 to7.5 and further 7.2, removal rate can be easily controlled as 95%, 75% and even 50%. Results demonstrated that nitritation stability and desired removal rates are controlled by a balance of simultaneous inhibition by FA and FNA, pH affect and DO limitation. These parameters proved to be effective even to produce an appropriate influent for anammox. In addition, a mathematical model, identified through the occurring biological reactions, is proposed to optimize the full and partial nitritation process. The proposed model presents relationship between pH, ammonium and produced nitrite for full and partial nitritation under the varying concentrations of DO, and simultaneous inhibition by FA and FNA.

Keywords: stable nitritation, high loading, autrophic denitritation, hetrotrophic denitritation

Procedia PDF Downloads 295
1195 Non-Centrifugal Cane Sugar Production: Heat Transfer Study to Optimize the Use of Energy

Authors: Fabian Velasquez, John Espitia, Henry Hernadez, Sebastian Escobar, Jader Rodriguez

Abstract:

Non-centrifuged cane sugar (NCS) is a concentrated product obtained through the evaporation of water contain from sugarcane juice inopen heat exchangers (OE). The heat supplied to the evaporation stages is obtained from the cane bagasse through the thermochemical process of combustion, where the thermal energy released is transferred to OE by the flue gas. Therefore, the optimization of energy usage becomes essential for the proper design of the production process. For optimize the energy use, it is necessary modeling and simulation of heat transfer between the combustion gases and the juice and to understand the major mechanisms involved in the heat transfer. The main objective of this work was simulated heat transfer phenomena between the flue gas and open heat exchangers using Computational Fluid Dynamics model (CFD). The simulation results were compared to field measured data. Numerical results about temperature profile along the flue gas pipeline at the measurement points are in good accordance with field measurements. Thus, this study could be of special interest in design NCS production process and the optimization of the use of energy.

Keywords: mathematical modeling, design variables, computational fluid dynamics, overall thermal efficiency

Procedia PDF Downloads 98
1194 Achieving the Elevated Nitritation for Autotrophic/Heterotrophic Denitritation in CSTR by Treating Livestock Wastewater

Authors: Hammad Khan, Wookeun Bae

Abstract:

The objective of this study was to achieve, optimize and control the highly loaded and efficient nitrite production having suitability for autotrophic and heterotrophic denitritation. A lab scale CSTR for partial and full nitritation was operated to treat the livestock manure digester liquor having an ammonium concentration of ~2000 mg-NH4+-N/L and biodegradable contents of ~0.8 g-COD/L. The experiments were performed at 30°C, pH: 8.0, DO: 1.5 mg/L and SRT ranging from 7-20 days. After 125 days operation, >95% nitrite buildup having the ammonium loading rate of ~3.2 kg-NH4+-N/m3-day was seen with almost complete ammonium conversion. On increasing the loading rate further (i-e, from 3.2-6.2 kg-NH4+-N/m3-day), stability of the system remained unaffected. On decreasing the pH from 8 to 7.5 and further 7.2, removal rate can be easily controlled as 95%, 75% and even 50%. Results demonstrated that nitritation stability and desired removal rates are controlled by a balance of simultaneous inhibition by FA & FNA, pH affect and DO limitation. These parameters proved to be effective even to produce an appropriate influent for anammox. In addition, a mathematical model, identified through the occurring biological reactions, is proposed to optimize the full and partial nitritation process. The proposed model present relationship between pH, ammonium and produced nitrite for full and partial nitritation under the varying concentrations of DO, and simultaneous inhibition by FA and FNA.

Keywords: stable nitritation, high loading, autrophic denitritation, hetrotrophic denitritation

Procedia PDF Downloads 240
1193 Application of Simulated Annealing to Threshold Optimization in Distributed OS-CFAR System

Authors: L. Abdou, O. Taibaoui, A. Moumen, A. Talib Ahmed

Abstract:

This paper proposes an application of the simulated annealing to optimize the detection threshold in an ordered statistics constant false alarm rate (OS-CFAR) system. Using conventional optimization methods, such as the conjugate gradient, can lead to a local optimum and lose the global optimum. Also for a system with a number of sensors that is greater than or equal to three, it is difficult or impossible to find this optimum; Hence, the need to use other methods, such as meta-heuristics. From a variety of meta-heuristic techniques, we can find the simulated annealing (SA) method, inspired from a process used in metallurgy. This technique is based on the selection of an initial solution and the generation of a near solution randomly, in order to improve the criterion to optimize. In this work, two parameters will be subject to such optimisation and which are the statistical order (k) and the scaling factor (T). Two fusion rules; “AND” and “OR” were considered in the case where the signals are independent from sensor to sensor. The results showed that the application of the proposed method to the problem of optimisation in a distributed system is efficiency to resolve such problems. The advantage of this method is that it allows to browse the entire solutions space and to avoid theoretically the stagnation of the optimization process in an area of local minimum.

Keywords: distributed system, OS-CFAR system, independent sensors, simulating annealing

Procedia PDF Downloads 480
1192 Parallel Gripper Modelling and Design Optimization Using Multi-Objective Grey Wolf Optimizer

Authors: Golak Bihari Mahanta, Bibhuti Bhusan Biswal, B. B. V. L. Deepak, Amruta Rout, Gunji Balamurali

Abstract:

Robots are widely used in the manufacturing industry for rapid production with higher accuracy and precision. With the help of End-of-Arm Tools (EOATs), robots are interacting with the environment. Robotic grippers are such EOATs which help to grasp the object in an automation system for improving the efficiency. As the robotic gripper directly influence the quality of the product due to the contact between the gripper surface and the object to be grasped, it is necessary to design and optimize the gripper mechanism configuration. In this study, geometric and kinematic modeling of the parallel gripper is proposed. Grey wolf optimizer algorithm is introduced for solving the proposed multiobjective gripper optimization problem. Two objective functions developed from the geometric and kinematic modeling along with several nonlinear constraints of the proposed gripper mechanism is used to optimize the design variables of the systems. Finally, the proposed methodology compared with a previously proposed method such as Teaching Learning Based Optimization (TLBO) algorithm, NSGA II, MODE and it was seen that the proposed method is more efficient compared to the earlier proposed methodology.

Keywords: gripper optimization, metaheuristics, , teaching learning based algorithm, multi-objective optimization, optimal gripper design

Procedia PDF Downloads 159
1191 Direct Compression Formulation of Poorly Compressible Drugs to Minimize the Tablet Defects

Authors: Abhishek Pandey

Abstract:

Capping and lamination are the most common tablet defects with poorly compressible drugs the common example of that Ibuprofen and Acetaminophen. Generally both these drugs are compressed by wet granulation method which is very time consuming process Ibuprofen and Acetaminophen is widely used as prescription & non-prescription medicine. Ibuprofen mainly used in the treatment of mild to moderate pain related to headache, migraine, postoperative condition and in the management of spondylitis, osteoarthritis Acetaminophen used as an analgesic and antipyretic drug. Ibuprofen having high tendency of sticking to punches of tablet punching machine while Acetaminophen is not ordinarily compressible to tablet formulation because Acetaminophen crystals are very hard and brittle in nature and fracture very easily when compressed producing capping and laminating tablet defects therefore wet granulation method is used to make them compressible. The aim of study was to prepare Ibuprofen and Acetaminophen tablets by direct compression technique and their evaluation. In this Investigation tablets were prepared by using directly compressible grade excipients. Dibasic calcium phosphate, lactose anhydrous (DCL21), microcrystalline cellulose (Avicel PH 101). In order to obtain best or optimize formulation nine different formulations were generated among them batch F5, F6, F7 shows good results and within the acceptable limit. Formulation (F7) selected as optimize product on the basis of evaluation parameters.

Keywords: capping, lamination, tablet defects, direct compression

Procedia PDF Downloads 399
1190 Analysis of Spatial Disparities of Population for Delicate Configuration of Public Service Facilities:Case of Gongshu District, Hangzhou, China

Authors: Ruan Yi-Chen, Li Wang-Ming, Fang Yuan

Abstract:

With the rapid growth of urbanization in China in recent years, public services are in short supply because of expanding population and limitation of financial support, which makes delicate configuration of public service facilities to become a trend in urban planning. Besides, the facility configuration standard implemented in China is equal to the whole the urban area without considering internal differences in it. Therefore, this article focuses on population Spatial disparities analysis in order to optimize facility configuration in communities of main city district. The used data, including population of 93 communities during 2010 to 2015, comes from GongShu district, Hangzhou city, PRC. Through the analysis of population data, especially the age structure of those communities, the communities finally divided into 3 types. Obviously, urban public service facilities allocation situation directly affect the quality of residents common lives, which turns out that deferent kinds of communities with deferent groups of citizens will have divergences in facility demanding. So in the end of the article, strategies of facility configuration will be proposed based on the population analysis in order to optimize the quantity and location of facilities with delicacy.

Keywords: delicacy, facility configuration, population spatial disparities, urban area

Procedia PDF Downloads 354
1189 Optimization of Spatial Light Modulator to Generate Aberration Free Optical Traps

Authors: Deepak K. Gupta, T. R. Ravindran

Abstract:

Holographic Optical Tweezers (HOTs) in general use iterative algorithms such as weighted Gerchberg-Saxton (WGS) to generate multiple traps, which produce traps with 99% uniformity theoretically. But in experiments, it is the phase response of the spatial light modulator (SLM) which ultimately determines the efficiency, uniformity, and quality of the trap spots. In general, SLMs show a nonlinear phase response behavior, and they may even have asymmetric phase modulation depth before and after π. This affects the resolution with which the gray levels are addressed before and after π, leading to a degraded trap performance. We present a method to optimize the SLM for a linear phase response behavior along with a symmetric phase modulation depth around π. Further, we optimize the SLM for its varying phase response over different spatial regions by optimizing the brightness/contrast and gamma of the hologram in different subsections. We show the effect of the optimization on an array of trap spots resulting in improved efficiency and uniformity. We also calculate the spot sharpness metric and trap performance metric and show a tightly focused spot with reduced aberration. The trap performance is compared by calculating the trap stiffness of a trapped particle in a given trap spot before and after aberration correction. The trap stiffness is found to improve by 200% after the optimization.

Keywords: spatial light modulator, optical trapping, aberration, phase modulation

Procedia PDF Downloads 143
1188 Multi Objective Simultaneous Assembly Line Balancing and Buffer Sizing

Authors: Saif Ullah, Guan Zailin, Xu Xianhao, He Zongdong, Wang Baoxi

Abstract:

Assembly line balancing problem is aimed to divide the tasks among the stations in assembly lines and optimize some objectives. In assembly lines the workload on stations is different from each other due to different tasks times and the difference in workloads between stations can cause blockage or starvation in some stations in assembly lines. Buffers are used to store the semi-finished parts between the stations and can help to smooth the assembly production. The assembly line balancing and buffer sizing problem can affect the throughput of the assembly lines. Assembly line balancing and buffer sizing problems have been studied separately in literature and due to their collective contribution in throughput rate of assembly lines, balancing and buffer sizing problem are desired to study simultaneously and therefore they are considered concurrently in current research. Current research is aimed to maximize throughput, minimize total size of buffers in assembly line and minimize workload variations in assembly line simultaneously. A multi objective optimization objective is designed which can give better Pareto solutions from the Pareto front and a simple example problem is solved for assembly line balancing and buffer sizing simultaneously. Current research is significant for assembly line balancing research and it can be significant to introduce optimization approaches which can optimize current multi objective problem in future.

Keywords: assembly line balancing, buffer sizing, Pareto solutions

Procedia PDF Downloads 465
1187 A Case Study for User Rating Prediction on Automobile Recommendation System Using Mapreduce

Authors: Jiao Sun, Li Pan, Shijun Liu

Abstract:

Recommender systems have been widely used in contemporary industry, and plenty of work has been done in this field to help users to identify items of interest. Collaborative Filtering (CF, for short) algorithm is an important technology in recommender systems. However, less work has been done in automobile recommendation system with the sharp increase of the amount of automobiles. What’s more, the computational speed is a major weakness for collaborative filtering technology. Therefore, using MapReduce framework to optimize the CF algorithm is a vital solution to this performance problem. In this paper, we present a recommendation of the users’ comment on industrial automobiles with various properties based on real world industrial datasets of user-automobile comment data collection, and provide recommendation for automobile providers and help them predict users’ comment on automobiles with new-coming property. Firstly, we solve the sparseness of matrix using previous construction of score matrix. Secondly, we solve the data normalization problem by removing dimensional effects from the raw data of automobiles, where different dimensions of automobile properties bring great error to the calculation of CF. Finally, we use the MapReduce framework to optimize the CF algorithm, and the computational speed has been improved times. UV decomposition used in this paper is an often used matrix factorization technology in CF algorithm, without calculating the interpolation weight of neighbors, which will be more convenient in industry.

Keywords: collaborative filtering, recommendation, data normalization, mapreduce

Procedia PDF Downloads 183
1186 Grey Wolf Optimization Technique for Predictive Analysis of Products in E-Commerce: An Adaptive Approach

Authors: Shital Suresh Borse, Vijayalaxmi Kadroli

Abstract:

E-commerce industries nowadays implement the latest AI, ML Techniques to improve their own performance and prediction accuracy. This helps to gain a huge profit from the online market. Ant Colony Optimization, Genetic algorithm, Particle Swarm Optimization, Neural Network & GWO help many e-commerce industries for up-gradation of their predictive performance. These algorithms are providing optimum results in various applications, such as stock price prediction, prediction of drug-target interaction & user ratings of similar products in e-commerce sites, etc. In this study, customer reviews will play an important role in prediction analysis. People showing much interest in buying a lot of services& products suggested by other customers. This ultimately increases net profit. In this work, a convolution neural network (CNN) is proposed which further is useful to optimize the prediction accuracy of an e-commerce website. This method shows that CNN is used to optimize hyperparameters of GWO algorithm using an appropriate coding scheme. Accurate model results are verified by comparing them to PSO results whose hyperparameters have been optimized by CNN in Amazon's customer review dataset. Here, experimental outcome proves that this proposed system using the GWO algorithm achieves superior execution in terms of accuracy, precision, recovery, etc. in prediction analysis compared to the existing systems.

Keywords: prediction analysis, e-commerce, machine learning, grey wolf optimization, particle swarm optimization, CNN

Procedia PDF Downloads 84
1185 Surface Modification of Titanium Alloy with Laser Treatment

Authors: Nassier A. Nassir, Robert Birch, D. Rico Sierra, S. P. Edwardson, G. Dearden, Zhongwei Guan

Abstract:

The effect of laser surface treatment parameters on the residual strength of titanium alloy has been investigated. The influence of the laser surface treatment on the bonding strength between the titanium and poly-ether-ketone-ketone (PEKK) surfaces was also evaluated and compared to those offered by titanium foils without surface treatment to optimize the laser parameters. Material characterization using an optical microscope was carried out to study the microstructure and to measure the mean roughness value of the titanium surface. The results showed that the surface roughness shows a significant dependency on the laser power parameters in which surface roughness increases with the laser power increment. Moreover, the results of the tensile tests have shown that there is no significant dropping in tensile strength for the treated samples comparing to the virgin ones. In order to optimize the laser parameter as well as the corresponding surface roughness, single-lap shear tests were conducted on pairs of the laser treated titanium stripes. The results showed that the bonding shear strength between titanium alloy and PEKK film increased with the surface roughness increment to a specific limit. After this point, it is interesting to note that there was no significant effect for the laser parameter on the bonding strength. This evidence suggests that it is not necessary to use very high power of laser to treat titanium surface to achieve a good bonding strength between titanium alloy and the PEKK film.

Keywords: bonding strength, laser surface treatment, PEKK, poly-ether-ketone-ketone, titanium alloy

Procedia PDF Downloads 306
1184 Ant Lion Optimization in a Fuzzy System for Benchmark Control Problem

Authors: Leticia Cervantes, Edith Garcia, Oscar Castillo

Abstract:

At today, there are several control problems where the main objective is to obtain the best control in the study to decrease the error in the application. Many techniques can use to control these problems such as Neural Networks, PID control, Fuzzy Logic, Optimization techniques and many more. In this case, fuzzy logic with fuzzy system and an optimization technique are used to control the case of study. In this case, Ant Lion Optimization is used to optimize a fuzzy system to control the velocity of a simple treadmill. The main objective is to achieve the control of the velocity in the control problem using the ALO optimization. First, a simple fuzzy system was used to control the velocity of the treadmill it has two inputs (error and error change) and one output (desired speed), then results were obtained but to decrease the error the ALO optimization was developed to optimize the fuzzy system of the treadmill. Having the optimization, the simulation was performed, and results can prove that using the ALO optimization the control of the velocity was better than a conventional fuzzy system. This paper describes some basic concepts to help to understand the idea in this work, the methodology of the investigation (control problem, fuzzy system design, optimization), the results are presented and the optimization is used for the fuzzy system. A comparison between the simple fuzzy system and the optimized fuzzy systems are presented where it can be proving the optimization improved the control with good results the major findings of the study is that ALO optimization is a good alternative to improve the control because it helped to decrease the error in control applications even using any control technique to optimized, As a final statement is important to mentioned that the selected methodology was good because the control of the treadmill was improve using the optimization technique.

Keywords: ant lion optimization, control problem, fuzzy control, fuzzy system

Procedia PDF Downloads 362
1183 Grating Assisted Surface Plasmon Resonance Sensor for Monitoring of Hazardous Toxic Chemicals and Gases in an Underground Mines

Authors: Sanjeev Kumar Raghuwanshi, Yadvendra Singh

Abstract:

The objective of this paper is to develop and optimize the Fiber Bragg (FBG) grating based Surface Plasmon Resonance (SPR) sensor for monitoring the hazardous toxic chemicals and gases in underground mines or any industrial area. A fully cladded telecommunication standard FBG is proposed to develop to produce surface plasmon resonance. A thin few nm gold/silver film (subject to optimization) is proposed to apply over the FBG sensing head using e-beam deposition method. Sensitivity enhancement of the sensor will be done by adding a composite nanostructured Graphene Oxide (GO) sensing layer using the spin coating method. Both sensor configurations suppose to demonstrate high responsiveness towards the changes in resonance wavelength. The GO enhanced sensor may show increased sensitivity of many fold compared to the gold coated traditional fibre optic sensor. Our work is focused on to optimize GO, multilayer structure and to develop fibre coating techniques that will serve well for sensitive and multifunctional detection of hazardous chemicals. This research proposal shows great potential towards future development of optical fiber sensors using readily available components such as Bragg gratings as highly sensitive chemical sensors in areas such as environmental sensing.

Keywords: surface plasmon resonance, fibre Bragg grating, sensitivity, toxic gases, MATRIX method

Procedia PDF Downloads 246
1182 Numerical and Simulation Analysis of Composite Friction Materials Using Single Plate Clutch Pad in Agricultural Tractors

Authors: Ravindra Raju, Vidhu Kampurath

Abstract:

For smooth transition of the power from the engine to the transmission system, a clutch is used. In agricultural tractors, friction clutches are widely used in power transmission applications. To transmit the maximum torque in friction clutches, selection of materials is one of the important tasks. The present used material for friction disc is Asbestos, Ceramic etc. In this study, analysis is performed using composites materials. The composite materials are considered due to their high strength to weight ratio. Composite materials like kevlar49, kevlar 29U were used in the study. The paper presents a systematic approach to optimize the structural and thermal characteristics of the clutch friction pad. A single plate clutch is modeled using Creo 2.0 software and analyzed using ANSYS. Thermal analysis considers the reduction of heat generated between the friction surfaces and reducing the temperature rise during the steady state period. Structural analysis is done to minimize the stresses developed as a result of the loading contact between friction surfaces. Also, modal analysis is done to optimize the natural frequency of the friction plate to avoid being in resonance with the engine frequency range. The analysis carried out on ANSYS workbench to get the foremost appropriate friction material for clutch. From the analyzed results stress, strain / total deformation values and natural frequency of the materials were compared for all the composite materials and the best one was taken out. For the study purpose, specifications of the clutch are obtained from the MF1035 (47KW) Tractor model.

Keywords: ANSYS, clutch, composite materials, creo

Procedia PDF Downloads 263
1181 Artificial Intelligence in the Design of a Retaining Structure

Authors: Kelvin Lo

Abstract:

Nowadays, numerical modelling in geotechnical engineering is very common but sophisticated. Many advanced input settings and considerable computational efforts are required to optimize the design to reduce the construction cost. To optimize a design, it usually requires huge numerical models. If the optimization is conducted manually, there is a potentially dangerous consequence from human errors, and the time spent on the input and data extraction from output is significant. This paper presents an automation process introduced to numerical modelling (Plaxis 2D) of a trench excavation supported by a secant-pile retaining structure for a top-down tunnel project. Python code is adopted to control the process, and numerical modelling is conducted automatically in every 20m chainage along the 200m tunnel, with maximum retained height occurring in the middle chainage. Python code continuously changes the geological stratum and excavation depth under groundwater flow conditions in each 20m section. It automatically conducts trial and error to determine the required pile length and the use of props to achieve the required factor of safety and target displacement. Once the bending moment of the pile exceeds its capacity, it will increase in size. When the pile embedment reaches the default maximum length, it will turn on the prop system. Results showed that it saves time, increases efficiency, lowers design costs, and replaces human labor to minimize error.

Keywords: automation, numerical modelling, Python, retaining structures

Procedia PDF Downloads 23
1180 Optimization by Means of Genetic Algorithm of the Equivalent Electrical Circuit Model of Different Order for Li-ion Battery Pack

Authors: V. Pizarro-Carmona, S. Castano-Solis, M. Cortés-Carmona, J. Fraile-Ardanuy, D. Jimenez-Bermejo

Abstract:

The purpose of this article is to optimize the Equivalent Electric Circuit Model (EECM) of different orders to obtain greater precision in the modeling of Li-ion battery packs. Optimization includes considering circuits based on 1RC, 2RC and 3RC networks, with a dependent voltage source and a series resistor. The parameters are obtained experimentally using tests in the time domain and in the frequency domain. Due to the high non-linearity of the behavior of the battery pack, Genetic Algorithm (GA) was used to solve and optimize the parameters of each EECM considered (1RC, 2RC and 3RC). The objective of the estimation is to minimize the mean square error between the measured impedance in the real battery pack and those generated by the simulation of different proposed circuit models. The results have been verified by comparing the Nyquist graphs of the estimation of the complex impedance of the pack. As a result of the optimization, the 2RC and 3RC circuit alternatives are considered as viable to represent the battery behavior. These battery pack models are experimentally validated using a hardware-in-the-loop (HIL) simulation platform that reproduces the well-known New York City cycle (NYCC) and Federal Test Procedure (FTP) driving cycles for electric vehicles. The results show that using GA optimization allows obtaining EECs with 2RC or 3RC networks, with high precision to represent the dynamic behavior of a battery pack in vehicular applications.

Keywords: Li-ion battery packs modeling optimized, EECM, GA, electric vehicle applications

Procedia PDF Downloads 93
1179 Optimizing Hydrogen Production from Biomass Pyro-Gasification in a Multi-Staged Fluidized Bed Reactor

Authors: Chetna Mohabeer, Luis Reyes, Lokmane Abdelouahed, Bechara Taouk

Abstract:

In the transition to sustainability and the increasing use of renewable energy, hydrogen will play a key role as an energy carrier. Biomass has the potential to accelerate the realization of hydrogen as a major fuel of the future. Pyro-gasification allows the conversion of organic matter mainly into synthesis gas, or “syngas”, majorly constituted by CO, H2, CH4, and CO2. A second, condensable fraction of biomass pyro-gasification products are “tars”. Under certain conditions, tars may decompose into hydrogen and other light hydrocarbons. These conditions include two types of cracking: homogeneous cracking, where tars decompose under the effect of temperature ( > 1000 °C), and heterogeneous cracking, where catalysts such as olivine, dolomite or biochar are used. The latter process favors cracking of tars at temperatures close to pyro-gasification temperatures (~ 850 °C). Pyro-gasification of biomass coupled with water-gas shift is the most widely practiced process route for biomass to hydrogen today. In this work, an innovating solution will be proposed for this conversion route, in that all the pyro-gasification products, not only methane, will undergo processes that aim to optimize hydrogen production. First, a heterogeneous cracking step was included in the reaction scheme, using biochar (remaining solid from the pyro-gasification reaction) as catalyst and CO2 and H2O as gasifying agents. This process was followed by a catalytic steam methane reforming (SMR) step. For this, a Ni-based catalyst was tested under different reaction conditions to optimize H2 yield. Finally, a water-gas shift (WGS) reaction step with a Fe-based catalyst was added to optimize the H2 yield from CO. The reactor used for cracking was a fluidized bed reactor, and the one used for SMR and WGS was a fixed bed reactor. The gaseous products were analyzed continuously using a µ-GC (Fusion PN 074-594-P1F). With biochar as bed material, it was seen that more H2 was obtained with steam as a gasifying agent (32 mol. % vs. 15 mol. % with CO2 at 900 °C). CO and CH4 productions were also higher with steam than with CO2. Steam as gasifying agent and biochar as bed material were hence deemed efficient parameters for the first step. Among all parameters tested, CH4 conversions approaching 100 % were obtained from SMR reactions using Ni/γ-Al2O3 as a catalyst, 800 °C, and a steam/methane ratio of 5. This gave rise to about 45 mol % H2. Experiments about WGS reaction are currently being conducted. At the end of this phase, the four reactions are performed consecutively, and the results analyzed. The final aim is the development of a global kinetic model of the whole system in a multi-stage fluidized bed reactor that can be transferred on ASPEN PlusTM.

Keywords: multi-staged fluidized bed reactor, pyro-gasification, steam methane reforming, water-gas shift

Procedia PDF Downloads 106