Search results for: moving shock wave
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2687

Search results for: moving shock wave

2597 Computational Fluid Dynamics Simulation Study of Flow near Moving Wall of Various Surface Types Using Moving Mesh Method

Authors: Khizir Mohd Ismail, Yu Jun Lim, Tshun Howe Yong

Abstract:

The study of flow behavior in an enclosed volume using Computational Fluid Dynamics (CFD) has been around for decades. However, due to the knowledge limitation of adaptive grid methods, the flow in an enclosed volume near the moving wall using CFD is less explored. A CFD simulation of flow in an enclosed volume near a moving wall was demonstrated and studied by introducing a moving mesh method and was modeled with Unsteady Reynolds-Averaged Navier-Stokes (URANS) approach. A static enclosed volume with controlled opening size in the bottom was positioned against a moving, translational wall with sliding mesh features. Controlled variables such as smoothed, crevices and corrugated wall characteristics, the distance between the enclosed volume to the wall and the moving wall speed against the enclosed chamber were varied to understand how the flow behaves and reacts in between these two geometries. These model simulations were validated against experimental results and provided result confidence when the simulation had shown good agreement with the experimental data. This study had provided better insight into the flow behaving in an enclosed volume when various wall types in motion were introduced within the various distance between each other and create a potential opportunity of application which involves adaptive grid methods in CFD.

Keywords: moving wall, adaptive grid methods, CFD, moving mesh method

Procedia PDF Downloads 112
2596 Design and Implementation of Wave-Pipelined Circuit Using Reconfigurable Technique

Authors: Adhinarayanan Venkatasubramanian

Abstract:

For design of high speed digital circuit wave pipeline is the best approach this can be operated at higher operating frequencies by adjusting clock periods and skews so as latch the o/p of combinational logic circuit at the stable period. In this paper, there are two methods are proposed in automation task one is BIST (Built in self test) and second method is Reconfigurable technique. For the above two approaches dedicated AND gate (multiplier) by applying wave pipeline technique. BIST approach is implemented by Xilinx Spartan-II device. In reconfigurable technique done by ASIC. From the results, wave pipeline circuits are faster than nonpipeline circuit and area, power dissipation are reduced by reconfigurable technique.

Keywords: SOC, wave-pipelining, FPGA, self-testing, reconfigurable, ASIC

Procedia PDF Downloads 402
2595 Bulk/Hull Cavitation Induced by Underwater Explosion: Effect of Material Elasticity and Surface Curvature

Authors: Wenfeng Xie

Abstract:

Bulk/hull cavitation evolution induced by an underwater explosion (UNDEX) near a free surface (bulk) or a deformable structure (hull) is numerically investigated using a multiphase compressible fluid solver coupled with a one-fluid cavitation model. A series of two-dimensional computations is conducted with varying material elasticity and surface curvature. Results suggest that material elasticity and surface curvature influence the peak pressures generated from UNDEX shock and cavitation collapse, as well as the bulk/hull cavitation regions near the surface. Results also show that such effects can be different for bulk cavitation generated from UNDEX-free surface interaction and for hull cavitation generated from UNDEX-structure interaction. More importantly, results demonstrate that shock wave focusing caused by a concave solid surface can lead to a larger cavitation region and thus intensify the cavitation reload. The findings can be linked to the strength and the direction of reflected waves from the structural surface and reflected waves from the expanding bubble surface, which are functions of material elasticity and surface curvature. Shockwave focusing effects are also observed for axisymmetric simulations, but the strength of the pressure contours for the axisymmetric simulations is less than those for the 2D simulations due to the difference between the initial shock energy. The current method is limited to two-dimensional or axisymmetric applications. Moreover, the thermal effects are neglected and the liquid is not allowed to sustain tension in the cavitation model.

Keywords: cavitation, UNDEX, fluid-structure interaction, multiphase

Procedia PDF Downloads 153
2594 Computational Code for Solving the Navier-Stokes Equations on Unstructured Meshes Applied to the Leading Edge of the Brazilian Hypersonic Scramjet 14-X

Authors: Jayme R. T. Silva, Paulo G. P. Toro, Angelo Passaro, Giannino P. Camillo, Antonio C. Oliveira

Abstract:

An in-house C++ code has been developed, at the Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics from the Institute of Advanced Studies (Brazil), to estimate the aerothermodynamic properties around the Hypersonic Vehicle Integrated to the Scramjet. In the future, this code will be applied to the design of the Brazilian Scramjet Technological Demonstrator 14-X B. The first step towards accomplishing this objective, is to apply the in-house C++ code at the leading edge of a flat plate, simulating the leading edge of the 14-X Hypersonic Vehicle, making possible the wave phenomena of oblique shock and boundary layer to be analyzed. The development of modern hypersonic space vehicles requires knowledge regarding the characteristics of hypersonic flows in the vicinity of a leading edge of lifting surfaces. The strong interaction between a shock wave and a boundary layer, in a high supersonic Mach number 4 viscous flow, close to the leading edge of the plate, considering no slip condition, is numerically investigated. The small slip region is neglecting. The study consists of solving the fluid flow equations for unstructured meshes applying the SIMPLE algorithm for Finite Volume Method. Unstructured meshes are generated by the in-house software ‘Modeler’ that was developed at Virtual’s Engineering Laboratory from the Institute of Advanced Studies, initially developed for Finite Element problems and, in this work, adapted to the resolution of the Navier-Stokes equations based on the SIMPLE pressure-correction scheme for all-speed flows, Finite Volume Method based. The in-house C++ code is based on the two-dimensional Navier-Stokes equations considering non-steady flow, with nobody forces, no volumetric heating, and no mass diffusion. Air is considered as calorically perfect gas, with constant Prandtl number and Sutherland's law for the viscosity. Solutions of the flat plate problem for Mach number 4 include pressure, temperature, density and velocity profiles as well as 2-D contours. Also, the boundary layer thickness, boundary conditions, and mesh configurations are presented. The same problem has been solved by the academic license of the software Ansys Fluent and for another C++ in-house code, which solves the fluid flow equations in structured meshes, applying the MacCormack method for Finite Difference Method, and the results will be compared.

Keywords: boundary-layer, scramjet, simple algorithm, shock wave

Procedia PDF Downloads 454
2593 Investigating the Invalidity of the Law of Energy Conservation Based on Waves Interference Phenomenon Inside a Ringed Waveguide

Authors: M. Yusefzad

Abstract:

Law of energy conservation is one of the fundamental laws of physics. Energy is conserved, and the total amount of energy is constant. It can be transferred from one object to another and changed from one state to another. However, in the case of wave interference, this law faces important contradictions. Based on the presented mathematical relationship in this paper, it seems that validity of this law depends on the path of energy wave, like light, in which it is located. In this paper, by using some fundamental concepts in physics like the constancy of the electromagnetic wave speed in a specific media and wave theory of light, it will be shown that law of energy conservation is not valid in every condition and in some circumstances, it is possible to increase energy of a system with a determined amount of energy without any input.

Keywords: power, law of energy conservation, electromagnetic wave, interference, Maxwell’s equations

Procedia PDF Downloads 231
2592 The Moving and Special Ability Influence Player Preference in the Dual Protagonist Game

Authors: Shih-Chieh Liao, Jen-Ying Ma

Abstract:

Dual protagonists game always bring a unique experience compared to the other games. This research wants to discuss whether the dual protagonists have the moving ability and special ability or not; it will affect the preference of the players. This research will focus on the single-player dual protagonists game. After the observation, we found that when players control the dual protagonists, the moving ability and special ability are a great point defining the preference of players. When players control the character, which is lack of moving ability, they often feel impatient with the inconvenient mechanism and then reduce the will to play with the character or even the game. Furthermore, the special ability is also important in the situation that there is another character to compare with. When the character is too powerful, players tend not to use the weaker one. In addition, gender is a big deal in the games. It surprisingly controls the will of play occasionally. In view of these, this research makes a single-player dual protagonists game and the dual protagonists are limited to male and female. The experiment content detected with Electrodermal Activity (EDA) includes seven different situations. (1) male and females both have the moving ability and special ability. (2) male and female both have a special ability, but female does not have the moving ability. (3) male and females both have a special ability, but the male does not have the moving ability. (4) male and female both have the moving ability, but the male does not have special ability (5) male and female both have the moving ability, but female does not have a special ability (6) male-only has the moving ability and female-only has a special ability (7) male-only has a special ability and female only has the moving ability. The experiment will evaluate the emotional changes of the subjects in those situations. The result sorted by the significance of player preference is (6)>(4)>(1)>(2)>(5)>(3)>(7). The result demonstrates that players prefer females with special abilities or males with moving abilities. The game developer could design the ability of dual protagonists based on this research. Therefore, players may have a better experience.

Keywords: biofeedback, dual protagonists, emotional responses, psychology, user experience

Procedia PDF Downloads 159
2591 Insights of Interaction Studies between HSP-60, HSP-70 Proteins and HSF-1 in Bubalus bubalis

Authors: Ravinder Singh, C Rajesh, Saroj Badhan, Shailendra Mishra, Ranjit Singh Kataria

Abstract:

Heat shock protein 60 and 70 are crucial chaperones that guide appropriate folding of denatured proteins under heat stress conditions. HSP60 and HSP70 provide assistance in correct folding of a multitude of denatured proteins. The heat shock factors are the family of some transcription factors which controls the regulation of gene expression of proteins involved in folding of damaged or improper folded proteins during stress conditions. Under normal condition heat shock proteins bind with HSF-1 and act as its repressor as well as aids in maintaining the HSF-1’s nonactive and monomeric confirmation. The experimental protein structure for all these proteins in Bubalus bubalis is not known till date. Therefore computational approach was explored to identify three-dimensional structure analysis of all these proteins. In this study, an extensive in silico analysis has been performed including sequence comparison among species to comparative modeling of Bubalus bubalis HSP60, HSP70 and HSF-1 protein. The stereochemical properties of proteins were assessed by utilizing several scrutiny bioinformatics tools to ensure model accuracy. Further docking approach was used to study interactions between Heat shock proteins and HSF-1.

Keywords: Bubalus bubalis, comparative modelling, docking, heat shock protein

Procedia PDF Downloads 292
2590 Accelerated Evaluation of Structural Reliability under Tsunami Loading

Authors: Sai Hung Cheung, Zhe Shao

Abstract:

It is of our great interest to quantify the risk to structural dynamic systems due to earthquake-induced tsunamis in view of recent earthquake-induced tsunamis in Padang, 2004 and Tohoku, 2011 which brought huge losses of lives and properties. Despite continuous advancement in computational simulation of the tsunami and wave-structure interaction modeling, it still remains computationally challenging to evaluate the reliability of a structural dynamic system when uncertainties related to the system and its modeling are taken into account. The failure of the structure in a tsunami-wave-structural system is defined as any response quantities of the system exceeding specified thresholds during the time when the structure is subjected to dynamic wave impact due to earthquake-induced tsunamis. In this paper, an approach based on a novel integration of a recently proposed moving least squares response surface approach for stochastic sampling and the Subset Simulation algorithm is proposed. The effectiveness of the proposed approach is discussed by comparing its results with those obtained from the Subset Simulation algorithm without using the response surface approach.

Keywords: response surface, stochastic simulation, structural reliability tsunami, risk

Procedia PDF Downloads 646
2589 Preliminary Conceptions of 3D Prototyping Model to Experimental Investigation in Hypersonic Shock Tunnels

Authors: Thiago Victor Cordeiro Marcos, Joao Felipe de Araujo Martos, Ronaldo de Lima Cardoso, David Romanelli Pinto, Paulo Gilberto de Paula Toro, Israel da Silveira Rego, Antonio Carlos de Oliveira

Abstract:

Currently, the use of 3D rapid prototyping, also known as 3D printing, has been investigated by some universities around the world as an innovative technique, fast, flexible and cheap for a direct plastic models manufacturing that are lighter and with complex geometries to be tested for hypersonic shock tunnel. Initially, the purpose is integrated prototyped parts with metal models that actually are manufactured through of the conventional machining and hereafter replace them with completely prototyped models. The mechanical design models to be tested in hypersonic shock tunnel are based on conventional manufacturing processes, therefore are limited forms and standard geometries. The use of 3D rapid prototyping offers a range of options that enables geometries innovation and ways to be used for the design new models. The conception and project of a prototyped model for hypersonic shock tunnel should be rethought and adapted when comparing the conventional manufacturing processes, in order to fully exploit the creativity and flexibility that are allowed by the 3D prototyping process. The objective of this paper is to compare the conception and project of a 3D rapid prototyping model and a conventional machining model, while showing the advantages and disadvantages of each process and the benefits that 3D prototyping can bring to the manufacture of models to be tested in hypersonic shock tunnel.

Keywords: 3D printing, 3D prototyping, experimental research, hypersonic shock tunnel

Procedia PDF Downloads 435
2588 Coexistence of Superconductivity and Spin Density Wave in Ferropnictide Ba₁₋ₓKₓFe₂As₂

Authors: Tadesse Desta Gidey, Gebregziabher Kahsay, Pooran Singh

Abstract:

This work focuses on the theoretical investigation of the coexistence of superconductivity and Spin Density Wave (SDW)in Ferropnictide Ba₁₋ₓKₓFe₂As₂. By developing a model Hamiltonian for the system and by using quantum field theory Green’s function formalism, we have obtained mathematical expressions for superconducting transition temperature TC), spin density wave transition temperature (Tsdw), superconductivity order parameter (Sc), and spin density wave order parameter (sdw). By employing the experimental and theoretical values of the parameters in the obtained expressions, phase diagrams of superconducting transition temperature (TC) versus superconducting order parameter (Sc) and spin density wave transition temperature (Tsdw), versus spin density wave order parameter (sdw) have been plotted. By combining the two phase diagrams, we have demonstrated the possible coexistence of superconductivity and spin density wave (SDW) in ferropnictide Ba1−xKxFe2As2.

Keywords: Superconductivity, Spin density wave, Coexistence, Green function, Pnictides, Ba₁₋ₓKₓFe₂As₂

Procedia PDF Downloads 130
2587 Design of Speed Bump Recognition System Integrated with Adjustable Shock Absorber Control

Authors: Ming-Yen Chang, Sheng-Hung Ke

Abstract:

This research focuses on the development of a speed bump identification system for real-time control of adjustable shock absorbers in vehicular suspension systems. The study initially involved the collection of images of various speed bumps, and rubber speed bump profiles found on roadways. These images were utilized for training and recognition purposes through the deep learning object detection algorithm YOLOv5. Subsequently, the trained speed bump identification program was integrated with an in-vehicle camera system for live image capture during driving. These images were instantly transmitted to a computer for processing. Using the principles of monocular vision ranging, the distance between the vehicle and an approaching speed bump was determined. The appropriate control distance was established through both practical vehicle measurements and theoretical calculations. Collaboratively, with the electronically adjustable shock absorbers equipped in the vehicle, a shock absorber control system was devised to dynamically adapt the damping force just prior to encountering a speed bump. This system effectively mitigates passenger discomfort and enhances ride quality.

Keywords: adjustable shock absorbers, image recognition, monocular vision ranging, ride

Procedia PDF Downloads 36
2586 Numerical Study of Flow Characteristics and Performance of 14-X B Inlet with Blunted Cowl-Lip

Authors: Sergio N. P. Laitón, Paulo G. P. Toro, João F. Martos

Abstract:

A numerical study has been carried out to investigate the flow characteristics and performance of the 14-X B inlet with blunted cowl-lip. The Brazilian aerospace hypersonic vehicle 14-X B is a technology demonstrator of a hypersonic air-breathing propulsion system, based on supersonic combustion ramjet (scramjet). It is designed for Earth's atmospheric flight at Mach number of 6 and an altitude of 30 km. Currently, it is under development in the aerothermodynamics and hypersonic Professor Henry T. Nagamatsu laboratory at Advanced Studies Institute (IEAv). Numerical simulations were conducted at nominal freestream Mach number and altitude for two cowl-lip blunting radius and several angles of attack close to horizontal flight. The results show that the shock interference behavior on the blunted cowl-lip change with the angle of attack and blunted radius. The type VI or V together with III shock interferences are more likely to occur simultaneously at small negative angles of attack. When the inlet operates in positive angles of attack higher to 1, no shock interference occurs, only the bow shock conditions. The results indicate a high air pressure at beginning of the combustor and higher pressure recovery with 2 mm radius and positives angles of attack.

Keywords: blunted cowl-lip, hypersonic inlet, inlet unstart, shock interference

Procedia PDF Downloads 292
2585 An Automated Bender Element System Used for S-Wave Velocity Tomography during Model Pile Installation

Authors: Yuxin Wu, Yu-Shing Wang, Zitao Zhang

Abstract:

A high-speed and time-lapse S-wave velocity measurement system has been built up for S-wave tomography in sand. This system is based on bender elements and applied to model pile tests in a tailor-made pressurized chamber to monitor the shear wave velocity distribution during pile installation in sand. Tactile pressure sensors are used parallel together with bender elements to monitor the stress changes during the tests. Strain gages are used to monitor the shaft resistance and toe resistance of pile. Since the shear wave velocity (Vs) is determined by the shear modulus of sand and the shaft resistance of pile is also influenced by the shear modulus of sand around the pile, the purposes of this study are to time-lapse monitor the S-wave velocity distribution change at a certain horizontal section during pile installation and to correlate the S-wave velocity distribution and shaft resistance of pile in sand.

Keywords: bender element, pile, shaft resistance, shear wave velocity, tomography

Procedia PDF Downloads 387
2584 A Background Subtraction Based Moving Object Detection Around the Host Vehicle

Authors: Hyojin Lim, Cuong Nguyen Khac, Ho-Youl Jung

Abstract:

In this paper, we propose moving object detection method which is helpful for driver to safely take his/her car out of parking lot. When moving objects such as motorbikes, pedestrians, the other cars and some obstacles are detected at the rear-side of host vehicle, the proposed algorithm can provide to driver warning. We assume that the host vehicle is just before departure. Gaussian Mixture Model (GMM) based background subtraction is basically applied. Pre-processing such as smoothing and post-processing as morphological filtering are added.We examine “which color space has better performance for detection of moving objects?” Three color spaces including RGB, YCbCr, and Y are applied and compared, in terms of detection rate. Through simulation, we prove that RGB space is more suitable for moving object detection based on background subtraction.

Keywords: gaussian mixture model, background subtraction, moving object detection, color space, morphological filtering

Procedia PDF Downloads 583
2583 Experimental Procedure of Identifying Ground Type by Downhole Test: A Case Study

Authors: Seyed Abolhassan Naeini, Maedeh Akhavan Tavakkoli

Abstract:

Evaluating the shear wave velocity (V_s) and primary wave velocity (Vₚ) is necessary to identify the ground type of the site. Identifying the soil type based on different codes can affect the dynamic analysis of geotechnical properties. This study aims to separate the underground layers at the project site based on the shear wave and primary wave velocity (Sₚ) in different depths and determine dynamic elastic modulus based on the shear wave velocity. Bandar Anzali is located in a tectonically very active area. Several active faults surround the study site. In this case, a field investigation of downhole testing is conducted as a geophysics method to identify the ground type.

Keywords: downhole, geophysics, shear wave velocity, case-study

Procedia PDF Downloads 107
2582 Visco-Acoustic Full Wave Inversion in the Frequency Domain with Mixed Grids

Authors: Sheryl Avendaño, Miguel Ospina, Hebert Montegranario

Abstract:

Full Wave Inversion (FWI) is a variant of seismic tomography for obtaining velocity profiles by an optimization process that combine forward modelling (or solution of wave equation) with the misfit between synthetic and observed data. In this research we are modelling wave propagation in a visco-acoustic medium in the frequency domain. We apply finite differences for the numerical solution of the wave equation with a mix between usual and rotated grids, where density depends on velocity and there exists a damping function associated to a linear dissipative medium. The velocity profiles are obtained from an initial one and the data have been modeled for a frequency range 0-120 Hz. By an iterative procedure we obtain an estimated velocity profile in which are detailed the remarkable features of the velocity profile from which synthetic data were generated showing promising results for our method.

Keywords: seismic inversion, full wave inversion, visco acoustic wave equation, finite diffrence methods

Procedia PDF Downloads 435
2581 Techno-Economic Analysis Framework for Wave Energy Conversion Schemes under South African Conditions: Modeling and Simulations

Authors: Siyanda S. Biyela, Willie A. Cronje

Abstract:

This paper presents a desktop study of comparing two different wave energy to electricity technologies (WECs) using a techno-economic approach. This techno-economic approach forms basis of a framework for rapid comparison of current and future technologies. The approach also seeks to assist in investment and strategic decision making expediting future deployment of wave energy harvesting in South Africa.

Keywords: cost of energy (COE) tool, sea state, wave energy converter (WEC), WEC-Sim

Procedia PDF Downloads 266
2580 Coastal Hydraulic Modelling to Ascertain Stability of Rubble Mound Breakwater

Authors: Safari Mat Desa, Othman A. Karim, Mohd Kamarulhuda Samion, Saiful Bahri Hamzah

Abstract:

Rubble mound breakwater was one of the most popular designs in Malaysia, constructed at the river mouth to dissipate the incoming wave energy from the seaward. Geometrically characteristics in trapezoid, crest width, and bottom width will determine the hypotonus stability, whilst structural height was designed for wave overtopping consideration. Physical hydraulic modelling in two-dimensional facilities was instigated in the flume to test the stability as well as the overtopping rate complied with the method of similarity, namely kinematic, dynamic, and geometric. Scaling effects of wave characteristics were carried out in order to acquire significant interaction of wave height, wave period, and water depth. Results showed two-dimensional physical modelling has proven reliable capability to ascertain breakwater stability significantly.

Keywords: breakwater, geometrical characteristic, wave overtopping, physical hydraulic modelling, method of similarity, wave characteristic

Procedia PDF Downloads 78
2579 Symbolic Computation and Abundant Travelling Wave Solutions to Modified Burgers' Equation

Authors: Muhammad Younis

Abstract:

In this article, the novel (G′/G)-expansion method is successfully applied to construct the abundant travelling wave solutions to the modified Burgers’ equation with the aid of computation. The method is reliable and useful, which gives more general exact travelling wave solutions than the existing methods. These obtained solutions are in the form of hyperbolic, trigonometric and rational functions including solitary, singular and periodic solutions which have many potential applications in physical science and engineering. Some of these solutions are new and some have already been constructed. Additionally, the constraint conditions, for the existence of the solutions are also listed.

Keywords: traveling wave solutions, NLPDE, computation, integrability

Procedia PDF Downloads 401
2578 The Effect of Surface Wave on the Performance Characteristic of a Wave-Tidal Integral Turbine Hybrid Generation System

Authors: Norshazmira Mat Azmi, Sayidal El Fatimah Masnan, Shatirah Akib

Abstract:

More than 70% of the Earth is covered by oceans, which are considered to possess boundless renewable energy, such as tidal energy, tidal current energy, wave energy, thermal energy, and chemical energy. The hybrid system help in improving the economic and environmental sustainability of renewable energy systems to fulfill the energy demand. The concept of hybridizing renewable energy is to meet the desired system requirements, with the lowest value of the energy cost. This paper propose a hybrid power generation system suitable for remote area application and highlight the impact of surface waves on turbine design and performance, and the importance of understanding the site-specific wave conditions.

Keywords: marine current energy, tidal turbines, wave turbine, renewable energy, surface waves, hydraulic flume experiments, instantaneous wave phase

Procedia PDF Downloads 379
2577 Hydrodynamic Characteristics of Single and Twin Offshore Rubble Mound Breakwaters under Regular and Random Waves

Authors: M. Alkhalidi, S. Neelamani, Z. Al-Zaqah

Abstract:

This paper investigates the interaction of single and twin offshore rubble mound breakwaters with regular and random water waves through physical modeling to assess their reflection, transmission and energy dissipation characteristics. Various combinations of wave heights and wave periods were utilized in a series of experiments, along with three different water depths. The single and twin permeable breakwater models were both constructed with one layer of rubbles. Both models had the same total volume; however, the single breakwater was of trapezoidal type while the twin breakwaters were of triangular type. Physical modeling experiments were carried out in the wave flume of the coastal engineering laboratory of Kuwait Institute for Scientific Research (KISR). Measurements of the six wave probes which were fixed in the two-dimensional wave flume were collected and used to determine the generated incident wave heights, as well as the reflected and transmitted wave heights resulting from the wave-breakwater interaction. The possible factors affecting the wave attenuation efficiency of the breakwater models are the relative water depth (d/L), wave steepness (H/L), relative wave height ((h-d)/Hi), relative height of the breakwater (h/d), and relative clear spacing between the twin breakwaters (S/h). The results indicated that the single and double breakwaters show different responds to the change in their relative height as well as the relative wave height which demonstrates that the effect of the relative water depth on wave reflection, transmission, and energy dissipation is highly influenced by the change in the relative breakwater height, the relative wave height and the relative breakwater spacing. In general, within the range of the relative water depth tested in this study, and under both regular and random waves, it is found that the single breakwater allows for lower wave transmission and shows higher energy dissipation effect than both of the tested twin breakwaters, and hence has the best overall performance.

Keywords: random waves, regular waves, relative water depth, relative wave height, single breakwater, twin breakwater, wave steepness

Procedia PDF Downloads 276
2576 An Experimental Investigation on Explosive Phase Change of Liquefied Propane During a Bleve Event

Authors: Frederic Heymes, Michael Albrecht Birk, Roland Eyssette

Abstract:

Boiling Liquid Expanding Vapor Explosion (BLEVE) has been a well know industrial accident for over 6 decades now, and yet it is still poorly predicted and avoided. BLEVE is created when a vessel containing a pressure liquefied gas (PLG) is engulfed in a fire until the tank rupture. At this time, the pressure drops suddenly, leading the liquid to be in a superheated state. The vapor expansion and the violent boiling of the liquid produce several shock waves. This works aimed at understanding the contribution of vapor ad liquid phases in the overpressure generation in the near field. An experimental work was undertaken at a small scale to reproduce realistic BLEVE explosions. Key parameters were controlled through the experiments, such as failure pressure, fluid mass in the vessel, and weakened length of the vessel. Thirty-four propane BLEVEs were then performed to collect data on scenarios similar to common industrial cases. The aerial overpressure was recorded all around the vessel, and also the internal pressure changed during the explosion and ground loading under the vessel. Several high-speed cameras were used to see the vessel explosion and the blast creation by shadowgraph. Results highlight how the pressure field is anisotropic around the cylindrical vessel and highlights a strong dependency between vapor content and maximum overpressure from the lead shock. The time chronology of events reveals that the vapor phase is the main contributor to the aerial overpressure peak. A prediction model is built upon this assumption. Secondary flow patterns are observed after the lead. A theory on how the second shock observed in experiments forms is exposed thanks to an analogy with numerical simulation. The phase change dynamics are also discussed thanks to a window in the vessel. Ground loading measurements are finally presented and discussed to give insight into the order of magnitude of the force.

Keywords: phase change, superheated state, explosion, vapor expansion, blast, shock wave, pressure liquefied gas

Procedia PDF Downloads 45
2575 Early Vasopressor and De-resuscitation in Steven Johnson Syndrome with Septic Shock: A Case Report

Authors: Darma Putra Sitepu, Dewi Larasati, Yohanes Wolter Hendrik George

Abstract:

Sepsis is a life-threatening medical emergency frequently observed in intensive care unit (ICU). Surviving Sepsis Campaign in 2018 has recommended the administration of early vasopressor in the first hour of sepsis or septic shock but has not yet included de-resuscitation protocol. De-resuscitation in acute management of septic shock is where patient received active removal of accumulated fluid. It has been proposed by some studies and ongoing clinical trials. Here we present a case with early vasopressor and de-resuscitation. Male, 27 years old presenting to the emergency room with shortness of breath, altered mental status, and widespread blisters on his body and lips started a few hours prior, after receiving non-steroidal anti-inflammatory drug through intravenous injection. Patient was hypotensive, tachycardic, and tachypneic at admission, diagnosed with Steven Johnson Syndrome with Septic Shock. Patient received fluid resuscitation, early vasopressor, and diuresis agent aimed to actively remove fluid after the initial phase of resuscitation. Patient was admitted to ICU and progressively recovering. At day-10, patient was stabilized and was transferred to general ward. Early vasopressor and de-resuscitation are beneficial for the patient.

Keywords: sepsis, shock, de-resuscitation, vasopressor, fluid, case report

Procedia PDF Downloads 126
2574 Identification of Classes of Bilinear Time Series Models

Authors: Anthony Usoro

Abstract:

In this paper, two classes of bilinear time series model are obtained under certain conditions from the general bilinear autoregressive moving average model. Bilinear Autoregressive (BAR) and Bilinear Moving Average (BMA) Models have been identified. From the general bilinear model, BAR and BMA models have been proved to exist for q = Q = 0, => j = 0, and p = P = 0, => i = 0 respectively. These models are found useful in modelling most of the economic and financial data.

Keywords: autoregressive model, bilinear autoregressive model, bilinear moving average model, moving average model

Procedia PDF Downloads 366
2573 Bayesian Approach for Moving Extremes Ranked Set Sampling

Authors: Said Ali Al-Hadhrami, Amer Ibrahim Al-Omari

Abstract:

In this paper, Bayesian estimation for the mean of exponential distribution is considered using Moving Extremes Ranked Set Sampling (MERSS). Three priors are used; Jeffery, conjugate and constant using MERSS and Simple Random Sampling (SRS). Some properties of the proposed estimators are investigated. It is found that the suggested estimators using MERSS are more efficient than its counterparts based on SRS.

Keywords: Bayesian, efficiency, moving extreme ranked set sampling, ranked set sampling

Procedia PDF Downloads 477
2572 High Harmonics Generation in Hexagonal Graphene Quantum Dots

Authors: Armenuhi Ghazaryan, Qnarik Poghosyan, Tadevos Markosyan

Abstract:

We have considered the high-order harmonic generation in-plane graphene quantum dots of hexagonal shape by the independent quasiparticle approximation-tight binding model. We have investigated how such a nonlinear effect is affected by a strong optical wave field, quantum dot typical band gap and lateral size, and dephasing processes. The equation of motion for the density matrix is solved by performing the time integration with the eight-order Runge-Kutta algorithm. If the optical wave frequency is much less than the quantum dot intrinsic band gap, the main aspects of multiphoton high harmonic emission in quantum dots are revealed. In such a case, the dependence of the cutoff photon energy on the strength of the optical pump wave is almost linear. But when the wave frequency is comparable to the bandgap of the quantum dot, the cutoff photon energy shows saturation behavior with an increase in the wave field strength.

Keywords: strong wave field, multiphoton, bandgap, wave field strength, nanostructure

Procedia PDF Downloads 107
2571 Interaction of the Circumferential Lamb Wave with Delamination in the Middle of Pipe Wall

Authors: Li Ziming, He Cunfu, Liu Zenghua

Abstract:

With aim for delamination type defects detection in manufacturing process of seamless pipe,this paper studies the interaction of the circumferential lamb wave with delamination in aluminum pipe.The delamination is located in the middle of pipe wall.A numerical study is carried out,the circumferential lamb wave used here is CL0 mode,which is generated with a finite element method code.Wave structures from the simulation are compared with theoretical results to verify the model’s accuracy.Delamination along the circumferential direction is established by demerging nodes of the same coordinates.When CL0 mode is incident at the entrance and exit of a delamination,it generates new mode-CL1,undergoes multiple reverberation and mode conversions between the two ends of the delamination. Signals of different receptions are obtained to provide insight in using CL0 mode for locating the delamination.

Keywords: circumferential lamb wave, delamination, FEM, seamless pipe

Procedia PDF Downloads 287
2570 Wave Velocity-Rock Property Relationships in Shallow Marine Libyan Carbonate Reservoir

Authors: Tarek S. Duzan, Abdulaziz F. Ettir

Abstract:

Wave velocities, Core and Log petrophysical data were collected from recently drilled four new wells scattered through-out the Dahra/Jofra (PL-5) Reservoir. The collected data were analyzed for the relationships of Wave Velocities with rock property such as Porosity, permeability and Bulk Density. Lots of Literature review reveals a number of differing results and conclusions regarding wave velocities (Compressional Waves (Vp) and Shear Waves (Vs)) versus rock petrophysical property relationships, especially in carbonate reservoirs. In this paper, we focused on the relationships between wave velocities (Vp , Vs) and the ratio Vp/Vs with rock properties for shallow marine libyan carbonate reservoir (Real Case). Upon data analysis, a relationship between petrophysical properties and wave velocities (Vp, Vs) and the ratio Vp/Vs has been found. Porosity and bulk density properties have shown exponential relationship with wave velocities, while permeability has shown a power relationship in the interested zone. It is also clear that wave velocities (Vp , Vs) seems to be a good indicator for the lithology change with true vertical depth. Therefore, it is highly recommended to use the output relationships to predict porosity, bulk density and permeability of the similar reservoir type utilizing the most recent seismic data.

Keywords: conventional core analysis (porosity, permeability bulk density) data, VS wave and P-wave velocities, shallow carbonate reservoir in D/J field

Procedia PDF Downloads 306
2569 Development of Detachable Brake System for Moving Apparatus

Authors: Bong-Keun Jung, Jung-Yeon Kim

Abstract:

The aim of this study was to investigate usability of detachable brake system for moving apparatus such as baby strollers, manual wheelchairs or walkers. The current brake system was proposed to prevent that moving apparatus slip on sloping roadways when unattended as current built-in manual brake for the moving apparatus is not able to react for the matter. The developed detachable brake system enacted by force sensor on the hand grip showed the possibilities to prevent unexpected accident due to uncontrolled stroller or wheelchair use. To investigate the quality and acceptance of this new technology, standard stroller testbed was built and the use of moving apparatus which attached to the proposed brake system was analyzed through video recording. Additional usability questionnaires were given to test users for measuring usability issues.

Keywords: brake system, stroller, wheelchair, usability test

Procedia PDF Downloads 704
2568 Controlled Shock Response Spectrum Test on Spacecraft Subsystem Using Electrodynamic Shaker

Authors: M. Madheswaran, A. R. Prashant, S. Ramakrishna, V. Ramesh Naidu, P. Govindan, P. Aravindakshan

Abstract:

Shock Response spectrum (SRS) tests are one of the tests that are conducted on some critical systems of spacecraft as part of environmental testing. The SRS tests are conducted to simulate the pyro shocks that occur during launch phases as well as during deployment of spacecraft appendages. Some of the methods to carryout SRS tests are pyro technique method, impact hammer method, drop shock method and using electro dynamic shakers. The pyro technique, impact hammer and drop shock methods are open loop tests, whereas SRS testing using electrodynamic shaker is a controlled closed loop test. SRS testing using electrodynamic shaker offers various advantages such as simple test set up, better controllability and repeatability. However, it is important to devise a a proper test methodology so that safety of the electro dynamic shaker and that of test specimen are not compromised. This paper discusses the challenges that are involved in conducting SRS tests, shaker validation and the necessary precautions to be considered. Approach involved in choosing various test parameters like synthesis waveform, spectrum convergence level, etc., are discussed. A case study of SRS test conducted on an optical payload of Indian Geo stationary spacecraft is presented.

Keywords: maxi-max spectrum, SRS (shock response spectrum), SDOf (single degree of freedom), wavelet synthesis

Procedia PDF Downloads 328