Search results for: nonuniform linear antenna arrays
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3786

Search results for: nonuniform linear antenna arrays

3786 Pattern Synthesis of Nonuniform Linear Arrays Including Mutual Coupling Effects Based on Gaussian Process Regression and Genetic Algorithm

Authors: Ming Su, Ziqiang Mu

Abstract:

This paper proposes a synthesis method for nonuniform linear antenna arrays that combine Gaussian process regression (GPR) and genetic algorithm (GA). In this method, the GPR model can be used to calculate the array radiation pattern in the presence of mutual coupling effects, and then the GA is used to optimize the excitations and locations of the elements so as to generate the desired radiation pattern. In this paper, taking a 9-element nonuniform linear array as an example and the desired radiation pattern corresponding to a Chebyshev distribution as the optimization objective, optimize the excitations and locations of the elements. Finally, the optimization results are verified by electromagnetic simulation software CST, which shows that the method is effective.

Keywords: nonuniform linear antenna arrays, GPR, GA, mutual coupling effects, active element pattern

Procedia PDF Downloads 109
3785 Curved Rectangular Patch Array Antenna Using Flexible Copper Sheet for Small Missile Application

Authors: Jessada Monthasuwan, Charinsak Saetiaw, Chanchai Thongsopa

Abstract:

This paper presents the development and design of the curved rectangular patch arrays antenna for small missile application. This design uses a 0.1mm flexible copper sheet on the front layer and back layer, and a 1.8mm PVC substrate on a middle layer. The study used a small missile model with 122mm diameter size with speed 1.1 Mach and frequency range on ISM 2.4 GHz. The design of curved antenna can be installation on a cylindrical object like a missile. So, our proposed antenna design will have a small size, lightweight, low cost, and simple structure. The antenna was design and analysis by a simulation result from CST microwave studio and confirmed with a measurement result from a prototype antenna. The proposed antenna has a bandwidth covering the frequency range 2.35-2.48 GHz, the return loss below -10 dB and antenna gain 6.5 dB. The proposed antenna can be applied with a small guided missile effectively.

Keywords: rectangular patch arrays, small missile antenna, antenna design and simulation, cylinder PVC tube

Procedia PDF Downloads 313
3784 Design of Non-uniform Circular Antenna Arrays Using Firefly Algorithm for Side Lobe Level Reduction

Authors: Gopi Ram, Durbadal Mandal, Rajib Kar, Sakti Prasad Ghoshal

Abstract:

A design problem of non-uniform circular antenna arrays for maximum reduction of both the side lobe level (SLL) and first null beam width (FNBW) is dealt with. This problem is modeled as a simple optimization problem. The method of Firefly algorithm (FFA) is used to determine an optimal set of current excitation weights and antenna inter-element separations that provide radiation pattern with maximum SLL reduction and much improvement on FNBW as well. Circular array antenna laid on x-y plane is assumed. FFA is applied on circular arrays of 8-, 10-, and 12- elements. Various simulation results are presented and hence performances of side lobe and FNBW are analyzed. Experimental results show considerable reductions of both the SLL and FNBW with respect to those of the uniform case and some standard algorithms GA, PSO, and SA applied to the same problem.

Keywords: circular arrays, first null beam width, side lobe level, FFA

Procedia PDF Downloads 258
3783 Faulty Sensors Detection in Planar Array Antenna Using Pelican Optimization Algorithm

Authors: Shafqat Ullah Khan, Ammar Nasir

Abstract:

Using planar antenna array (PAA) in radars, Broadcasting, satellite antennas, and sonar for the detection of targets, Helps provide instant beam pattern control. High flexibility and Adaptability are achieved by multiple beam steering by using a Planar array and are particularly needed in real-life Sanrio’s where the need arises for several high-directivity beams. Faulty sensors in planar arrays generate asymmetry, which leads to service degradation, radiation pattern distortion, and increased levels of sidelobe. The POA, a nature-inspired optimization algorithm, accurately determines faulty sensors within an array, enhancing the reliability and performance of planar array antennas through extensive simulations and experiments. The analysis was done for different types of faults in 7 x 7 and 8 x 8 planar arrays in MATLAB.

Keywords: Planar antenna array, , Pelican optimisation Algorithm, , Faculty sensor, Antenna arrays

Procedia PDF Downloads 80
3782 Design, Modeling and Analysis of 2×2 Microstrip Patch Antenna Array System for 5G Applications

Authors: Vinay Kumar K. S., Shravani V., Spoorthi G., Udith K. S., Divya T. M., Venkatesha M.

Abstract:

In this work, the mathematical modeling, design and analysis of a 2×2 microstrip patch antenna array (MSPA) antenna configuration is presented. Array utilizes a tiny strip antenna module with two vertical slots for 5G applications at an operating frequency of 5.3 GHz. The proposed array of antennas where the phased array antenna systems (PAAS) are used ubiquitously everywhere, from defense radar applications to commercial applications like 5G/6G. Microstrip patch antennae with slot arrays for linear polarisation parallel and perpendicular to the axis, respectively, are fed through transverse slots in the side wall of the circular waveguide and fed through longitudinal slots in the small wall of the rectangular waveguide. The microstrip patch antenna is developed using Ansys HFSS (High-Frequency Structure Simulator), this simulation tool. The maximum gain of 6.14 dB is achieved at 5.3 GHz for a single MSPA. For 2×2 array structure, a gain of 7.713 dB at 5.3 GHz is observed. Such antennas find many applications in 5G devices and technology.

Keywords: Ansys HFSS, gain, return loss, slot array, microstrip patch antenna, 5G antenna

Procedia PDF Downloads 112
3781 Dual Reconfigurable Antenna Using Capacitive Coupling Slot and Parasitic Square Ring

Authors: M. Abou Al-alaa, H. A. Elsadek, E. A. Abdallah, E. A. Hashish

Abstract:

A square patch antenna with both frequency and polarization reconfigurability is presented. The antenna consists of a square patch with coplanar feed on the ground plane. On the patch side, there is a parasitic square ring that is responsible for changing the antenna polarization. On the ground plane, there is a rectangular slot. By changing of length of this slot, the antenna resonance frequency can be changed. The antenna operates at 1.57 and 2.45 GHz that used in GPS and Bluetooth applications, respectively. The length of the slot in the proposed antenna is 40 mm, and the antenna operates at the lower frequency (1.57 GHz). By using switches in the ground plane the slot length can be adjust to 24 mm, so the antenna operates at upper frequency (2.45 GHz). Two switches are mounted on the parasitic ring at optimized positions. By switching between the different states of these two switches, the proposed antenna operates with linear polarization (LP) and circular polarization (CP) at each operating frequency. The antenna gain at 1.57 and 2.45 GHz are 5.9 and 7.64 dBi, respectively. The antenna is analyzed using the CST Microwave Studio. The proposed antenna was fabricated and measured. Results comparison shows good agreement. The antenna has applications in several wireless communication systems.

Keywords: microstrip patch antenna, reconfigurable antenna, frequency reconfigurability, polarization reconfigurability, parasitic square ring, linear polarization, circular polarization

Procedia PDF Downloads 534
3780 60 GHz Multi-Sector Antenna Array with Switchable Radiation-Beams for Small Cell 5G Networks

Authors: N. Ojaroudi Parchin, H. Jahanbakhsh Basherlou, Y. Al-Yasir, A. M. Abdulkhaleq, R. A. Abd-Alhameed, P. S. Excell

Abstract:

A compact design of multi-sector patch antenna array for 60 GHz applications is presented and discussed in details. The proposed design combines five 1×8 linear patch antenna arrays, referred to as sectors, in a multi-sector configuration. The coaxial-fed radiation elements of the multi-sector array are designed on 0.2 mm Rogers RT5880 dielectrics. The array operates in the frequency range of 58-62 GHz and provides switchable directional/omnidirectional radiation beams with high gain and high directivity characteristics. The designed multi-sector array exhibits good performances and could be used in the fifth generation (5G) cellular networks.

Keywords: mm-wave communications, multi-sector array, patch antenna, small cell networks

Procedia PDF Downloads 157
3779 Detection Characteristics of the Random and Deterministic Signals in Antenna Arrays

Authors: Olesya Bolkhovskaya, Alexey Davydov, Alexander Maltsev

Abstract:

In this paper approach to incoherent signal detection in multi-element antenna array are researched and modeled. Two types of useful signals with unknown wavefront were considered. First one is deterministic (Barker code), the second one is random (Gaussian distribution). The derivation of the sufficient statistics took into account the linearity of the antenna array. The performance characteristics and detecting curves are modeled and compared for different useful signals parameters and for different number of elements of the antenna array. Results of researches in case of some additional conditions can be applied to a digital communications systems.

Keywords: antenna array, detection curves, performance characteristics, quadrature processing, signal detection

Procedia PDF Downloads 405
3778 Directivity and Gain Improvement for Microstrip Array Antenna with Directors

Authors: Hassan M. Elkamchouchi, Samy H. Darwish, Yasser H. Elkamchouchi, M. E. Morsy

Abstract:

Methodology is suggested to design a linear rectangular microstrip array antenna based on Yagi antenna theory. The antenna with different directors' lengths as parasitic elements were designed, simulated, and analyzed using HFSS. The calculus and results illustrate the effectiveness of using specific parasitic elements to improve the directivity and gain for microstrip array antenna. The results have shown that the suggested methodology has the potential to be applied for improving the antenna performance. Maximum radiation intensity (Umax) of the order of 0.47w/st was recorded, directivity of 6.58dB, and gain better than 6.07dB are readily achievable for the antenna that working.

Keywords: directivity, director, microstrip antenna, gain improvment

Procedia PDF Downloads 457
3777 Efficiency Improvement of REV-Method for Calibration of Phased Array Antennas

Authors: Daniel Hristov

Abstract:

The paper describes the principle of operation, simulation and physical validation of method for simultaneous acquisition of gain and phase states of multiple antenna elements and the corresponding feed lines across a Phased Array Antenna (PAA). The derived values for gain and phase are used for PAA-calibration. The method utilizes the Rotating-Element Electric- Field Vector (REV) principle currently used for gain and phase state estimation of single antenna element across an active antenna aperture. A significant reduction of procedure execution time is achieved with simultaneous setting of different phase delays to multiple phase shifters, followed by a single power measurement. The initial gain and phase states are calculated using spectral and correlation analysis of the measured power series.

Keywords: antenna, antenna arrays, calibration, phase measurement, power measurement

Procedia PDF Downloads 137
3776 Performance Evaluation of a Millimeter-Wave Phased Array Antenna Using Circularly Polarized Elements

Authors: Rawad Asfour, Salam Khamas, Edward A. Ball

Abstract:

This paper is focused on the design of an mm-wave phased array. To date, linear polarization is adapted in the reported designs of phased arrays. However, linear polarization faces several well-known challenges. As such, an advanced design for phased array antennas is required that offers circularly polarized (CP) radiation. A feasible solution for achieving CP phased array antennas is proposed using open-circular loop antennas. To this end, a 3-element circular loop phased array antenna is designed to operate at 28GHz. In addition, the array ability to control the direction of the main lobe is investigated. The results show that the highest achievable field of view (FOV) is 100°, i.e., 50° to the left and 50° to the right-hand side directions. The results are achieved with a CP bandwidth of 15%. Furthermore, the results demonstrate that a high broadside gain of circa 11 dBi can be achieved for the steered beam. Besides, a radiation efficiency of 97 % can also be achieved based on the proposed design.

Keywords: loop antenna, phased array, beam steering, wide bandwidth, circular polarization, CST

Procedia PDF Downloads 302
3775 Minimum Half Power Beam Width and Side Lobe Level Reduction of Linear Antenna Array Using Particle Swarm Optimization

Authors: Saeed Ur Rahman, Naveed Ullah, Muhammad Irshad Khan, Quensheng Cao, Niaz Muhammad Khan

Abstract:

In this paper the optimization performance of non-uniform linear antenna array is presented. The Particle Swarm Optimization (PSO) algorithm is presented to minimize Side Lobe Level (SLL) and Half Power Beamwidth (HPBW). The purpose of using the PSO algorithm is to get the optimum values for inter-element spacing and excitation amplitude of linear antenna array that provides a radiation pattern with minimum SLL and HPBW. Various design examples are considered and the obtain results using PSO are confirmed by comparing with results achieved using other nature inspired metaheuristic algorithms such as real coded genetic algorithm (RGA) and biogeography (BBO) algorithm. The comparative results show that optimization of linear antenna array using the PSO provides considerable enhancement in the SLL and HPBW.

Keywords: linear antenna array, minimum side lobe level, narrow half power beamwidth, particle swarm optimization

Procedia PDF Downloads 552
3774 Hybrid Antenna Array with the Bowtie Elements for Super-Resolution and 3D Scanning Radars

Authors: Somayeh Komeylian

Abstract:

The antenna arrays for the entire 3D spherical coverage have been developed for their potential use in variety of applications such as radars and body-worn devices of the body area networks. In this study, we have rigorously revamped the hybrid antenna array using the optimum geometry of bowtie elements for achieving a significant improvement in the angular discrimination capability as well as in separating two adjacent targets. In this scenario, we have analogously investigated the effectiveness of increasing the virtual array length in fostering and enhancing the directivity and angular resolution in the 10 GHz frequency. The simulation results have extensively verified that the proposed antenna array represents a drastic enhancement in terms of size, directivity, side lobe level (SLL) and, especially resolution compared with the other available geometries. We have also verified that the maximum directivities of the proposed hybrid antenna array represent the robustness to the all  variations, which is accompanied by the uniform 3D scanning characteristic.

Keywords: bowtie antenna, hybrid antenna array, array signal processing, body area networks

Procedia PDF Downloads 153
3773 A Reconfigurable Microstrip Patch Antenna with Polyphase Filter for Polarization Diversity and Cross Polarization Filtering Operation

Authors: Lakhdar Zaid, Albane Sangiovanni

Abstract:

A reconfigurable microstrip patch antenna with polyphase filter for polarization diversity and cross polarization filtering operation is presented in this paper. In our approach, a polyphase filter is used to obtain the four 90° phase shift outputs to feed a square microstrip patch antenna. The antenna can be switched between four states of polarization in transmission as well as in receiving mode. Switches are interconnected with the polyphase filter network to produce left-hand circular polarization, right-hand circular polarization, horizontal linear polarization, and vertical linear polarization. Additional advantage of using polyphase filter is its filtering capability for cross polarization filtering in right-hand circular polarization and left-hand circular polarization operation. The theoretical and simulated results demonstrated that polyphase filter is a good candidate to drive microstrip patch antenna to accomplish polarization diversity and cross polarization filtering operation.

Keywords: active antenna, polarization diversity, patch antenna, polyphase filter

Procedia PDF Downloads 411
3772 Optical Switching Based On Bragg Solitons in A Nonuniform Fiber Bragg Grating

Authors: Abdulatif Abdusalam, Mohamed Shaban

Abstract:

In this paper, we consider the nonlinear pulse propagation through a nonuniform birefringent fiber Bragg grating (FBG) whose index modulation depth varies along the propagation direction. Here, the pulse propagation is governed by the nonlinear birefringent coupled mode (NLBCM) equations. To form the Bragg soliton outside the photonic bandgap (PBG), the NLBCM equations are reduced to the well known NLS type equation by multiple scale analysis. As we consider the pulse propagation in a nonuniform FBG, the pulse propagation outside the PBG is governed by inhomogeneous NLS (INLS) rather than NLS. We, then, discuss the formation of soliton in the FBG known as Bragg soliton whose central frequency lies outside but close to the PBG of the grating structure. Further, we discuss Bragg soliton compression due to a delicate balance between the SPM and the varying grating induced dispersion. In addition, Bragg soliton collision, Bragg soliton switching and possible logic gates have also been discussed.

Keywords: Bragg grating, non uniform fiber, non linear pulse

Procedia PDF Downloads 317
3771 Dual Band LoRa/GPS Dipole Antenna with Harmonic Suppression Capability

Authors: Amar Danial Abd Azis, Shipun Anuar Hamzah, Mohd Noh Dalimin, Khairun Nidzam Ramli, Mohd Sani Yahya, Fauziahanim Che Seman

Abstract:

This paper discusses the design, simulation results, and testing of a compact dual-band printed dipole antenna operating at frequencies of 916 MHz and 1.57 GHz for LoRa and GPS applications, respectively. The basic design of this antenna uses a linear dipole that operates at 916 MHz and 2.7 GHz. A small triangular-shaped linear balun has been developed as the matching network. Parasitic elements are employed to tune the second frequency to 1.57 GHz through a parametric study. Meanwhile, a stub is used to suppress the undesired 2.6 GHz frequency. This antenna is capable of operating on dual-frequency bands simultaneously with high efficiency in suppressing the unwanted frequency. The antenna exhibits the following parameters: return loss of -18.5 dB at 916 MHz and -14 dB at 1.57 GHz, VSWR of 1.25 at 868 MHz and 1.5 at 1.57 GHz, and gain of 2 dBi at 916 MHz and 2.75 dBi at 1.57 GHz. The radiation pattern of the antenna shows a directional E-plane and an omnidirectional H-plane at both frequencies. With its compact size and dual-band capability, this antenna demonstrates great potential for use in IoT applications that require both LoRa and GPS communication, particularly in applications where a small yet efficient form factor is essential.

Keywords: dual band, dipole antenna, parasitic elements, harmonic suppression, LoRa and Gps

Procedia PDF Downloads 6
3770 Analysis and Design of Dual-Polarization Antennas for Wireless Communication Systems

Authors: Vladimir Veremey

Abstract:

The paper describes the design and simulation of dual-polarization antennas that use the resonance and radiating properties of the H00 mode of metal open waveguides. The proposed antennas are formed by two orthogonal slots in a finite conducting ground plane. The slots are backed by metal screens connected to the ground plane forming open waveguides. It has been shown that the antenna designs can be efficiently used in mm-wave bands. The antenna single mode operational bandwidth is higher than 10%. The antenna designs are very simple and low-cost. They allow flush installation and can be efficiently used in various communication and remote sensing devices on fast moving carriers. Mutual coupling between antennas of the proposed design is very low. Thus, multiple antenna structures with proposed antennas can be efficiently employed in multi-band and in multiple-input-multiple-output (MIMO) systems.

Keywords: antenna, antenna arrays, Multiple-Input-Multiple-Output (MIMO), millimeter wave bands, slot antenna, flush installation, directivity, open waveguide, conformal antennas

Procedia PDF Downloads 169
3769 Comparative Analysis of Two Approaches to Joint Signal Detection, ToA and AoA Estimation in Multi-Element Antenna Arrays

Authors: Olesya Bolkhovskaya, Alexey Davydov, Alexander Maltsev

Abstract:

In this paper two approaches to joint signal detection, time of arrival (ToA) and angle of arrival (AoA) estimation in multi-element antenna array are investigated. Two scenarios were considered: first one, when the waveform of the useful signal is known a priori and, second one, when the waveform of the desired signal is unknown. For first scenario, the antenna array signal processing based on multi-element matched filtering (MF) with the following non-coherent detection scheme and maximum likelihood (ML) parameter estimation blocks is exploited. For second scenario, the signal processing based on the antenna array elements covariance matrix estimation with the following eigenvector analysis and ML parameter estimation blocks is applied. The performance characteristics of both signal processing schemes are thoroughly investigated and compared for different useful signals and noise parameters.

Keywords: antenna array, signal detection, ToA, AoA estimation

Procedia PDF Downloads 496
3768 Improving the Gain of a Multiband Antenna by Adding an Artificial Magnetic Conductor Metasurface

Authors: Amira Bousselmi

Abstract:

This article presents a PIFA antenna designed for geolocation applications (GNSS) operating on 1.278 GHz, 2.8 GHz, 5.7 GHz and 10 GHz. To improve the performance of the antenna, an artificial magnetic conductor structure (AMC) was used. Adding the antenna with AMC resulted in a measured gain of 4.78 dBi. The results of simulations and measurements are presented. CST Microwave Studio is used to design and compare antenna performance. An antenna design methodology, design and characterization of the AMC surface are described as well as the simulated and measured performances of the AMC antenna are then discussed. Finally, in Section V, there is a conclusion.

Keywords: antenna multiband, global navigation system, AMC, Galeleo

Procedia PDF Downloads 77
3767 Miniaturization of I-Slot Antenna with Improved Efficiency and Gain

Authors: Mondher Labidi, Fethi Choubani

Abstract:

In this paper, novel miniaturization technique of antenna is proposed using I-slot. Using this technique, gain of antenna can increased for 4dB (antenna only) to 6.6dB for the proposed I-slot antenna and a frequency shift of about 0.45 GHz to 1 GHz is obtained. Also a reduction of the shape size of the antenna is achieved (about 38 %) to operate in the Wi-Fi (2.45 GHz) band.RF Moreover the frequency shift can be controlled by changing the place or the length of the I-slot. Finally the proposed miniature antenna with an improved radiation efficiency and gain was built and tested.

Keywords: slot antenna, miniaturization, RF, electrical equivalent circuit (EEC)

Procedia PDF Downloads 286
3766 A Novel Design of Inset Feed Patch Antenna for Ultra Wide Band Application

Authors: Priyanka Aggarwal, Priyanka Mangla

Abstract:

This work has focused on the aspect of UWB antenna design, which is very suitable for portable UWB applications. The design of new UWB antenna faces some challenges. The antenna should be compact, preferably conformal, and low cost for manufacture, and have good electrical performance, such as good matching, directional radiation performance over a wide band, good time response, etc. Keeping these goals in mind a compact and directional compact open-slot antenna was built. The antenna radiating structure is in the form of two exponentially tapered arms that lie on the opposite sides of the substrate. The antenna operates over the frequency band from 2.95 GHz to more than 12.1 GHz. It exhibits a directive radiation performance with a peak gain which is between 5.4 dBi and 8.3 dBi in the specified band. The antenna has linear phase response over the entire UWB frequency range and hence constant group delay which is vital for transmission and reception of sub-nanosecond pulses. Due to its planar profile, physically compact size, wide impedance bandwidth, directive performance over a wide bandwidth proposed antenna is a good candidate for portable UWB applications and other UWB integrated circuits.

Keywords: inset feed patch antenna, ultra wide band, radiation performance, geometry, antenna

Procedia PDF Downloads 437
3765 Investigation of a Novel Dual Band Microstrip/Waveguide Hybrid Antenna Element

Authors: Raoudane Bouziyan, Kawser Mohammad Tawhid

Abstract:

Microstrip antennas are low in profile, light in weight, conformable in structure and are now developed for many applications. The main difficulty of the microstrip antenna is its narrow bandwidth. Several modern applications like satellite communications, remote sensing, and multi-function radar systems will find it useful if there is dual-band antenna operating from a single aperture. Some applications require covering both transmitting and receiving frequency bands which are spaced apart. Providing multiple antennas to handle multiple frequencies and polarizations becomes especially difficult if the available space is limited as with airborne platforms and submarine periscopes. Dual band operation can be realized from a single feed using slot loaded or stacked microstrip antenna or two separately fed antennas sharing a common aperture. The former design, when used in arrays, has certain limitations like complicated beam forming or diplexing network and difficulty to realize good radiation patterns at both the bands. The second technique provides more flexibility with separate feed system as beams in each frequency band can be controlled independently. Another desirable feature of a dual band antenna is easy adjustability of upper and lower frequency bands. This thesis presents investigation of a new dual-band antenna, which is a hybrid of microstrip and waveguide radiating elements. The low band radiator is a Shorted Annular Ring (SAR) microstrip antenna and the high band radiator is an aperture antenna. The hybrid antenna is realized by forming a waveguide radiator in the shorted region of the SAR microstrip antenna. It is shown that the upper to lower frequency ratio can be controlled by the proper choice of various dimensions and dielectric material. Operation in both linear and circular polarization is possible in either band. Moreover, both broadside and conical beams can be generated in either band from this antenna element. Finite Element Method based software, HFSS and Method of Moments based software, FEKO were employed to perform parametric studies of the proposed dual-band antenna. The antenna was not tested physically. Therefore, in most cases, both HFSS and FEKO were employed to corroborate the simulation results.

Keywords: FEKO, HFSS, dual band, shorted annular ring patch

Procedia PDF Downloads 402
3764 An Electrically Small Silver Ink Printed FR4 Antenna for RF Transceiver Chip CC1101

Authors: F. Majeed, D. V. Thiel, M. Shahpari

Abstract:

An electrically small meander line antenna is designed for impedance matching with RF transceiver chip CC1101. The design provides the flexibility of tuning the reactance of the antenna over a wide range of values: highly capacitive to highly inductive. The antenna was printed with silver ink on FR4 substrate using the screen printing design process. The antenna impedance was perfectly matched to CC1101 at 433 MHz. The measured radiation efficiency of the antenna was 81.3% at resonance. The 3 dB and 10 dB fractional bandwidth of the antenna was 14.5% and 4.78%, respectively. The read range of the antenna was compared with a copper wire monopole antenna over a distance of five meters. The antenna, with a perfect impedance match with RF transceiver chip CC1101, shows improvement in the read range compared to a monopole antenna over the specified distance.

Keywords: meander line antenna, RFID, silver ink printing, impedance matching

Procedia PDF Downloads 275
3763 Design of Broadband W-Slotted Microstrip Patch Antenna

Authors: Neeraj G. Nahata, K. S. Bhagat

Abstract:

Microstrip patch antenna widely used in communication area because it offers low profile, narrow bandwidth, high gain, and compact in size. It has big disadvantage of narrow bandwidth. To improve the bandwidth a W-slot technique is used, it is efficient to enhance the bandwidth of antenna. The feeding point of antenna is very important for efficient operation, so coaxial feeding technique is applied to microstrip patch antenna for impedance matching. A broadband W-slot microstrip patch antenna is designed successfully which attains a bandwidth of 22.74% at 10dB return loss with centre frequency of 4.5GHz and also it attains maximum directivity 8.78dBi. It is designed by cutting a W-slot into the patch of antenna, because of this resonant slot, the antenna gives broad bandwidth. This antenna is best suitable for C-band frequency spectrum. The proposed antenna is designed and simulated using IE3D software.

Keywords: broadband, microstrip antenna, VSWR, W-slotted patch

Procedia PDF Downloads 320
3762 The Design of Broadband 8x2 Phased Array 5G Antenna MIMO 28 GHz for Base Station

Authors: Muhammad Saiful Fadhil Reyhan, Yusnita Rahayu, Fadhel Muhammadsyah

Abstract:

This paper proposed a design of 16 elements, 8x2 linear fed patch antenna array with 16 ports, for 28 GHz, mm-wave band 5G for base station. The phased array covers along the azimuth plane to provide the coverage to the users in omnidirectional. The proposed antenna is designed RT Duroid 5880 substrate with the overall size of 85x35.6x0.787 mm3. The array is operating from 27.43 GHz to 28.34 GHz with a 910 MHz impedance bandwidth. The gain of the array is 18.3 dB, while the suppression of the side lobes is -1.0 dB. The main lobe direction of the array is 15 deg. The array shows a high array gain throughout the impedance bandwidth with overall of VSWR is below 1.12. The design will be proposed in single element and 16 elements antenna.

Keywords: 5G antenna, 28 GHz, MIMO, omnidirectional, phased array, base station, broadband

Procedia PDF Downloads 249
3761 Depiction of a Circulated Double Psi-Shaped Microstrip Antenna for Ku-Band Satellite Applications

Authors: M. Naimur Rahman, Mohammad Tariqul Islam, Mandeep Singh Jit Singh, Norbahiah Misran

Abstract:

This paper presents the architecture and exploration of a compact, circulated double Psi-shaped microstrip patch antenna for Ku-band satellite applications. The antenna is composed of the double Psi-shaped patch in opposite focus which is circulated with a ring. The antenna size is 24 mm × 18 mm and the prototype is imprinted on Rogers RT/duroid 5880 materials with the depth of 1.57 mm. The substrate has a relative permittivity of 2.2 and the dielectric constant of 0.0009. The excitation is supplied through a 50Ω microstrip line. The performance of the presented antenna has been simulated and verified with the High-Frequency Structural Simulator (HFSS). The results depict that the antenna covers the frequency spectrum 14.6 - 17.4 GHz (Ku-band) with 10 dB return loss. The antenna has a 4.40 dBi maximum gain with stable radiation patterns throughout the operating band which makes the proposed antenna compatible for the satellite application in Ku-band.

Keywords: Ku-band antenna, microstrip antenna, psi-shaped antenna, satellite applications

Procedia PDF Downloads 309
3760 On the Design of Wearable Fractal Antenna

Authors: Amar Partap Singh Pharwaha, Shweta Rani

Abstract:

This paper is aimed at proposing a rhombus shaped wearable fractal antenna for wireless communication systems. The geometrical descriptors of the antenna have been obtained using bacterial foraging optimization (BFO) for wide band operation. The method of moment based IE3D software has been used to simulate the antenna and observed that miniaturization of 13.08% has been achieved without degrading the resonating properties of the proposed antenna. An analysis with different substrates has also been done in order to evaluate the effectiveness of electrical permittivity on the presented structure. The proposed antenna has low profile, light weight and has successfully demonstrated wideband and multiband characteristics for wearable electronic applications.

Keywords: BFO, bandwidth, electrical permittivity, fractals, wearable antenna

Procedia PDF Downloads 463
3759 A Discussion on Electrically Small Antenna Property

Authors: Riki H. Patel, Arpan Desia, Trushit Upadhayay

Abstract:

The demand of compact antenna is ever increasing since the inception of wireless communication devices. In the age of wireless communication, requirement of miniaturized antennas is quite high. It is quite often that antenna dimensions are decided based on application based requirement compared to practical antenna constraints. The tradeoff in efficiency and other antenna parameters against to antenna size is always a debatable issue. The article presents detailed review of fundamentals of electrically small antennas and its potential applications. In addition, constraints and challenges of electrically small antennas are also presented in the article.

Keywords: bandwidth, communication, electrically small antenna, communication engineering

Procedia PDF Downloads 530
3758 Enhancing Signal Reception in a Mobile Radio Network Using Adaptive Beamforming Antenna Arrays Technology

Authors: Ugwu O. C., Mamah R. O., Awudu W. S.

Abstract:

This work is aimed at enhancing signal reception on a mobile radio network and minimizing outage probability in a mobile radio network using adaptive beamforming antenna arrays. In this research work, an empirical real-time drive measurement was done in a cellular network of Globalcom Nigeria Limited located at Ikeja, the headquarters of Lagos State, Nigeria, with reference base station number KJA 004. The empirical measurement includes Received Signal Strength and Bit Error Rate which were recorded for exact prediction of the signal strength of the network as at the time of carrying out this research work. The Received Signal Strength and Bit Error Rate were measured with a spectrum monitoring Van with the help of a Ray Tracer at an interval of 100 meters up to 700 meters from the transmitting base station. The distance and angular location measurements from the reference network were done with the help Global Positioning System (GPS). The other equipment used were transmitting equipment measurements software (Temsoftware), Laptops and log files, which showed received signal strength with distance from the base station. Results obtained were about 11% from the real-time experiment, which showed that mobile radio networks are prone to signal failure and can be minimized using an Adaptive Beamforming Antenna Array in terms of a significant reduction in Bit Error Rate, which implies improved performance of the mobile radio network. In addition, this work did not only include experiments done through empirical measurement but also enhanced mathematical models that were developed and implemented as a reference model for accurate prediction. The proposed signal models were based on the analysis of continuous time and discrete space, and some other assumptions. These developed (proposed) enhanced models were validated using MATLAB (version 7.6.3.35) program and compared with the conventional antenna for accuracy. These outage models were used to manage the blocked call experience in the mobile radio network. 20% improvement was obtained when the adaptive beamforming antenna arrays were implemented on the wireless mobile radio network.

Keywords: beamforming algorithm, adaptive beamforming, simulink, reception

Procedia PDF Downloads 41
3757 A Dual Band Microstrip Patch Antenna for WLAN and WiMAX Applications

Authors: P. Krachodnok

Abstract:

In this paper, the design of a multiple U-slotted microstrip patch antenna with frequency selective surface (FSS) as a superstrate for WLAN and WiMAX applications is presented. The proposed antenna is designed by using substrate FR4 having permittivity of 4.4 and air substrate. The characteristics of the antenna are designed and evaluated the performance of modelled antenna using CST Microwave studio. The proposed antenna dual resonant frequency has been achieved in the band of 2.37-2.55 GHz and 3.4-3.6 GHz. Because of the impact of FSS superstrate, it is found that the bandwidths have been improved from 6.12% to 7.35 % and 3.7% to 5.7% at resonant frequencies 2.45 GHz and 3.5 GHz, respectively. The maximum gain at the resonant frequency of 2.45 and 3.5 GHz are 9.3 and 11.33 dBi, respectively.

Keywords: multi-slotted antenna, microstrip patch antenna, frequency selective surface, artificial magnetic conduction

Procedia PDF Downloads 380