Search results for: lower Usuma reservoir
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6197

Search results for: lower Usuma reservoir

6197 An Assessment of Bathymetric Changes in the Lower Usuma Reservoir, Abuja, Nigera

Authors: Rayleigh Dada Abu, Halilu Ahmad Shaba

Abstract:

Siltation is a serious problem that affects public water supply infrastructures such as dams and reservoirs. It is a major problem which threatens the performance and sustainability of dams and reservoirs. It reduces the dam capacity for flood control, potable water supply, changes water stage, reduces water quality and recreational benefits. The focus of this study is the Lower Usuma reservoir. At completion the reservoir had a gross storage capacity of 100 × 106 m3 (100 million cubic metres), a maximum operational level of 587.440 m a.s.l., with a maximum depth of 49 m and a catchment area of 241 km2 at dam site with a daily designed production capacity of 10,000 cubic metres per hour. The reservoir is 1,300 m long and feeds the treatment plant mainly by gravity. The reservoir became operational in 1986 and no survey has been conducted to determine its current storage capacity and rate of siltation. Hydrographic survey of the reservoir by integrated acoustic echo-sounding technique was conducted in November 2012 to determine the level and rate of siltation. The result obtained shows that the reservoir has lost 12.0 meters depth to siltation in 26 years of its operation; indicating 24.5% loss in installed storage capacity. The present bathymetric survey provides baseline information for future work on siltation depth and annual rates of storage capacity loss for the Lower Usuma reservoir.

Keywords: sedimentation, lower Usuma reservoir, acoustic echo sounder, bathymetric survey

Procedia PDF Downloads 514
6196 Generation & Migration Of Carbone Dioxid In The Lower Cretaceous Bahi Sandstone Reservoir Within The En-naga Sub Basin, Sirte Basin, Libya

Authors: Moaawia Abdulgader Gdara

Abstract:

En -Naga sub - basin considered to be the most southern of the concessions in the Sirte Basin operated by HOO. En Naga Sub – basin have likely been point-sourced of CO₂ accumulations during the last 7 million years from local satellite intrusives associated with the Haruj Al Aswad igneous complex. CO2 occurs in the En Naga Sub-basin as a result of the igneous activity of the Al Harouge Al Aswad complex.Igneous extrusive have been pierced in the subsurface are exposed at the surface. The lower cretaceous Bahi Sandstone facies are recognized in the En Naga Sub-basin. They result from the influence of paleotopography on the processes associated with continental deposition over the Sirt Unconformity and the Cenomanian marine transgression In the Lower Cretaceous Bahi Sandstones, the presence of trapped carbon dioxide is proven within the En Naga Sub-basin. This makes it unique in providing an abundance of CO₂ gas reservoirs with almost pure magmatic CO₂, which can be easily sampled. Huge amounts of CO2 exist in the Lower Cretaceous Bahi Sandstones in the En-Naga sub-basin, where the economic value of CO₂ is related to its use for enhanced oil recovery (EOR) Based on the production tests for the drilled wells that makes Lower Cretaceous Bahi sandstones the principle reservoir rocks for CO2 where large volumes of CO2 gas have been discovered in the Bahi Formation on and near EPSA 120/136(En -Naga sub basin). The Bahi sandstones are generally described as a good reservoir rock. Intergranular porosities and permeabilities are highly variable and can exceed 25% and 100 MD. In the (En Naga sub – basin), three main developed structures (Barrut I, En Naga A and En Naga O) are thought to be prospective for the lower Cretaceous Bahi sandstone reservoir. These structures represents a good example for the deep over pressure potential in (En Naga sub - basin). The very high pressures assumed associated with local igneous intrusives may account for the abnormally high Bahi (and Lidam) reservoir pressures. The best gas tests from this facies are at F1-72 on the (Barrut I structure) from part of a 458 feet+ section having an estimated high value of CO2 as 98% overpressured. Bahi CO) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co₂ generation and migration to the bahi sandstone reservoir generation and migration to the bahi sandstone reservoir generation and migration to the bahi sandstone reservoir generation and migration to the bahi sandstone reservoir prospectivity is thought to be excellent in the central to western areas where At U1-72 (En Naga O structure) a significant CO2 gas kick occurred at 11,971 feet and quickly led to blowout conditions due to uncontrollable leaks in the surface equipment. Which reflects a better reservoir quality sandstones associated with Paleostructural highs. Condensate and gas prospectivity increases to the east as the CO₂) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co₂ generation and migration to the bahi sandstone reservoir generation and migration to the bahi sandstone reservoir prospectivity decreases with distance away from the Al Haruj Al Aswad igneous complex. To date, it has not been possible to accurately determine the volume of these strategically valuable reserves although there are positive indications that they are very large.

Keywords: 1) en naga sub basin, 2)al harouge al aswad igneous complex., 3) lower cretaceous bahi reservoir, 4)co2 generation and migration to the bahi sandstone reservoir

Procedia PDF Downloads 71
6195 Reservoir Properties Effect on Estimating Initial Gas in Place Using Flowing Material Balance Method

Authors: Yousef S. Kh. S. Hashem

Abstract:

Accurate estimation of initial gas in place (IGIP) plays an important factor in the decision to develop a gas field. One of the methods that are available in the industry to estimate the IGIP is material balance. This method required that the well has to be shut-in while pressure is measured as it builds to average reservoir pressure. Since gas demand is high and shut-in well surveys are very expensive, flowing gas material balance (FGMB) is sometimes used instead of material balance. This work investigated the effect of reservoir properties (pressure, permeability, and reservoir size) on the estimation of IGIP when using FGMB. A gas reservoir simulator that accounts for friction loss, wellbore storage, and the non-Darcy effect was used to simulate 165 different possible causes (3 pressures, 5 reservoir sizes, and 11 permeabilities). Both tubing pressure and bottom-hole pressure were analyzed using FGMB. The results showed that the FGMB method is very sensitive for tied reservoirs (k < 10). Also, it showed which method is best to be used for different reservoir properties. This study can be used as a guideline for the application of the FGMB method.

Keywords: flowing material balance, gas reservoir, reserves, gas simulator

Procedia PDF Downloads 153
6194 Evaluation of Cyclic Steam Injection in Multi-Layered Heterogeneous Reservoir

Authors: Worawanna Panyakotkaew, Falan Srisuriyachai

Abstract:

Cyclic steam injection (CSI) is a thermal recovery technique performed by injecting periodically heated steam into heavy oil reservoir. Oil viscosity is substantially reduced by means of heat transferred from steam. Together with gas pressurization, oil recovery is greatly improved. Nevertheless, prediction of effectiveness of the process is difficult when reservoir contains degree of heterogeneity. Therefore, study of heterogeneity together with interest reservoir properties must be evaluated prior to field implementation. In this study, thermal reservoir simulation program is utilized. Reservoir model is firstly constructed as multi-layered with coarsening upward sequence. The highest permeability is located on top layer with descending of permeability values in lower layers. Steam is injected from two wells located diagonally in quarter five-spot pattern. Heavy oil is produced by adjusting operating parameters including soaking period and steam quality. After selecting the best conditions for both parameters yielding the highest oil recovery, effects of degree of heterogeneity (represented by Lorenz coefficient), vertical permeability and permeability sequence are evaluated. Surprisingly, simulation results show that reservoir heterogeneity yields benefits on CSI technique. Increasing of reservoir heterogeneity impoverishes permeability distribution. High permeability contrast results in steam intruding in upper layers. Once temperature is cool down during back flow period, condense water percolates downward, resulting in high oil saturation on top layers. Gas saturation appears on top after while, causing better propagation of steam in the following cycle due to high compressibility of gas. Large steam chamber therefore covers most of the area in upper zone. Oil recovery reaches approximately 60% which is of about 20% higher than case of heterogeneous reservoir. Vertical permeability exhibits benefits on CSI. Expansion of steam chamber occurs within shorter time from upper to lower zone. For fining upward permeability sequence where permeability values are reversed from the previous case, steam does not override to top layers due to low permeability. Propagation of steam chamber occurs in middle of reservoir where permeability is high enough. Rate of oil recovery is slower compared to coarsening upward case due to lower permeability at the location where propagation of steam chamber occurs. Even CSI technique produces oil quite slowly in early cycles, once steam chamber is formed deep in the reservoir, heat is delivered to formation quickly in latter cycles. Since reservoir heterogeneity is unavoidable, a thorough understanding of its effect must be considered. This study shows that CSI technique might be one of the compatible solutions for highly heterogeneous reservoir. This competitive technique also shows benefit in terms of heat consumption as steam is injected periodically.

Keywords: cyclic steam injection, heterogeneity, reservoir simulation, thermal recovery

Procedia PDF Downloads 458
6193 3d Property Modelling of the Lower Acacus Reservoir, Ghadames Basin, Libya

Authors: Aimen Saleh

Abstract:

The Silurian Lower Acacus sandstone is one of the main reservoirs in North West Libya. Our aim in this study is to grasp a robust understanding of the hydrocarbon potential and distribution in the area. To date, the depositional environment of the Lower Acacus reservoir still open to discussion and contradiction. Henceforth, building three dimensional (3D) property modelling is one way to support the analysis and description of the reservoir, its properties and characterizations, so this will be of great value in this project. The 3D model integrates different data set, these incorporates well logs data, petrophysical reservoir properties and seismic data as well. The finalized depositional environment model of the Lower Acacus concludes that the area is located in a deltaic transitional depositional setting, which ranges from a wave dominated delta into tide dominated delta type. This interpretation carried out through a series of steps of model generation, core description and Formation Microresistivity Image tool (FMI) interpretation. After the analysis of the core data, the Lower Acacus layers shows a strong effect of tidal energy. Whereas these traces found imprinted in different types of sedimentary structures, for examples; presence of some crossbedding, such as herringbones structures, wavy and flaser cross beddings. In spite of recognition of some minor marine transgression events in the area, on the contrary, the coarsening upward cycles of sand and shale layers in the Lower Acacus demonstrate presence of a major regressive phase of the sea level. However, consequently, we produced a final package of this model in a complemented set of facies distribution, porosity and oil presence. And also it shows the record of the petroleum system, and the procedure of Hydrocarbon migration and accumulation. Finally, this model suggests that the area can be outlined into three main segments of hydrocarbon potential, which can be a textbook guide for future exploration and production strategies in the area.

Keywords: Acacus, Ghadames , Libya, Silurian

Procedia PDF Downloads 142
6192 Petroleum Play Fairway Analysis of the Middle Paleocene Lower Beda Formation, Concession 71, South-Central Sirt Basin, Libya

Authors: Hatem K. Hamed, Mohamed S. Hrouda

Abstract:

The Middle Paleocene Lower Beda Formation was deposited in a ramp system with local shoaling. The main constituent is limestone, with subordinate dolomites and Shales. Reservoir quality is largely influenced by depositional environments and diagenesis processes. Generally the reservoir quality of Lower Beda Formation is low risk on the Inferred Horst and in the Southern Shelf where the Lower Beda formation comprises mainly of calcarenties. In the vicinity of the well GG1 the Lower Beda comprise mainly of argillaceous calcilutites and shale. The reservoir quality gradually improves from high risk to moderate risk towards KK1, LL1 and NN1 wells. The average gross thickness of Lower Beda Formation is about 300 ft. The net thickness varies from about 270 ft. in the E1-71 well to about 30 ft. in the vicinity of GG1-71 well. The net thickest of Lower Beda form a NNW-SSW trend with an average of 250 ft. the change in facies is due to change in the depositional environment, from lagoonal to shoal barrier to open marine affected the reservoir quality. The Upper Cretaceous Sirte Shale is the main source rock. It is developed within the three troughs surrounding the study area. S-Marada Trough to the N- E, Gerad Trough to the N N-W, and Abu Tummym Sub-basin to the S-W of the Inferred Horst. Sirte shale reaches 1000ft, of organically rich section. It has good organic contents over large area 2% to 3%. Hydrocarbon shows were encountered in several wells in Beda Formation this is an indication of vertical and lateral migration of hydrocarbon. The overlying Upper Paleocene Khalifa Formation is a transgressive shale, it is an effective regional top seal. Lithofacies variations in Khalifa Shale, from shales to limestones in the southern shelf in R1-71 well approximately 50-75% of the secession is limestone. About 47 million barrel of hydrocarbon recoverable reserves is expected to be trapped in structural and stratigraphic traps in Beda Formation in the study area.

Keywords: Sirte basin, Beda formation, concession 71, petroleum play fairway analysis

Procedia PDF Downloads 88
6191 Unlocking New Room of Production in Brown Field; ‎Integration of Geological Data Conditioned 3D Reservoir ‎Modelling of Lower Senonian Matulla Formation, RAS ‎Budran Field, East Central Gulf of Suez, Egypt

Authors: Nader Mohamed

Abstract:

The Late Cretaceous deposits are well developed through-out Egypt. This is due to a ‎transgression phase associated with the subsidence caused by the neo-Tethyan rift event that ‎took place across the northern margin of Africa, resulting in a period of dominantly marine ‎deposits in the Gulf of Suez. The Late Cretaceous Nezzazat Group represents the Cenomanian, ‎Turonian and clastic sediments of the Lower Senonian. The Nezzazat Group has been divided ‎into four formations namely, from base to top, the Raha Formation, the Abu Qada Formation, ‎the Wata Formation and the Matulla Formation. The Cenomanian Raha and the Lower Senonian ‎Matulla formations are the most important clastic sequence in the Nezzazat Group because they ‎provide the highest net reservoir thickness and the highest net/gross ratio. This study emphasis ‎on Matulla formation located in the eastern part of the Gulf of Suez. The three stratigraphic ‎surface sections (Wadi Sudr, Wadi Matulla and Gabal Nezzazat) which represent the exposed ‎Coniacian-Santonian sediments in Sinai are used for correlating Matulla sediments of Ras ‎Budran field. Cutting description, petrographic examination, log behaviors, biostratigraphy with ‎outcrops are used to identify the reservoir characteristics, lithology, facies environment logs and ‎subdivide the Matulla formation into three units. The lower unit is believed to be the main ‎reservoir where it consists mainly of sands with shale and sandy carbonates, while the other ‎units are mainly carbonate with some streaks of shale and sand. Reservoir modeling is an ‎effective technique that assists in reservoir management as decisions concerning development ‎and depletion of hydrocarbon reserves, So It was essential to model the Matulla reservoir as ‎accurately as possible in order to better evaluate, calculate the reserves and to determine the ‎most effective way of recovering as much of the petroleum economically as possible. All ‎available data on Matulla formation are used to build the reservoir structure model, lithofacies, ‎porosity, permeability and water saturation models which are the main parameters that describe ‎the reservoirs and provide information on effective evaluation of the need to develop the oil ‎potentiality of the reservoir. This study has shown the effectiveness of; 1) the integration of ‎geological data to evaluate and subdivide Matulla formation into three units. 2) Lithology and ‎facies environment interpretation which helped in defining the nature of deposition of Matulla ‎formation. 3) The 3D reservoir modeling technology as a tool for adequate understanding of the ‎spatial distribution of property and in addition evaluating the unlocked new reservoir areas of ‎Matulla formation which have to be drilled to investigate and exploit the un-drained oil. 4) This ‎study led to adding a new room of production and additional reserves to Ras Budran field. ‎

Keywords: geology, oil and gas, geoscience, sequence stratigraphy

Procedia PDF Downloads 105
6190 Lower Cretaceous Bahi Sandstone Reservoir as Sourced of Co2 Accumulation Within the En-Naga Sub Basin, Sirte Basin, Libya

Authors: Moawia Abulgader Gdara

Abstract:

En -Naga sub - basin considered to be the most southern of the concessions in the Sirte Basin operated by HOO. En Naga Sub – basin have likely been point-sourced of CO2 accumulations during the last 7 million years from local satellite intrusives associated with the Haruj Al Aswad igneous complex. CO2 occurs in the En Naga Sub-basin as a result of the igneous activity of the Al Harouge Al Aswad complex. Igneous extrusive have been pierced in the subsurface are exposed at the surface. The lower cretaceous Bahi Sandstone facies are recognized in the En Naga Sub-basin. They result from the influence of paleotopography on the processes associated with continental deposition over the Sirt Unconformity and the Cenomanian marine transgression In the Lower Cretaceous Bahi Sandstones, the presence of trapped carbon dioxide is proven within the En Naga Sub-basin. This makes it unique in providing an abundance of CO2 gas reservoirs with almost pure magmatic CO2, which can be easily sampled. Huge amounts of CO2 exist in the Lower Cretaceous Bahi Sandstones in the En-Naga sub-basin, where the economic value of CO2 is related to its use for enhanced oil recovery (EOR) Based on the production tests for the drilled wells that makes Lower Cretaceous Bahi sandstones the principle reservoir rocks for CO2 where large volumes of CO2 gas have been discovered in the Bahi Formation on and near EPSA 120/136(En -Naga sub basin). The Bahi sandstones are generally described as a good reservoir rock. Intergranular porosities and permeabilities are highly variable and can exceed 25% and 100 MD.In the (En Naga sub – basin), The very high pressures assumed associated with local igneous intrusives may account for the abnormally high Bahi (and Lidam Formation) reservoir pressures. The best gas tests from this facies are at F1-72 on the (Barrut I structure) from part of a 458 feet+ section having an estimated high value of CO2 as 98% overpressured. Bahi CO2 prospectivity is thought to be excellent in the central to western areas where At U1-72 (En Naga O structure) a significant CO2 gas kick occurred at 11,971 feet and quickly led to blowout conditions due to uncontrollable leaks in the surface equipment. Which reflects a better reservoir quality sandstones associated with Paleostructural highs. Condensate and gas prospectivity increases to the east as the CO2 prospectivity decreases with distance away from the Al Haruj Al Aswad igneous complex. To date, it has not been possible to accurately determine the volume of these strategically valuable reserves although there are positive indications that they are very large.

Keywords: 1)en naga sub basin, 2)alharouge al aswad igneous complex, 3)co2 generation and migration, 4)lower cretaceous bahi sandstone

Procedia PDF Downloads 76
6189 Computational Fluid Dynamics Simulation of Reservoir for Dwell Time Prediction

Authors: Nitin Dewangan, Nitin Kattula, Megha Anawat

Abstract:

Hydraulic reservoir is the key component in the mobile construction vehicles; most of the off-road earth moving construction machinery requires bigger side hydraulic reservoirs. Their reservoir construction is very much non-uniform and designers used such design to utilize the space available under the vehicle. There is no way to find out the space utilization of the reservoir by oil and validity of design except virtual simulation. Computational fluid dynamics (CFD) helps to predict the reservoir space utilization by vortex mapping, path line plots and dwell time prediction to make sure the design is valid and efficient for the vehicle. The dwell time acceptance criteria for effective reservoir design is 15 seconds. The paper will describe the hydraulic reservoir simulation which is carried out using CFD tool acuSolve using automated mesh strategy. The free surface flow and moving reference mesh is used to define the oil flow level inside the reservoir. The first baseline design is not able to meet the acceptance criteria, i.e., dwell time below 15 seconds because the oil entry and exit ports were very close. CFD is used to redefine the port locations for the reservoir so that oil dwell time increases in the reservoir. CFD also proposed baffle design the effective space utilization. The final design proposed through CFD analysis is used for physical validation on the machine.

Keywords: reservoir, turbulence model, transient model, level set, free-surface flow, moving frame of reference

Procedia PDF Downloads 151
6188 Reservoir Fluids: Occurrence, Classification, and Modeling

Authors: Ahmed El-Banbi

Abstract:

Several PVT models exist to represent how PVT properties are handled in sub-surface and surface engineering calculations for oil and gas production. The most commonly used models include black oil, modified black oil (MBO), and compositional models. These models are used in calculations that allow engineers to optimize and forecast well and reservoir performance (e.g., reservoir simulation calculations, material balance, nodal analysis, surface facilities, etc.). The choice of which model is dependent on fluid type and the production process (e.g., depletion, water injection, gas injection, etc.). Based on close to 2,000 reservoir fluid samples collected from different basins and locations, this paper presents some conclusions on the occurrence of reservoir fluids. It also reviews the common methods used to classify reservoir fluid types. Based on new criteria related to the production behavior of different fluids and economic considerations, an updated classification of reservoir fluid types is presented in the paper. Recommendations on the use of different PVT models to simulate the behavior of different reservoir fluid types are discussed. Each PVT model requirement is highlighted. Available methods for the calculation of PVT properties from each model are also discussed. Practical recommendations and tips on how to control the calculations to achieve the most accurate results are given.

Keywords: PVT models, fluid types, PVT properties, fluids classification

Procedia PDF Downloads 72
6187 Architectural and Sedimentological Parameterization for Reservoir Quality of Miocene Onshore Sandstone, Borneo

Authors: Numair A. Siddiqui, Usman Muhammad, Manoj J. Mathew, Ramkumar M., Benjamin Sautter, Muhammad A. K. El-Ghali, David Menier, Shiqi Zhang

Abstract:

The sedimentological parameterization of shallow-marine siliciclastic reservoirs in terms of reservoir quality and heterogeneity from outcrop study can help improve the subsurface reservoir prediction. An architectural analysis has documented variations in sandstone geometry and rock properties within shallow-marine sandstone exposed in the Miocene Sandakan Formation of Sabah, Borneo. This study demonstrates reservoir sandstone quality assessment for subsurface rock evaluation, from well-exposed successions of the Sandakan Formation, Borneo, with which applicable analogues can be identified. The analyses were based on traditional conventional field investigation of outcrops, grain-size and petrographic studies of hand specimens of different sandstone facies and gamma-ray and permeability measurements. On the bases of these evaluations, the studied sandstone was grouped into three qualitative reservoir rock classes; high (Ø=18.10 – 43.60%; k=1265.20 – 5986.25 mD), moderate (Ø=17.60 – 37%; k=21.36 – 568 mD) and low quality (Ø=3.4 – 15.7%; k=3.21 – 201.30 mD) for visualization and prediction of subsurface reservoir quality. These results provided analogy for shallow marine sandstone reservoir complexity that can be utilized in the evaluation of reservoir quality of regional and subsurface analogues.

Keywords: architecture and sedimentology, subsurface rock evaluation, reservoir quality, borneo

Procedia PDF Downloads 141
6186 Gas While Drilling (GWD) Classification in Betara Complex; An Effective Approachment to Optimize Future Candidate of Gumai Reservoir

Authors: I. Gusti Agung Aditya Surya Wibawa, Andri Syafriya, Beiruny Syam

Abstract:

Gumai Formation which acts as regional seal for Talang Akar Formation becomes one of the most prolific reservoir in South Sumatra Basin and the primary exploration target in this area. Marine conditions were eventually established during the continuation of transgression sequence leads an open marine facies deposition in Early Miocene. Marine clastic deposits where calcareous shales, claystone and siltstones interbedded with fine-grained calcareous and glauconitic sandstones are the domination of lithology which targeted as the hydrocarbon reservoir. All this time, the main objective of PetroChina’s exploration and production in Betara area is only from Lower Talang Akar Formation. Successful testing in some exploration wells which flowed gas & condensate from Gumai Formation, opened the opportunity to optimize new reservoir objective in Betara area. Limitation of conventional wireline logs data in Gumai interval is generating technical challenge in term of geological approach. A utilization of Gas While Drilling indicator initiated with the objective to determine the next Gumai reservoir candidate which capable to increase Jabung hydrocarbon discoveries. This paper describes how Gas While Drilling indicator is processed to generate potential and non-potential zone by cut-off analysis. Validation which performed by correlation and comparison with well logs, Drill Stem Test (DST), and Reservoir Performance Monitor (RPM) data succeed to observe Gumai reservoir in Betara Complex. After we integrated all of data, we are able to generate a Betara Complex potential map and overlaid with reservoir characterization distribution as a part of risk assessment in term of potential zone presence. Mud log utilization and geophysical data information successfully covered the geological challenges in this study.

Keywords: Gumai, gas while drilling, classification, reservoir, potential

Procedia PDF Downloads 355
6185 Petrophysical Interpretation of Unconventional Shale Reservoir Naokelekan in Ajeel Oil-Gas Field

Authors: Abeer Tariq, Mohammed S. Aljawad, Khaldoun S. Alfarisi

Abstract:

This paper aimed to estimate the petrophysical properties (porosity, permeability, and fluid saturation) of the Ajeel well (Aj-1) Shale reservoir. Petrophysical properties of the Naokelekan Formation at Ajeel field are determined from the interpretation of open hole log data of one well which penetrated the source rock reservoir. However, depending on these properties, it is possible to divide the Formation which has a thickness of approximately 28-34 m, into three lithological units: A is the upper unit (thickness about 9 to 13 m) consisting of dolomitized limestones; B is a middle unit (thickness about 13 to 20 m) which is composed of dolomitic limestone, and C is a lower unit (>22 m thick) which consists of shale-rich and dolomitic limestones. The results showed that the average formation water resistivity for the formation (Rw = 0.024), the average resistivity of the mud filtration (Rmf = 0.46), and the Archie parameters were determined by the picket plot method, where (m) value equal to 1.86, (n) value equal to 2 and (a) value equal to 1. Also, this reservoir proved to be economical for future developments to increase the production rate of the field by dealing with challenging reservoirs. In addition, Porosity values and water saturation Sw were calculated along with the depth of the composition using Interactive Petrophysics (IP) V4.5 software. The interpretation of the computer process (CPI) showed that the better porous zone holds the highest amount of hydrocarbons in the second and third zone. From the flow zone indicator FZI method, there are two rock types in the studied reservoir.

Keywords: petrophysical properties, porosity, permeability, ajeel field, Naokelekan formation, Jurassic sequences, carbonate reservoir, source rock

Procedia PDF Downloads 91
6184 A Study on the Influence of Aswan High Dam Reservoir Loading on Earthquake Activity

Authors: Sayed Abdallah Mohamed Dahy

Abstract:

Aswan High Dam Reservoir extends for 500 km along the Nile River; it is a vast reservoir in southern Egypt and northern Sudan. It was created as a result of the construction of the Aswan High Dam between 1958 and 1970; about 95% of the main water resources for Egypt are from it. The purpose of this study is to discuss and understand the effect of the fluctuation of the water level in the reservoir on natural and human-induced environmental like earthquakes in the Aswan area, Egypt. In summary, the correlation between the temporal variations of earthquake activity and water level changes in the Aswan reservoir from 1982 to 2014 are investigated and analyzed. This analysis confirms a weak relation between the fluctuation of the water level and earthquake activity in the area around Aswan reservoir. The result suggests that the seismicity in the area becomes active during a period when the water level is decreasing from the maximum to the minimum. Behavior of the water level in this reservoir characterized by a special manner that is the unloading season extends to July or August, and the loading season starts to reach its maximum in October or November every year. Finally, daily rate of change in the water level did not show any direct relation with the size of the earthquakes, hence, it is not possible to be used as a single tool for prediction.

Keywords: Aswan high dam reservoir, earthquake activity, environmental, Egypt

Procedia PDF Downloads 379
6183 Thermodynamic Modeling of Methane Injection in Gas-Condensate Reservoir Core: A Case Study

Authors: F. S. Alavi, D. Mowla, F. Esmaeilzadeh

Abstract:

In this paper, the core of Sarkhoon Gas Condensate Reservoir located in the south of Iran was thermodynamically modeled in order to study the natural depletion process and methane injection phenomena for enhanced gas-condensate recovery using the Eclipse 300 compositional simulator. Modeling was performed for three different core lengths with different production and injection flow rates in both vertical and horizontal cases. According to the results, the final condensate in place value in the natural depletion process is approximately independent of the production rate for a given pressure drop. The final condensate in place value is lower in vertical cases compared to horizontal cases. An increase in the injection flow rate leads to a decrease in the percentage of gascondensate recovery. In cores of equal length, gas condensate recovery percent is higher in vertical cases in comparison to horizontal cases. For a constant injection rate, decreasing the core length leads to a decrease in gas condensate recovery.

Keywords: reservoir simulation, methane injection, enhanced condensate recovery, reservoir core, modeling

Procedia PDF Downloads 94
6182 The Relationship between Lithological and Geomechanical Properties of Carbonate Rocks. Case study: Arab-D Reservoir Outcrop Carbonate, Central Saudi Arabia

Authors: Ammar Juma Abdlmutalib, Osman Abdullatif

Abstract:

Upper Jurrasic Arab-D Reservoir is considered as the largest oil reservoir in Saudi Arabia. The equivalent outcrop is exposed near Riyadh. The study investigates the relationships between lithofacies properties changes and geomechanical properties of Arab-D Reservoir in the outcrop scale. The methods used included integrated field observations and laboratory measurements. Schmidt Hammer Rebound Hardness, Point Load Index tests were carried out to estimate the strength of the samples, ultrasonic wave velocity test also was applied to measure P-wave, S-wave, and dynamic Poisson's ratio. Thin sections have been analyzed and described. The results show that there is a variation in geomechanical properties between the Arab-D member and Upper Jubaila Formation at outcrop scale, the change in texture or grain size has no or little effect on these properties. This is because of the clear effect of diagenesis which changes the strength of the samples. The result also shows the negative or inverse correlation between porosity and geomechanical properties. As for the strength, dolomitic mudstone and wackestone within Upper Jubaila Formation has higher Schmidt hammer values, wavy rippled sandy grainstone which is rich in quarts has the greater point load index values. While laminated mudstone and breccias, facies has lower strength. This emphasizes the role of mineral content in the geomechanical properties of Arab-D reservoir lithofacies.

Keywords: geomechanical properties, Arab-D reservoir, lithofacies changes, Poisson's ratio, diageneis

Procedia PDF Downloads 397
6181 Research on Tight Sandstone Oil Accumulation Process of the Third Member of Shahejie Formation in Dongpu Depression, China

Authors: Hui Li, Xiongqi Pang

Abstract:

In recent years, tight oil has become a hot spot for unconventional oil and gas exploration and development in the world. Dongpu Depression is a typical hydrocarbon-rich basin in the southwest of Bohai Bay Basin, in which tight sandstone oil and gas have been discovered in deep reservoirs, most of which are buried more than 3500m. The distribution and development characteristics of deep tight sandstone reservoirs need to be studied. The main source rocks in study area are dark mudstone and shale of the middle and lower third sub-member of Shahejie Formation. Total Organic Carbon (TOC) content of source rock is between 0.08-11.54%, generally higher than 0.6% and the value of S1+S2 is between 0.04–72.93 mg/g, generally higher than 2 mg/g. It can be evaluated as middle to fine level overall. The kerogen type of organic matter is predominantly typeⅡ1 andⅡ2. Vitrinite reflectance (Ro) is mostly greater than 0.6% indicating that the source rock entered the hydrocarbon generation threshold. The physical property of reservoir was poor, the most reservoir has a porosity lower than 12% and a permeability of less than 1×10⁻³μm. The rocks in this area showed great heterogeneity, some areas developed desserts with high porosity and permeability. According to SEM, thin section image, inclusion test and so on, the reservoir was affected by compaction and cementation during early diagenesis stage (44-31Ma). The diagenesis caused the tight reservoir in Huzhuangji, Pucheng, Weicheng Area while the porosity in Machang, Qiaokou, Wenliu Area was still over 12%. In the process of middle diagenesis phase stage A (31-17Ma), the reservoir porosity in Machang, Pucheng, Huzhuangji Area increased due to dissolution; after that the oil generation window of source rock was achieved for the first phase hydrocarbon charging (31-23Ma), formed the conventional oil deposition in Machang, Qiaokou, Wenliu, Huzhuangji Area and unconventional tight reservoir in Pucheng, Weicheng Area. Then came to stage B of middle diagenesis phase (17-7Ma), in this stage, the porosity of reservoir continued to decrease after the dissolution and led to a situation that the reservoirs were generally compacted. And since then, the second hydrocarbon filling has been processing since 7Ma. Most of the pools charged and formed in this procedure are tight sandstone oil reservoir. In conclusion, tight sandstone oil was formed in two patterns in Dongpu Depression, which could be concluded as ‘density fist then accumulation’ pattern and ‘accumulation fist next density’ pattern.

Keywords: accumulation process, diagenesis, dongpu depression, tight sandstone oil

Procedia PDF Downloads 116
6180 Study on Inverse Solution from Remote Displacements to Reservoir Process during Flow Injection

Authors: Sumei Cai, Hong Li

Abstract:

Either during water or gas injection into reservoir, in order to understand the areal flow pressure distribution underground, associated bounding deformation is prevalently monitored by ground or downhole tiltmeters. In this paper, an inverse solution to elastic response of far field displacements induced by reservoir pressure change due to flow injection was studied. Furthermore, the fundamental theory on inverse solution to elastic problem as well as its spatial smoothing approach is presented. Taking advantage of source code development based on Boundary Element Method, numerical analysis on the monitoring data of ground surface displacements to further understand the behavior of reservoir process was developed. Numerical examples were also conducted to verify the effectiveness.

Keywords: remote displacement, inverse problem, boundary element method, BEM, reservoir process

Procedia PDF Downloads 117
6179 Estimation of Reservoir Capacity and Sediment Deposition Using Remote Sensing Data

Authors: Odai Ibrahim Mohammed Al Balasmeh, Tapas Karmaker, Richa Babbar

Abstract:

In this study, the reservoir capacity and sediment deposition were estimated using remote sensing data. The satellite images were synchronized with water level and storage capacity to find out the change in sediment deposition due to soil erosion and transport by streamflow. The water bodies spread area was estimated using vegetation indices, e.g., normalize differences vegetation index (NDVI) and normalize differences water index (NDWI). The 3D reservoir bathymetry was modeled by integrated water level, storage capacity, and area. From the models of different time span, the change in reservoir storage capacity was estimated. Another reservoir with known water level, storage capacity, area, and sediment deposition was used to validate the estimation technique. The t-test was used to assess the results between observed and estimated reservoir capacity and sediment deposition.

Keywords: satellite data, normalize differences vegetation index, NDVI, normalize differences water index, NDWI, reservoir capacity, sedimentation, t-test hypothesis

Procedia PDF Downloads 164
6178 Estimation of Ribb Dam Catchment Sediment Yield and Reservoir Effective Life Using Soil and Water Assessment Tool Model and Empirical Methods

Authors: Getalem E. Haylia

Abstract:

The Ribb dam is one of the irrigation projects in the Upper Blue Nile basin, Ethiopia, to irrigate the Fogera plain. Reservoir sedimentation is a major problem because it reduces the useful reservoir capacity by the accumulation of sediments coming from the watersheds. Estimates of sediment yield are needed for studies of reservoir sedimentation and planning of soil and water conservation measures. The objective of this study was to simulate the Ribb dam catchment sediment yield using SWAT model and to estimate Ribb reservoir effective life according to trap efficiency methods. The Ribb dam catchment is found in North Western part of Ethiopia highlands, and it belongs to the upper Blue Nile and Lake Tana basins. Soil and Water Assessment Tool (SWAT) was selected to simulate flow and sediment yield in the Ribb dam catchment. The model sensitivity, calibration, and validation analysis at Ambo Bahir site were performed with Sequential Uncertainty Fitting (SUFI-2). The flow data at this site was obtained by transforming the Lower Ribb gauge station (2002-2013) flow data using Area Ratio Method. The sediment load was derived based on the sediment concentration yield curve of Ambo site. Stream flow results showed that the Nash-Sutcliffe efficiency coefficient (NSE) was 0.81 and the coefficient of determination (R²) was 0.86 in calibration period (2004-2010) and, 0.74 and 0.77 in validation period (2011-2013), respectively. Using the same periods, the NS and R² for the sediment load calibration were 0.85 and 0.79 and, for the validation, it became 0.83 and 0.78, respectively. The simulated average daily flow rate and sediment yield generated from Ribb dam watershed were 3.38 m³/s and 1772.96 tons/km²/yr, respectively. The effective life of Ribb reservoir was estimated using the developed empirical methods of the Brune (1953), Churchill (1948) and Brown (1958) methods and found to be 30, 38 and 29 years respectively. To conclude, massive sediment comes from the steep slope agricultural areas, and approximately 98-100% of this incoming annual sediment loads have been trapped by the Ribb reservoir. In Ribb catchment, as well as reservoir systematic and thorough consideration of technical, social, environmental, and catchment managements and practices should be made to lengthen the useful life of Ribb reservoir.

Keywords: catchment, reservoir effective life, reservoir sedimentation, Ribb, sediment yield, SWAT model

Procedia PDF Downloads 187
6177 Sensitivity and Uncertainty Analysis of Hydrocarbon-In-Place in Sandstone Reservoir Modeling: A Case Study

Authors: Nejoud Alostad, Anup Bora, Prashant Dhote

Abstract:

Kuwait Oil Company (KOC) has been producing from its major reservoirs that are well defined and highly productive and of superior reservoir quality. These reservoirs are maturing and priority is shifting towards difficult reservoir to meet future production requirements. This paper discusses the results of the detailed integrated study for one of the satellite complex field discovered in the early 1960s. Following acquisition of new 3D seismic data in 1998 and re-processing work in the year 2006, an integrated G&G study was undertaken to review Lower Cretaceous prospectivity of this reservoir. Nine wells have been drilled in the area, till date with only three wells showing hydrocarbons in two formations. The average oil density is around 300API (American Petroleum Institute), and average porosity and water saturation of the reservoir is about 23% and 26%, respectively. The area is dissected by a number of NW-SE trending faults. Structurally, the area consists of horsts and grabens bounded by these faults and hence compartmentalized. The Wara/Burgan formation consists of discrete, dirty sands with clean channel sand complexes. There is a dramatic change in Upper Wara distributary channel facies, and reservoir quality of Wara and Burgan section varies with change of facies over the area. So predicting reservoir facies and its quality out of sparse well data is a major challenge for delineating the prospective area. To characterize the reservoir of Wara/Burgan formation, an integrated workflow involving seismic, well, petro-physical, reservoir and production engineering data has been used. Porosity and water saturation models are prepared and analyzed to predict reservoir quality of Wara and Burgan 3rd sand upper reservoirs. Subsequently, boundary conditions are defined for reservoir and non-reservoir facies by integrating facies, porosity and water saturation. Based on the detailed analyses of volumetric parameters, potential volumes of stock-tank oil initially in place (STOIIP) and gas initially in place (GIIP) were documented after running several probablistic sensitivity analysis using Montecalro simulation method. Sensitivity analysis on probabilistic models of reservoir horizons, petro-physical properties, and oil-water contacts and their effect on reserve clearly shows some alteration in the reservoir geometry. All these parameters have significant effect on the oil in place. This study has helped to identify uncertainty and risks of this prospect particularly and company is planning to develop this area with drilling of new wells.

Keywords: original oil-in-place, sensitivity, uncertainty, sandstone, reservoir modeling, Monte-Carlo simulation

Procedia PDF Downloads 197
6176 An Approach to Correlate the Statistical-Based Lorenz Method, as a Way of Measuring Heterogeneity, with Kozeny-Carman Equation

Authors: H. Khanfari, M. Johari Fard

Abstract:

Dealing with carbonate reservoirs can be mind-boggling for the reservoir engineers due to various digenetic processes that cause a variety of properties through the reservoir. A good estimation of the reservoir heterogeneity which is defined as the quality of variation in rock properties with location in a reservoir or formation, can better help modeling the reservoir and thus can offer better understanding of the behavior of that reservoir. Most of reservoirs are heterogeneous formations whose mineralogy, organic content, natural fractures, and other properties vary from place to place. Over years, reservoir engineers have tried to establish methods to describe the heterogeneity, because heterogeneity is important in modeling the reservoir flow and in well testing. Geological methods are used to describe the variations in the rock properties because of the similarities of environments in which different beds have deposited in. To illustrate the heterogeneity of a reservoir vertically, two methods are generally used in petroleum work: Dykstra-Parsons permeability variations (V) and Lorenz coefficient (L) that are reviewed briefly in this paper. The concept of Lorenz is based on statistics and has been used in petroleum from that point of view. In this paper, we correlated the statistical-based Lorenz method to a petroleum concept, i.e. Kozeny-Carman equation and derived the straight line plot of Lorenz graph for a homogeneous system. Finally, we applied the two methods on a heterogeneous field in South Iran and discussed each, separately, with numbers and figures. As expected, these methods show great departure from homogeneity. Therefore, for future investment, the reservoir needs to be treated carefully.

Keywords: carbonate reservoirs, heterogeneity, homogeneous system, Dykstra-Parsons permeability variations (V), Lorenz coefficient (L)

Procedia PDF Downloads 219
6175 Combination of Geological, Geophysical and Reservoir Engineering Analyses in Field Development: A Case Study

Authors: Atif Zafar, Fan Haijun

Abstract:

A sequence of different Reservoir Engineering methods and tools in reservoir characterization and field development are presented in this paper. The real data of Jin Gas Field of L-Basin of Pakistan is used. The basic concept behind this work is to enlighten the importance of well test analysis in a broader way (i.e. reservoir characterization and field development) unlike to just determine the permeability and skin parameters. Normally in the case of reservoir characterization we rely on well test analysis to some extent but for field development plan, the well test analysis has become a forgotten tool specifically for locations of new development wells. This paper describes the successful implementation of well test analysis in Jin Gas Field where the main uncertainties are identified during initial stage of field development when location of new development well was marked only on the basis of G&G (Geologic and Geophysical) data. The seismic interpretation could not encounter one of the boundary (fault, sub-seismic fault, heterogeneity) near the main and only producing well of Jin Gas Field whereas the results of the model from the well test analysis played a very crucial rule in order to propose the location of second well of the newly discovered field. The results from different methods of well test analysis of Jin Gas Field are also integrated with and supported by other tools of Reservoir Engineering i.e. Material Balance Method and Volumetric Method. In this way, a comprehensive way out and algorithm is obtained in order to integrate the well test analyses with Geological and Geophysical analyses for reservoir characterization and field development. On the strong basis of this working and algorithm, it was successfully evaluated that the proposed location of new development well was not justified and it must be somewhere else except South direction.

Keywords: field development plan, reservoir characterization, reservoir engineering, well test analysis

Procedia PDF Downloads 364
6174 Determination of Inflow Performance Relationship for Naturally Fractured Reservoirs: Numerical Simulation Study

Authors: Melissa Ramirez, Mohammad Awal

Abstract:

The Inflow Performance Relationship (IPR) of a well is a relation between the oil production rate and flowing bottom-hole pressure. This relationship is an important tool for petroleum engineers to understand and predict the well performance. In the petroleum industry, IPR correlations are used to design and evaluate well completion, optimizing well production, and designing artificial lift. The most commonly used IPR correlations models are Vogel and Wiggins, these models are applicable to homogeneous and isotropic reservoir data. In this work, a new IPR model is developed to determine inflow performance relationship of oil wells in a naturally fracture reservoir. A 3D black-oil reservoir simulator is used to develop the oil mobility function for the studied reservoir. Based on simulation runs, four flow rates are run to record the oil saturation and calculate the relative permeability for a naturally fractured reservoir. The new method uses the result of a well test analysis along with permeability and pressure-volume-temperature data in the fluid flow equations to obtain the oil mobility function. Comparisons between the new method and two popular correlations for non-fractured reservoirs indicate the necessity for developing and using an IPR correlation specifically developed for a fractured reservoir.

Keywords: inflow performance relationship, mobility function, naturally fractured reservoir, well test analysis

Procedia PDF Downloads 280
6173 Effects of Polymer Adsorption and Desorption on Polymer Flooding in Waterflooded Reservoir

Authors: Sukruthai Sapniwat, Falan Srisuriyachai

Abstract:

Polymer Flooding is one of the most well-known methods in Enhanced Oil Recovery (EOR) technology which can be implemented after either primary or secondary recovery, resulting in favorable conditions for the displacement mechanism in order to lower the residual oil in the reservoir. Polymer substances can lower the mobility ratio of the whole process by increasing the viscosity of injected water. Therefore, polymer flooding can increase volumetric sweep efficiency, which leads to a better recovery factor. Moreover, polymer adsorption onto rock surface can help decrease reservoir permeability contrast with high heterogeneity. Due to the reduction of the absolute permeability, effective permeability to water, representing flow ability of the injected fluid, is also reduced. Once polymer is adsorbed onto rock surface, polymer molecule can be desorbed when different fluids are injected. This study is performed to evaluate the effects of the adsorption and desorption process of polymer solutions to yield benefits on the oil recovery mechanism. A reservoir model is constructed by reservoir simulation program called STAR® commercialized by the Computer Modeling Group (CMG). Various polymer concentrations, starting times of polymer flooding process and polymer injection rates were evaluated with selected values of polymer desorption degrees including 0, 25, 50, 75 and 100%. The higher the value, the more adsorbed polymer molecules to return back to flowing fluid. According to the results, polymer desorption lowers polymer consumption, especially at low concentrations. Furthermore, starting time of polymer flooding and injection rate affect the oil production. The results show that waterflooding followed by earlier polymer flooding can increase the oil recovery factor while the higher injection rate also enhances the recovery. Polymer concentration is related to polymer consumption due to the two main benefits of polymer flooding control described above. Therefore, polymer slug size should be optimized based on polymer concentration. Polymer desorption causes polymer re-employment that is previously adsorbed onto rock surface, resulting in an increase of sweep efficiency in the further period of polymer flooding process. Even though waterflooding supports polymer injectivity, water cut at the producer can prematurely terminate the oil production. The injection rate decreases polymer adsorption due to decreased retention time of polymer flooding process.

Keywords: enhanced oil recovery technology, polymer adsorption and desorption, polymer flooding, reservoir simulation

Procedia PDF Downloads 330
6172 Reservoir Characterization of the Pre-Cenomanian Sandstone: Central Sinai, Egypt

Authors: Abdel Moktader A. El Sayed, Nahla A. El Sayed

Abstract:

Fifty-one sandstone core samples were obtained from the wadi Saal area. They belong to the Pre-Cenomanian age. These samples were subjected to various laboratory measurements such as density, porosity, permeability, electrical resistivity, grain size analysis and ultrasonic wave velocity. The parameters describing reservoir properties are outlined. The packing index, reservoir quality index, flow zone indicator and pore throat radius (R35 and R36) were calculated. The obtained interrelationships among these parameters allow improving petrophysical knowledge about the Pre-Cenomanian reservoir information. The obtained rock physics models could be employed with some precautions to the subsurface existences of the Pre-Cenomanian sandstone reservoirs, especially in the surrounding areas.

Keywords: resevoir sandstone, Egypt, Sinai, permeability

Procedia PDF Downloads 100
6171 Estimating CO₂ Storage Capacity under Geological Uncertainty Using 3D Geological Modeling of Unconventional Reservoir Rocks in Block nv32, Shenvsi Oilfield, China

Authors: Ayman Mutahar Alrassas, Shaoran Ren, Renyuan Ren, Hung Vo Thanh, Mohammed Hail Hakimi, Zhenliang Guan

Abstract:

The significant effect of CO₂ on global climate and the environment has gained more concern worldwide. Enhance oil recovery (EOR) associated with sequestration of CO₂ particularly into the depleted oil reservoir is considered the viable approach under financial limitations since it improves the oil recovery from the existing oil reservoir and boosts the relation between global-scale of CO₂ capture and geological sequestration. Consequently, practical measurements are required to attain large-scale CO₂ emission reduction. This paper presents an integrated modeling workflow to construct an accurate 3D reservoir geological model to estimate the storage capacity of CO₂ under geological uncertainty in an unconventional oil reservoir of the Paleogene Shahejie Formation (Es1) in the block Nv32, Shenvsi oilfield, China. In this regard, geophysical data, including well logs of twenty-two well locations and seismic data, were combined with geological and engineering data and used to construct a 3D reservoir geological modeling. The geological modeling focused on four tight reservoir units of the Shahejie Formation (Es1-x1, Es1-x2, Es1-x3, and Es1-x4). The validated 3D reservoir models were subsequently used to calculate the theoretical CO₂ storage capacity in the block Nv32, Shenvsi oilfield. Well logs were utilized to predict petrophysical properties such as porosity and permeability, and lithofacies and indicate that the Es1 reservoir units are mainly sandstone, shale, and limestone with a proportion of 38.09%, 32.42%, and 29.49, respectively. Well log-based petrophysical results also show that the Es1 reservoir units generally exhibit 2–36% porosity, 0.017 mD to 974.8 mD permeability, and moderate to good net to gross ratios. These estimated values of porosity, permeability, lithofacies, and net to gross were up-scaled and distributed laterally using Sequential Gaussian Simulation (SGS) and Simulation Sequential Indicator (SIS) methods to generate 3D reservoir geological models. The reservoir geological models show there are lateral heterogeneities of the reservoir properties and lithofacies, and the best reservoir rocks exist in the Es1-x4, Es1-x3, and Es1-x2 units, respectively. In addition, the reservoir volumetric of the Es1 units in block Nv32 was also estimated based on the petrophysical property models and fund to be between 0.554368

Keywords: CO₂ storage capacity, 3D geological model, geological uncertainty, unconventional oil reservoir, block Nv32

Procedia PDF Downloads 178
6170 Artificial Neural Network for Forecasting of Daily Reservoir Inflow: Case Study of the Kotmale Reservoir in Sri Lanka

Authors: E. U. Dampage, Ovindi D. Bandara, Vinushi S. Waraketiya, Samitha S. R. De Silva, Yasiru S. Gunarathne

Abstract:

The knowledge of water inflow figures is paramount in decision making on the allocation for consumption for numerous purposes; irrigation, hydropower, domestic and industrial usage, and flood control. The understanding of how reservoir inflows are affected by different climatic and hydrological conditions is crucial to enable effective water management and downstream flood control. In this research, we propose a method using a Long Short Term Memory (LSTM) Artificial Neural Network (ANN) to assist the aforesaid decision-making process. The Kotmale reservoir, which is the uppermost reservoir in the Mahaweli reservoir complex in Sri Lanka, was used as the test bed for this research. The ANN uses the runoff in the Kotmale reservoir catchment area and the effect of Sea Surface Temperatures (SST) to make a forecast for seven days ahead. Three types of ANN are tested; Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), and LSTM. The extensive field trials and validation endeavors found that the LSTM ANN provides superior performance in the aspects of accuracy and latency.

Keywords: convolutional neural network, CNN, inflow, long short-term memory, LSTM, multi-layer perceptron, MLP, neural network

Procedia PDF Downloads 151
6169 Placement of Inflow Control Valve for Horizontal Oil Well

Authors: S. Thanabanjerdsin, F. Srisuriyachai, J. Chewaroungroj

Abstract:

Drilling horizontal well is one of the most cost-effective method to exploit reservoir by increasing exposure area between well and formation. Together with horizontal well technology, intelligent completion is often co-utilized to increases petroleum production by monitoring/control downhole production. Combination of both technological results in an opportunity to lower water cresting phenomenon, a detrimental problem that does not lower only oil recovery but also cause environmental problem due to water disposal. Flow of reservoir fluid is a result from difference between reservoir and wellbore pressure. In horizontal well, reservoir fluid around the heel location enters wellbore at higher rate compared to the toe location. As a consequence, Oil-Water Contact (OWC) at the heel side of moves upward relatively faster compared to the toe side. This causes the well to encounter an early water encroachment problem. Installation of Inflow Control Valve (ICV) in particular sections of horizontal well can involve several parameters such as number of ICV, water cut constrain of each valve, length of each section. This study is mainly focused on optimization of ICV configuration to minimize water production and at the same time, to enhance oil production. A reservoir model consisting of high aspect ratio of oil bearing zone to underneath aquifer is drilled with horizontal well and completed with variation of ICV segments. Optimization of the horizontal well configuration is firstly performed by varying number of ICV, segment length, and individual preset water cut for each segment. Simulation results show that installing ICV can increase oil recovery factor up to 5% of Original Oil In Place (OOIP) and can reduce of produced water depending on ICV segment length as well as ICV parameters. For equally partitioned-ICV segment, more number of segment results in better oil recovery. However, number of segment exceeding 10 may not give a significant additional recovery. In first production period, deformation of OWC strongly depends on number of segment along the well. Higher number of segment results in smoother deformation of OWC. After water breakthrough at heel location segment, the second production period begins. Deformation of OWC is principally dominated by ICV parameters. In certain situations that OWC is unstable such as high production rate, high viscosity fluid above aquifer and strong aquifer, second production period may give wide enough window to ICV parameter to take the roll.

Keywords: horizontal well, water cresting, inflow control valve, reservoir simulation

Procedia PDF Downloads 418
6168 Assessment of Reservoir Quality and Heterogeneity in Middle Buntsandstein Sandstones of Southern Netherlands for Deep Geothermal Exploration

Authors: Husnain Yousaf, Rudy Swennen, Hannes Claes, Muhammad Amjad

Abstract:

In recent years, the Lower Triassic Main Buntsandstein sandstones in the southern Netherlands Basins have become a point of interest for their deep geothermal potential. To identify the most suitable reservoir for geothermal exploration, the diagenesis and factors affecting reservoir quality, such as porosity and permeability, are assessed. This is done by combining point-counted petrographic data with conventional core analysis. The depositional environments play a significant role in determining the distribution of lithofacies, cement, clays, and grain sizes. The position in the basin and proximity to the source areas determine the lateral variability of depositional environments. The stratigraphic distribution of depositional environments is linked to both local topography and climate, where high humidity leads to fluvial deposition and high aridity periods lead to aeolian deposition. The Middle Buntsandstein Sandstones in the southern part of the Netherlands shows high porosity and permeability in most sandstone intervals. There are various controls on reservoir quality in the examined sandstone samples. Grain sizes and total quartz content are the primary factors affecting reservoir quality. Conversely, carbonate and anhydrite cement, clay clasts, and intergranular clay represent a local control and cannot be applied on a regional scale. Similarly, enhanced secondary porosity due to feldspar dissolution is locally restricted and minor. The analysis of textural, mineralogical, and petrophysical data indicates that the aeolian and fluvial sandstones represent a heterogeneous reservoir system. The ephemeral fluvial deposits have an average porosity and permeability of <10% and <1mD, respectively, while the aeolian sandstones exhibit values of >18% and >100mD.

Keywords: reservoir quality, diagenesis, porosity, permeability, depositional environments, Buntsandstein, Netherlands

Procedia PDF Downloads 63