Search results for: numerical tests
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7488

Search results for: numerical tests

7218 Parallel Computation of the Covariance-Matrix

Authors: Claude Tadonki

Abstract:

We address the issues related to the computation of the covariance matrix. This matrix is likely to be ill conditioned following its canonical expression, thus consequently raises serious numerical issues. The underlying linear system, which therefore should be solved by means of iterative approaches, becomes computationally challenging. A huge number of iterations is expected in order to reach an acceptable level of convergence, necessary to meet the required accuracy of the computation. In addition, this linear system needs to be solved at each iteration following the general form of the covariance matrix. Putting all together, its comes that we need to compute as fast as possible the associated matrix-vector product. This is our purpose in the work, where we consider and discuss skillful formulations of the problem, then propose a parallel implementation of the matrix-vector product involved. Numerical and performance oriented discussions are provided based on experimental evaluations.

Keywords: covariance-matrix, multicore, numerical computing, parallel computing

Procedia PDF Downloads 284
7217 An Experimental Study of the Effectiveness of Lubricants in Reducing the Sidewall Friction

Authors: Jian Zheng, Li Li, Maxime Daviault

Abstract:

In several cases, one needs apply lubrication materials in laboratory tests to reduce the friction (shear strength) along the interfaces between a tested soil and the side walls of container. Several types of lubricants are available. Their effectiveness had been tested mostly through direct shear tests. These testing conditions are quite different than those when the tested soil is placed in the container. Thus, the shear strengths measured from direct shear tests may not be totally representative of those of interfaces between the tested soil and the sidewalls of container. In this paper, the effectiveness of different lubricants used to reduce the friction (shear strength) of soil-structure interfaces has been studied. Results show that the selected lubricants do not significantly reduce the sidewall friction (shear strength). Rather, the application of wax, graphite, grease or lubricant oil has effect to increase the sidewall shear strength due probably to the high viscosity of such materials. Subsequently, the application of lubricants between tested soil and sidewall and neglecting the friction (shear strength) along the sidewalls may lead to inaccurate test results.

Keywords: arching, friction, laboratory tests, lubricants

Procedia PDF Downloads 238
7216 Efficient Numerical Simulation for LDC

Authors: Badr Alkahtani

Abstract:

In this poster, numerical solutions of two-dimensional and three-dimensional lid driven cavity are presented by solving the steady Navier-Stokes equations at high Reynolds numbers where it becomes difficult. Lid driven cavity is where the a fluid contained in a cube and the upper wall is moving. In two dimensions, we use the streamfunction-vorticity formulation to solve the problem in a square domain. A numerical method is employed to discretize the problem in the x and y directions with a spectral collocation method. The problem is coded in the MATLAB programming environment. Solutions at high Reynolds numbers are obtained up to Re=20000 on a fine grid of 131 * 131. Also in this presentation, the numerical solutions for the three-dimensional lid-driven cavity problem are obtained by solving the velocity-vorticity formulation of the Navier-Stokes equations (which is the first time that this has been simulated with special boundary conditions) for various Reynolds numbers. A spectral collocation method is employed to discretize the y and z directions and a finite difference method is used to discretize the x direction. Numerical solutions are obtained for Reynolds number up to 200. , The work prepared here is to show the efficiency of methods used to simulate the physical problem where accurate simulations of lid driven cavity are obtained at high Reynolds number as mentioned above. The result for the two dimensional problem is far from the previous researcher result.

Keywords: lid driven cavity, navier-stokes, simulation, Reynolds number

Procedia PDF Downloads 683
7215 Simulation and Experimental of Solid Mixing of Free Flowing Material Using Solid Works in V-Blender

Authors: Amina Bouhaouche, Zineb Kaoua, Lila Lahreche, Sid Ali Kaoua, Kamel Daoud

Abstract:

The objective of this study is to present a novel approach for analyzing the solid dispersion and mixing performance by a numerical simulation method using solid works software of a monodisperse particles for a large span of time reached 20 minutes. To assure the viability of a numerical simulation, an experimental study of a binary mixture of monodiperse particles taken as free flowing material in a V blender was developed on the basis of relative standard deviation curves, and the arrangement of the particles in the vessel. The experimental results were discussed and compared to the numerical simulation results.

Keywords: non-cohesive material, solid mixing, solid works, v-blender

Procedia PDF Downloads 356
7214 Hydrodynamic Analysis on the Body of a Solar Autonomous Underwater Vehicle by Numerical Method

Authors: Mohammad Moonesun, Ehsan Asadi Asrami, Julia Bodnarchuk

Abstract:

In the case of Solar Autonomous Underwater Vehicle, which uses photovoltaic panels to provide its required power, due to limitation of energy, accurate estimation of resistance and energy has major sensitivity. In this work, hydrodynamic calculations by numerical method for a solar autonomous underwater vehicle equipped by two 50 W photovoltaic panels has been studied. To evaluate the required power and energy, hull hydrodynamic resistance in several velocities should be taken into account. To do this assessment, the ANSYS FLUENT 18 applied as Computational Fluid Dynamics (CFD) tool that solves Reynolds Average Navier Stokes (RANS) equations around AUV hull, and K-ω SST is used as turbulence model. To validate of solution method and modeling approach, the model of Myring submarine that it’s experimental data was available, is simulated. There is good agreement between numerical and experimental results. Also, these results showed that the K-ω SST Turbulence model is an ideal method to simulate the AUV motion in low velocities.

Keywords: underwater vehicle, hydrodynamic resistance, numerical modelling, CFD, RANS

Procedia PDF Downloads 168
7213 MHD Equilibrium Study in Alborz Tokamak

Authors: Maryamosadat Ghasemi, Reza Amrollahi

Abstract:

Plasma equilibrium geometry has a great influence on the confinement and magnetohydrodynamic stability in tokamaks. The poloidal field (PF) system of a tokamak should be able to support this plasma equilibrium geometry. In this work the prepared numerical code based on radial basis functions are presented and used to solve the Grad–Shafranov (GS) equation for the axisymmetric equilibrium of tokamak plasma. The radial basis functions (RBFs) which is a kind of numerical meshfree method (MFM) for solving partial differential equations (PDEs) has appeared in the last decade and is developing significantly in the last few years. This technique is applied in this study to obtain the equilibrium configuration for Alborz Tokamak. The behavior of numerical solution convergences show the validation of this calculations.

Keywords: equilibrium, grad–shafranov, radial basis functions, Alborz Tokamak

Procedia PDF Downloads 440
7212 Identification of Rainfall Trends in Qatar

Authors: Abdullah Al Mamoon, Ataur Rahman

Abstract:

Due to climate change, future rainfall will change at many locations on earth; however, the spatial and temporal patterns of this change are not easy to predict. One approach of predicting such future changes is to examine the trends in the historical rainfall data at a given region and use the identified trends to make future prediction. For this, a statistical trend test is commonly applied to the historical data. This paper examines the trends of daily extreme rainfall events from 30 rain gauges located in the State of Qatar. Rainfall data covering from 1962 to 2011 were used in the analysis. A combination of four non-parametric and parametric tests was applied to identify trends at 10%, 5%, and 1% significance levels. These tests are Mann-Kendall (MK), Spearman’s Rho (SR), Linear Regression (LR) and CUSUM tests. These tests showed both positive and negative trends throughout the country. Only eight stations showed positive (upward) trend, which were however not statistically significant. In contrast, significant negative (downward) trends were found at the 5% and 10% levels of significance in six stations. The MK, SR and LR tests exhibited very similar results. This finding has important implications in the derivation/upgrade of design rainfall for Qatar, which will affect design and operation of future urban drainage infrastructure in Qatar.

Keywords: trends, extreme rainfall, daily rainfall, Mann-Kendall test, climate change, Qatar

Procedia PDF Downloads 527
7211 An Advanced Exponential Model for Seismic Isolators Having Hardening or Softening Behavior at Large Displacements

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

In this paper, an advanced Nonlinear Exponential Model (NEM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement in the relatively large displacements range and a hardening or softening behavior at large displacements, is presented. The mathematical model is validated by comparing the experimental force-displacement hysteresis loops obtained during cyclic tests, conducted on a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted analytically. Good agreement between the experimental and simulated results shows that the proposed model can be an effective numerical tool to predict the force-displacement relationship of seismic isolation devices within the large displacements range. Compared to the widely used Bouc-Wen model, unable to simulate the response of seismic isolators at large displacements, the proposed one allows to avoid the numerical solution of a first order nonlinear ordinary differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort. Furthermore, the proposed model can simulate the smooth transition of the hysteresis loops from small to large displacements by adopting only one set of five parameters determined from the experimental hysteresis loops having the largest amplitude.

Keywords: base isolation, hardening behavior, nonlinear exponential model, seismic isolators, softening behavior

Procedia PDF Downloads 299
7210 Psychological Testing in Industrial/Organizational Psychology: Validity and Reliability of Psychological Assessments in the Workplace

Authors: Melissa C. Monney

Abstract:

Psychological testing has been of interest to researchers for many years as useful tools in assessing and diagnosing various disorders as well as to assist in understanding human behavior. However, for over 20 years now, researchers and laypersons alike have been interested in using them for other purposes, such as determining factors in employee selection, promotion, and even termination. In recent years, psychological assessments have been useful in facilitating workplace decision processing, regarding employee circulation within organizations. This literature review explores four of the most commonly used psychological tests in workplace environments, namely cognitive ability, emotional intelligence, integrity, and personality tests, as organizations have used these tests to assess different factors of human behavior as predictive measures of future employee behaviors. The findings suggest that while there is much controversy and debate regarding the validity and reliability of these tests in workplace settings as they were not originally designed for these purposes, the use of such assessments in the workplace has been useful in decreasing costs and employee turnover as well as increase job satisfaction by ensuring the right employees are selected for their roles.

Keywords: cognitive ability, personality testing, predictive validity, workplace behavior

Procedia PDF Downloads 214
7209 A Unified Ghost Solid Method for the Elastic Solid-Solid Interface

Authors: Abouzar Kaboudian, Boo Cheong Khoo

Abstract:

The Ghost Solid Method (GSM) based algorithms have been extensively used for numerical calculation of wave propagation in the limit of abrupt changes in materials. In this work, we present a unified version of the GSMs that can be successfully applied to both abrupt as well as smooth changes of the material properties in a medium. The application of this method enables us to use the previously-matured numerical algorithms which were developed to be applied to homogeneous mediums, with only minor modifications. This method is developed for one-dimensional settings and its extension to multi-dimensions is briefly discussed. Various numerical experiments are presented to show the applicability of this unified GSM to wave propagation problems in sharply as well as smoothly varying mediums.

Keywords: elastic solid, functionally graded material, ghost solid method, solid-solid interaction

Procedia PDF Downloads 391
7208 Numerical Simulation for a Shallow Braced Excavation of Campus Building

Authors: Sao-Jeng Chao, Wen-Cheng Chen, Wei-Humg Lu

Abstract:

In order to prevent encountering unpredictable factors, geotechnical engineers always conduct numerical analysis for braced excavation design. Simulation work in advance can predict the response of subsequent excavation and thus will be designed to increase the security coefficient of construction. The parameters that are considered include geological conditions, soil properties, soil distributions, loading types, and the analysis and design methods. National Ilan University is located on the LanYang plain, mainly deposited by clayey soil and loose sand, and thus is vulnerable to external influence displacement. National Ilan University experienced a construction of braced excavation with a complete program of monitoring excavation. This study takes advantage of a one-dimensional finite element method RIDO to simulate the excavation process. The predicted results from numerical simulation analysis are compared with the monitored results of construction to explore the differences between them. Numerical simulation analysis of the excavation process can be used to analyze retaining structures for the purpose of understanding the relationship between the displacement and supporting system. The resulting deformation and stress distribution from the braced excavation cab then be understand in advance. The problems can be prevented prior to the construction process, and thus acquire all the affected important factors during design and construction.

Keywords: excavation, numerical simulation, RIDO, retaining structure

Procedia PDF Downloads 230
7207 Free Vibration Analysis of Composite Beam with Non-Uniform Section Using Analytical, Numerical and Experimental Method

Authors: Kadda Boumediene, Mohamed Ziani

Abstract:

Mainly because of their good ratio stiffness/mass, and in addition to adjustable mechanical properties, composite materials are more and more often used as an alternative to traditional materials in several domains. Before using these materials in practical application, a detailed and precise characterization of their mechanical properties is necessary. In the present work, we will find a dynamic analyze of composite beam (natural frequencies and mode shape), an experimental vibration technique, which presents a powerful tool for the estimation of mechanical characteristics, is used to characterize a dissimilar beam of a Mortar/ natural mineral fiber. The study is completed by an analytic (Rayleigh & Rayleigh-Ritz), experimental and numerical application for non-uniform composite beam of a Mortar/ natural mineral fiber. The study is supported by a comparison between numerical and analytic results as well as a comparison between experimental and numerical results.

Keywords: composite beam, mortar/ natural mineral fiber, mechanical characteristics, natural frequencies, mode shape

Procedia PDF Downloads 325
7206 Experimental and Numerical Study of Thermal Effects in Variable Density Turbulent Jets

Authors: DRIS Mohammed El-Amine, BOUNIF Abdelhamid

Abstract:

This paper considers an experimental and numerical investigation of variable density in axisymmetric turbulent free jets. Special attention is paid to the study of the scalar dissipation rate. In this case, dynamic field equations are coupled to scalar field equations by the density which can vary by the thermal effect (jet heating). The numerical investigation is based on the first and second order turbulence models. For the discretization of the equations system characterizing the flow, the finite volume method described by Patankar (1980) was used. The experimental study was conducted in order to evaluate dynamical characteristics of a heated axisymmetric air flow using the Laser Doppler Anemometer (LDA) which is a very accurate optical measurement method. Experimental and numerical results are compared and discussed. This comparison do not show large difference and the results obtained are in general satisfactory.

Keywords: Scalar dissipation rate, thermal effects, turbulent axisymmetric jets, second order modelling, Velocimetry Laser Doppler.

Procedia PDF Downloads 422
7205 Assessment of Slope Stability by Continuum and Discontinuum Methods

Authors: Taleb Hosni Abderrahmane, Berga Abdelmadjid

Abstract:

The development of numerical analysis and its application to geomechanics problems have provided geotechnical engineers with extremely powerful tools. One of the most important problems in geotechnical engineering is the slope stability assessment. It is a very difficult task due to several aspects such the nature of the problem, experimental consideration, monitoring, controlling, and assessment. The main objective of this paper is to perform a comparative numerical study between the following methods: The Limit Equilibrium (LEM), Finite Element (FEM), Limit Analysis (LAM) and Distinct Element (DEM). The comparison is conducted in terms of the safety factors and the critical slip surfaces. Through the results, we see the feasibility to analyse slope stability by many methods.

Keywords: comparison, factor of safety, geomechanics, numerical methods, slope analysis, slip surfaces

Procedia PDF Downloads 499
7204 Numerical Investigation of Multiphase Flow in Pipelines

Authors: Gozel Judakova, Markus Bause

Abstract:

We present and analyze reliable numerical techniques for simulating complex flow and transport phenomena related to natural gas transportation in pipelines. Such kind of problems are of high interest in the field of petroleum and environmental engineering. Modeling and understanding natural gas flow and transformation processes during transportation is important for the sake of physical realism and the design and operation of pipeline systems. In our approach a two fluid flow model based on a system of coupled hyperbolic conservation laws is considered for describing natural gas flow undergoing hydratization. The accurate numerical approximation of two-phase gas flow remains subject of strong interest in the scientific community. Such hyperbolic problems are characterized by solutions with steep gradients or discontinuities, and their approximation by standard finite element techniques typically gives rise to spurious oscillations and numerical artefacts. Recently, stabilized and discontinuous Galerkin finite element techniques have attracted researchers’ interest. They are highly adapted to the hyperbolic nature of our two-phase flow model. In the presentation a streamline upwind Petrov-Galerkin approach and a discontinuous Galerkin finite element method for the numerical approximation of our flow model of two coupled systems of Euler equations are presented. Then the efficiency and reliability of stabilized continuous and discontinous finite element methods for the approximation is carefully analyzed and the potential of the either classes of numerical schemes is investigated. In particular, standard benchmark problems of two-phase flow like the shock tube problem are used for the comparative numerical study.

Keywords: discontinuous Galerkin method, Euler system, inviscid two-fluid model, streamline upwind Petrov-Galerkin method, twophase flow

Procedia PDF Downloads 297
7203 Three-Dimensional Numerical Investigation for Reinforced Concrete Slabs with Opening

Authors: Abdelrahman Elsehsah, Hany Madkour, Khalid Farah

Abstract:

This article presents a 3-D modified non-linear elastic model in the strain space. The Helmholtz free energy function is introduced with the existence of a dissipation potential surface in the space of thermodynamic conjugate forces. The constitutive equation and the damage evolution were derived as well. The modified damage has been examined to model the nonlinear behavior of reinforced concrete (RC) slabs with an opening. A parametric study with RC was carried out to investigate the impact of different factors on the behavior of RC slabs. These factors are the opening area, the opening shape, the place of opening, and the thickness of the slabs. And the numerical results have been compared with the experimental data from literature. Finally, the model showed its ability to be applied to the structural analysis of RC slabs.

Keywords: damage mechanics, 3-D numerical analysis, RC, slab with opening

Procedia PDF Downloads 150
7202 Numerical and Experimental Investigation of Pulse Combustion for Fabric Drying

Authors: Dan Zhao, Y. W. Sheng

Abstract:

The present work considers a convection-driven T-shaped pulse combustion system. Both experimental and numerical investigations are conducted to study the mechanism of pulse combustion and its potential application in fabric drying. To gain insight on flame-acoustic dynamic interaction and pulsating flow characteristics, 3D numerical simulation of the pulse combustion process of a premixed turbulent flame in a Rijke-type combustor is performed. Two parameters are examined: (1) fuel-air ratio, (2) inlet flow velocity. Their effects on triggering pulsating flow and Nusselt number are studied. As each of the parameters is varied, Nusselt number characterizing the heat transfer rate and the heat-driven pulsating flow signature is found to change. The main nonlinearity is identified in the heat fluxes. To validate our numerical findings, a cylindrical T-shaped Rijke-type combustor made of quartz-glass with a Bunsen burner is designed and tested.

Keywords: pulse combustion, fabric drying, heat transfer, combustion oscillations, pressure oscillations

Procedia PDF Downloads 221
7201 Robust Numerical Scheme for Pricing American Options under Jump Diffusion Models

Authors: Salah Alrabeei, Mohammad Yousuf

Abstract:

The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. However, most of the option pricing models have no analytical solution. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, we solve the American option under jump diffusion models by using efficient time-dependent numerical methods. several techniques are integrated to reduced the overcome the computational complexity. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). Partial fraction decomposition technique is applied to rational approximation schemes to overcome the complexity of inverting polynomial of matrices. The proposed method is easy to implement on serial or parallel versions. Numerical results are presented to prove the accuracy and efficiency of the proposed method.

Keywords: integral differential equations, jump–diffusion model, American options, rational approximation

Procedia PDF Downloads 90
7200 Quartic Spline Method for Numerical Solution of Self-Adjoint Singularly Perturbed Boundary Value Problems

Authors: Reza Mohammadi

Abstract:

Using quartic spline, we develop a method for numerical solution of singularly perturbed two-point boundary-value problems. The purposed method is fourth-order accurate and applicable to problems both in singular and non-singular cases. The convergence analysis of the method is given. The resulting linear system of equations has been solved by using a tri-diagonal solver. We applied the presented method to test problems which have been solved by other existing methods in references, for comparison of presented method with the existing methods. Numerical results are given to illustrate the efficiency of our methods.

Keywords: second-order ordinary differential equation, singularly-perturbed, quartic spline, convergence analysis

Procedia PDF Downloads 331
7199 Numerical Modelling of Dust Propagation in the Atmosphere of Tbilisi City in Case of Western Background Light Air

Authors: N. Gigauri, V. Kukhalashvili, A. Surmava, L. Intskirveli, L. Gverdtsiteli

Abstract:

Tbilisi, a large city of the South Caucasus, is a junction point connecting Asia and Europe, Russia and republics of the Asia Minor. Over the last years, its atmosphere has been experienced an increasing anthropogenic load. Numerical modeling method is used for study of Tbilisi atmospheric air pollution. By means of 3D non-linear non-steady numerical model a peculiarity of city atmosphere pollution is investigated during background western light air. Dust concentration spatial and time changes are determined. There are identified the zones of high, average and less pollution, dust accumulation areas, transfer directions etc. By numerical modeling, there is shown that the process of air pollution by the dust proceeds in four stages, and they depend on the intensity of motor traffic, the micro-relief of the city, and the location of city mains. In the interval of time 06:00-09:00 the intensive growth, 09:00-15:00 a constancy or weak decrease, 18:00-21:00 an increase, and from 21:00 to 06:00 a reduction of the dust concentrations take place. The highly polluted areas are located in the vicinity of the city center and at some peripherical territories of the city, where the maximum dust concentration at 9PM is equal to 2 maximum allowable concentrations. The similar investigations conducted in case of various meteorological situations will enable us to compile the map of background urban pollution and to elaborate practical measures for ambient air protection.

Keywords: air pollution, dust, numerical modeling, urban

Procedia PDF Downloads 159
7198 Direct Measurement of Pressure and Temperature Variations During High-Speed Friction Experiments

Authors: Simon Guerin-Marthe, Marie Violay

Abstract:

Thermal Pressurization (TP) has been proposed as a key mechanism involved in the weakening of faults during dynamic ruptures. Theoretical and numerical studies clearly show how frictional heating can lead to an increase in pore fluid pressure due to the rapid slip along faults occurring during earthquakes. In addition, recent laboratory studies have evidenced local pore pressure or local temperature variation during rotary shear tests, which are consistent with TP theoretical and numerical models. The aim of this study is to complement previous ones by measuring both local pore pressure and local temperature variations in the vicinity of a water-saturated calcite gouge layer subjected to a controlled slip velocity in direct double shear configuration. Laboratory investigation of TP process is crucial in order to understand the conditions at which it is likely to become a dominant mechanism controlling dynamic friction. It is also important in order to understand the timing and magnitude of temperature and pore pressure variations, to help understanding when it is negligible, and how it competes with other rather strengthening-mechanisms such as dilatancy, which can occur during rock failure. Here we present unique direct measurements of temperature and pressure variations during high-speed friction experiments under various load point velocities and show the timing of these variations relatively to the slip event.

Keywords: thermal pressurization, double-shear test, high-speed friction, dilatancy

Procedia PDF Downloads 36
7197 3D Non-Linear Analyses by Using Finite Element Method about the Prediction of the Cracking in Post-Tensioned Dapped-End Beams

Authors: Jatziri Y. Moreno-Martínez, Arturo Galván, Israel Enrique Herrera Díaz, José Ramón Gasca Tirado

Abstract:

In recent years, for the elevated viaducts in Mexico City, a construction system based on precast/pre-stressed concrete elements has been used, in which the bridge girders are divided in two parts by imposing a hinged support in sections where the bending moments that are originated by the gravity loads in a continuous beam are minimal. Precast concrete girders with dapped ends are a representative sample of a behavior that has complex configurations of stresses that make them more vulnerable to cracking due to flexure–shear interaction. The design procedures for ends of the dapped girders are well established and are based primarily on experimental tests performed for different configurations of reinforcement. The critical failure modes that can govern the design have been identified, and for each of them, the methods for computing the reinforcing steel that is needed to achieve adequate safety against failure have been proposed. Nevertheless, the design recommendations do not include procedures for controlling diagonal cracking at the entrant corner under service loading. These cracks could cause water penetration and degradation because of the corrosion of the steel reinforcement. The lack of visual access to the area makes it difficult to detect this damage and take timely corrective actions. Three-dimensional non-linear numerical models based on Finite Element Method to study the cracking at the entrant corner of dapped-end beams were performed using the software package ANSYS v. 11.0. The cracking was numerically simulated by using the smeared crack approach. The concrete structure was modeled using three-dimensional solid elements SOLID65 capable of cracking in tension and crushing in compression. Drucker-Prager yield surface was used to include the plastic deformations. The longitudinal post-tension was modeled using LINK8 elements with multilinear isotropic hardening behavior using von Misses plasticity. The reinforcement was introduced with smeared approach. The numerical models were calibrated using experimental tests carried out in “Instituto de Ingeniería, Universidad Nacional Autónoma de México”. In these numerical models the characteristics of the specimens were considered: typical solution based on vertical stirrups (hangers) and on vertical and horizontal hoops with a post-tensioned steel which contributed to a 74% of the flexural resistance. The post-tension is given by four steel wires with a 5/8’’ (16 mm) diameter. Each wire was tensioned to 147 kN and induced an average compressive stress of 4.90 MPa on the concrete section of the dapped end. The loading protocol consisted on applying symmetrical loading to reach the service load (180 kN). Due to the good correlation between experimental and numerical models some additional numerical models were proposed by considering different percentages of post-tension in order to find out how much it influences in the appearance of the cracking in the reentrant corner of the dapped-end beams. It was concluded that the increasing of percentage of post-tension decreases the displacements and the cracking in the reentrant corner takes longer to appear. The authors acknowledge at “Universidad de Guanajuato, Campus Celaya-Salvatierra” and the financial support of PRODEP-SEP (UGTO-PTC-460) of the Mexican government. The first author acknowledges at “Instituto de Ingeniería, Universidad Nacional Autónoma de México”.

Keywords: concrete dapped-end beams, cracking control, finite element analysis, postension

Procedia PDF Downloads 194
7196 High Sensitive Graphene-Based Strain Sensors for SHM of Composite Laminates

Authors: A. Rinaldi, A. Proietti, C. Aquarelli, F. Marra, A. Tamburrano, M. Ciminello, M. S. Sarto

Abstract:

A new type of high sensitive piezoresistive sensors based on graphene was developed within the SARISTU project for application on Structural Health Monitoring (SHM). The new sensor consists of a graphene-based film, obtained through the spray deposition of a colloidal suspension of Multi-Layer Graphene (MLGs) nano platelets over a substrate. MLGs are produced by liquid exfoliation of thermally expanded Graphite Intercalation Compound. An array of 8 sensors is produced by spray deposition over an aeronautical CFRC plate of dimensions 550 mm (length) × 550 mm (width) × 3 mm (thickness). Electromechanical tests were performed in order to assess the sensitivity of the new piezoresistive sensors, which are characterized by an isotropic response. In the quasi-static characterizations, the CFRC plate was clamped on one side and loaded on the opposite one. The local strain map of the plate was then obtained from displacement measurements and numerical analysis. The dynamic tests were performed lying the plate over an anti-vibration table and actuating a piezoelectric element located in the middle of the sensing array. The obtained experimental results demonstrated that the sensors possess a good repeatability and a high constant gauge factor (~200) in the applied strain range 0.001%-0.02%. Moreover, they can follow dynamics up to 400 kHz and for this reason they are good candidates for Lamb-wave analysis.

Keywords: graphene, strain sensor, spray deposition, lamb-wave analysis

Procedia PDF Downloads 404
7195 Impact of the Time Interval in the Numerical Solution of Incompressible Flows

Authors: M. Salmanzadeh

Abstract:

In paper, we will deal with incompressible Couette flow, which represents an exact analytical solution of the Navier-Stokes equations. Couette flow is perhaps the simplest of all viscous flows, while at the same time retaining much of the same physical characteristics of a more complicated boundary-layer flow. The numerical technique that we will employ for the solution of the Couette flow is the Crank-Nicolson implicit method. Parabolic partial differential equations lend themselves to a marching solution; in addition, the use of an implicit technique allows a much larger marching step size than would be the case for an explicit solution. Hence, in the present paper we will have the opportunity to explore some aspects of CFD different from those discussed in the other papers.

Keywords: incompressible couette flow, numerical method, partial differential equation, Crank-Nicolson implicit

Procedia PDF Downloads 498
7194 Adomian’s Decomposition Method to Functionally Graded Thermoelastic Materials with Power Law

Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi

Abstract:

This paper presents an iteration method for the numerical solutions of a one-dimensional problem of generalized thermoelasticity with one relaxation time under given initial and boundary conditions. The thermoelastic material with variable properties as a power functional graded has been considered. Adomian’s decomposition techniques have been applied to the governing equations. The numerical results have been calculated by using the iterations method with a certain algorithm. The numerical results have been represented in figures, and the figures affirm that Adomian’s decomposition method is a successful method for modeling thermoelastic problems. Moreover, the empirical parameter of the functional graded, and the lattice design parameter have significant effects on the temperature increment, the strain, the stress, the displacement.

Keywords: Adomian, decomposition method, generalized thermoelasticity, algorithm

Procedia PDF Downloads 110
7193 Reliability Verification of the Performance Evaluation of Multiphase Pump

Authors: Joon-Hyung Kim, Him-Chan Lee, Jin-Hyuk Kim, Yong-Kab Lee, Young-Seok Choi

Abstract:

The crude oil in an oil well exists in various phases such as gas, seawater, and sand, as well as oil. Therefore, a phase separator is needed at the front of a single-phase pump for pressurization and transfer. On the other hand, the application of a multiphase pump can provide such advantages as simplification of the equipment structure and cost savings, because there is no need for a phase separation process. Therefore, the crude oil transfer method using a multiphase pump is being applied to recently developed oil wells. Due to this increase in demand, technical demands for the development of multiphase pumps are sharply increasing, but the progress of research into related technologies is insufficient, due to the nature of multiphase pumps that require high levels of skills. This study was conducted to verify the reliability of pump performance evaluation using numerical analysis, which is the basis of the development of a multiphase pump. For this study, a model was designed by selecting the specifications of the pump under study. The performance of the designed model was evaluated through numerical analysis and experiment, and the results of the performance evaluation were compared to verify the reliability of the result using numerical analysis.

Keywords: multiphase pump, numerical analysis, experiment, performance evaluation, reliability verification

Procedia PDF Downloads 399
7192 Blast Resistance Enhancement of Structures Subjected to Improvised Explosive Devices Attack: A Numerical Study

Authors: Michael I. Okereke, Ambrose I. Akpoyomare

Abstract:

This paper presents a numerical study of the impact mechanic of metallic and sandwich structures incorporate with blast resistance enhancements. The study focuses on structures that have been exposed to improvised explosives devices (IEDs) attacks. The results show numerical conclusions on mechanisms to ensure blast resistance enhancement for the applications studied in this work. The work has identified optimal panel configuration both in geometry and configurations to ensure optimal blast resistance response to such IEDs discharges. Findings from this work will drive improvements in especially military and civilian vehicles in countries where blast attacks on vehicular occupants are quite rampant like Pakistan and Afghanistan.

Keywords: blast resistance, blast enhancement, explosives, material behavior

Procedia PDF Downloads 341
7191 A Design System for Complex Profiles of Machine Members Using a Synthetic Curve

Authors: N. Sateesh, C. S. P. Rao, K. Satyanarayana, C. Rajashekar

Abstract:

This paper proposes a development of a CAD/CAM system for complex profiles of various machine members using a synthetic curve i.e. B-spline. Conventional methods in designing and manufacturing of complex profiles are tedious and time consuming. Even programming those on a computer numerical control (CNC) machine can be a difficult job because of the complexity of the profiles. The system developed provides graphical and numerical representation B-spline profile for any given input. In this paper, the system is applicable to represent a cam profile with B-spline and attempt is made to improve the follower motion.

Keywords: plate-cams, cam profile, b-spline, computer numerical control (CNC), computer aided design and computer aided manufacturing (CAD/CAM), R-D-R-D (rise-dwell-return-dwell)

Procedia PDF Downloads 571
7190 Numerical Method for Heat Transfer Problem in a Block Having an Interface

Authors: Beghdadi Lotfi, Bouziane Abdelhafid

Abstract:

A finite volume method for quadrilaterals unstructured mesh is developed to predict the two dimensional steady-state solutions of conduction equation. In this scheme, based on the integration around the polygonal control volume, the derivatives of conduction equation must be converted into closed line integrals using same formulation of the Stokes theorem. To valid the accuracy of the method two numerical experiments s are used: conduction in a regular block (with known analytical solution) and conduction in a rotated block (case with curved boundaries).The numerical results show good agreement with analytical results. To demonstrate the accuracy of the method, the absolute and root-mean square errors versus the grid size are examined quantitatively.

Keywords: Stokes theorem, unstructured grid, heat transfer, complex geometry

Procedia PDF Downloads 255
7189 Modeling of Combustion Process in the Piston Aircraft Engine Using a MCFM-3Z Model

Authors: Marcin Szlachetka, Konrad Pietrykowski

Abstract:

Modeling of a combustion process in a 9-cylinder aircraft engine is presented. The simulations of the combustion process in the IC engine have provided the information on the spatial and time distributions of selected quantities within the combustion chamber of the engine. The numerical analysis results have been compared with the results of indication process of the engine on the test stand. Modeling of combustion process an auto-ignited IC engine in the AVL Fire was carried out within the study. For the calculations, a ECFM-3Z model was used. Verification of simulation results was carried out by comparison of the pressure in the cylinder. The courses of indicated pressure, obtained from the simulations and during the engine tests mounted on a test stand were compared. The engine was braked by the propeller, which results in an adequate external power characteristics. The test object is a modified ASz-62IR engine with the injection system. The engine was running at take-off power. To check the optimum ignition timing regarding power, calculations, tests were performed for 7 different moments of ignition. The analyses of temperature distribution in the cylinder depending on the moments of ignition were carried out. Additional the course of pressure in the cylinder at different angles of ignition delays of the second spark plug were examined. The swirling of the mixture in the combustion chamber was also analysed. It has been shown that the largest vortexes occur in the middle of the chamber, and gets smaller, closer to the combustion chamber walls. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: CFD, combustion, internal combustion engine, aircraft engine

Procedia PDF Downloads 338