Search results for: learning mathematics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7049

Search results for: learning mathematics

6959 Improving Mathematics and Engineering Interest through Programming

Authors: Geoffrey A. Wright

Abstract:

In an attempt to address shortcomings revealed in international assessments and lamented in legislation, many schools are reducing or eliminating elective courses, applying the rationale that replacing "non-essential" subjects with core subjects, such as mathematics and language arts, will better position students in the global market. However, there is evidence that systematically pairing a core subject with another complementary subject may lead to greater overall learning in both subjects. In this paper, we outline the methods and preliminary findings from a study we conducted analyzing the influence learning programming has on student mathematical comprehension and ability. The purpose of this research is to demonstrate in what ways two subjects might complement each other, and to better understand the principles and conditions that encourage what we call lateral transfer, the synergistic effect that occurs when a learner studies two complementary subjects.

Keywords: programming, engineering, technology, complementary subjects

Procedia PDF Downloads 330
6958 Effects of Using Interactive Whiteboards at High School Mathematics Classrooms

Authors: Huseyin Demir

Abstract:

This article is the results of a quantitative research about the effects of using interactive whiteboards in high school mathematics classroom. The aim of this article is to investigate the effects of using interactive whiteboards in high school mathematics classrooms. During the article the following questions are answered: 'What can we do with an interactive whiteboard?' and 'Do we really need those properties of the interactive whiteboard?' For the research part of the article, two groups of lessons are executed in Private Demirel College. In the first 6 weeks, the topics are taught on a normal blackboard. Starting from seventh week, we have used interactive whiteboard in the mathematics lessons. At the end of an eight week lectures with interactive whiteboards, a questionnaire is prepared and executed for the students. In the questionnaire 10 questions were asked about the benefits and differences of using the interactive whiteboards in mathematics lessons. By looking at the conclusion of the results of questionnaire and some discussions with the students we found some useful benefits of the usage of interactive whiteboards in mathematics lessons. This article will be helpful for the high school mathematics teachers.

Keywords: mathematics education, interactive whiteboard, blackboard, using interactive whiteboard in mathematics lessons

Procedia PDF Downloads 191
6957 Improving the Teaching of Mathematics at University Using the Inverted Classroom Model: A Case in Greece

Authors: G. S. Androulakis, G. Deli, M. Kaisari, N. Mihos

Abstract:

Teaching practices at the university level have changed and developed during the last decade. Implementation of inverted classroom method in secondary education consists of a well-formed basis for academic teachers. On the other hand, distance learning is a well-known field in education research and widespread as a method of teaching. Nonetheless, the new pandemic found many Universities all over the world unprepared, which made adaptations to new methods of teaching a necessity. In this paper, we analyze a model of an inverted university classroom in a distance learning context. Thus, the main purpose of our research is to investigate students’ difficulties as they transit to a new style of teaching and explore their learning development during a semester totally different from others. Our teaching experiment took place at the Business Administration department of the University of Patras, in the context of two courses: Calculus, a course aimed at first-year students, and Statistics, a course aimed at second-year students. Second-year students had the opportunity to attend courses in the university classroom. First-year students started their semester with distance learning. Using a comparative study of these two groups, we explored significant differences in students’ learning procedures. Focused group interviews, written tests, analyses of students’ dialogues were used in a mixed quantity and quality research. Our analysis reveals students’ skills, capabilities but also a difficulty in following, non-traditional style of teaching. The inverted classroom model, according to our findings, offers benefits in the educational procedure, even in a distance learning environment.

Keywords: distance learning, higher education, inverted classroom, mathematics teaching

Procedia PDF Downloads 111
6956 The Use of Computers in Improving the Academic Performance of Students in Mathematics

Authors: Uwaruile Austin Obuh

Abstract:

This research work focuses on the use of computers in improving the academic performance of students in mathematics in Benin City, Edo State. To guide this study, two research questions were raised, and two corresponding hypotheses were formulated. A total of one hundred and twenty (120) respondents were randomly selected from four schools in the city (60 boys and 60 girls). The instrument employed for the collation of data for the study was the multiple-choice test items on geometry (MCTIOG), drawn from past senior school certificate examinations (SSCE) questions. The instrument was validated by an expert in mathematics and measurement and evaluation. The data obtained from the pre and post-test were analysed using the mean, standard deviation, and T-test. The study revealed a non-significant difference between the experimental and control group in the pre-test, and the two groups were found to be the same before treatment began. The study also revealed that the experimental group performed better than the control group. One can, therefore, conclude that the use of computers for mathematics instruction has improved the performance of students in Geometry. Therefore, the hypothesis was rejected. The study finally revealed that there was no significant difference between the boys and girls taught mathematics using a computer. Therefore, the hypothesis which states there will be no significant difference in the performance of boys and girls taught mathematics using the computer was not rejected. Consequent upon the findings of this study, a number of recommendations were postulated that would enhance the performance of teachers in the use of computer-aided instruction.

Keywords: computer, teaching, learning, mathematics

Procedia PDF Downloads 78
6955 Online Augmented Reality Mathematics Application

Authors: Farhaz Amyn Rajabali, Collins Odour

Abstract:

Mathematics has been there for over 4000 years and has been one of the very first educational topics explored by human civilization. Throughout the years, it has become a complex study and has derived so many other subjects. With advancements in ICT, most of the computation in mathematics is done using powerful computers. In many different countries, the children in primary and secondary schools face difficulties in learning mathematics, and this has many reasons behind it, one being the students don’t engage much with the mathematical concepts hence failing to understand them deeply. The objective of this system is to help the students understand this mathematical concept interactively, which in return will encourage the love for learning and increase thorough understanding of many concepts. Research was conducted among a group of samples and about 50% of respondents replied that they had never used an augmented reality application before. This means that the chances for this system to be accepted in the market are high due to its innovative idea. Around 60% of people did recommend the use of this system to learn mathematics. The study also showed several challenges in an educational system, including but not limited to lack of resources which was chosen by 30% of respondents, the challenge to read from textbooks (34.6%) and how hard it is to visualize concepts (46.2%). The survey question asked what benefits the users see using augmented reality to learn mathematics. The responses that were picked the most were increased student engagement and using real-world examples to understand concepts, both being 65.4% and followed by easy access to learning material at 61.5%, and increased knowledge retention at 50%. This shows that there are plenty of issues with an education system that can be addressed by software applications; now that the newer generation is so enthusiastic about electronic devices, it can actually be used to deliver good knowledge and skills to the upcoming students and mitigate most of the challenges faced currently. The study concludes that the implementation of the system is a best practice for the educational system especially leveraging a new technology that has the ability to attract the attention of many young students and use it to deliver information. It will also give rise to awareness of new technology and on multiple ways it can be implemented. Addressing the educational sector in developing countries using information technology is an imperative task since these kids studying now is the future of the country and will use what they learn and understand during their childhood will help them to make decisions about their lives in the future which will not only affect them personally but also affect the whole society in general.

Keywords: AR, mathematics, system development, augmented reality

Procedia PDF Downloads 60
6954 Mathematical Knowledge a Prerequisite for Science Education Courses in Tertiary Institution

Authors: Esther Yemisi Akinjiola

Abstract:

Mathematics has been regarded as the backbone of science and technological development, without which no nation can achieve any sustainable growth and development. Mathematics is a useful tool to simplify science by quantification of phenomena; hence physics and chemistry cannot be done without Calculus and Statistics. Mathematics is used in physical science to calculate the measurement of objects and their characteristics, as well as to show the relationship between different functions and properties. Mathematics is the building block for everything in our daily lives, including the use of mobile devices, architecture design, ancient arts, engineering sports, and. among others. Therefore the study of Mathematics is made compulsory at primary, basic, and secondary school levels. Thus, this paper discusses the concepts of Mathematics, science, and their relationships. Also, it discusses Mathematics contents needed to study science-oriented courses such as physics education, chemistry education, and biology education in the tertiary institution. The paper concluded that without adequate knowledge of Mathematics, it will be difficult, if not impossible, for science education students to cope in their field of study.

Keywords: mathematical knowledge, prerequisite, science education, tertiary institution

Procedia PDF Downloads 58
6953 Practical Problems as Tools for the Development of Secondary School Students’ Motivation to Learn Mathematics

Authors: M. Rodionov, Z. Dedovets

Abstract:

This article discusses plausible reasoning use for solution to practical problems. Such reasoning is the major driver of motivation and implementation of mathematical, scientific and educational research activity. A general, practical problem solving algorithm is presented which includes an analysis of specific problem content to build, solve and interpret the underlying mathematical model. The author explores the role of practical problems such as the stimulation of students' interest, the development of their world outlook and their orientation in the modern world at the different stages of learning mathematics in secondary school. Particular attention is paid to the characteristics of those problems which were systematized and presented in the conclusions.

Keywords: mathematics, motivation, secondary school, student, practical problem

Procedia PDF Downloads 272
6952 Actualizing Millennium Development Goals through a Refocused Basic Mathematics Curriculum

Authors: Ali Yaro Kankia

Abstract:

Millennium Development Goals are eight goals set by the 189 United Nations member States with 2015 as its target year of achievement. Since its signing in September 2000, individual nations have been finding ways and means of actualizing them. This paper consider how a refocused basic Mathematics curriculum could serve as an appropriate tool in achieving these goals. This was done by considering the theme in the following sub-headings. Basic Mathematics curriculum before now, basic Mathematics curriculum and the millennium development Goals and challenges of a refocused basic Mathematics curriculum for the MDGs. The appropriate conclusion was reached.

Keywords: actualizing, curriculum, MDGs, refocused

Procedia PDF Downloads 358
6951 A Quantitative Survey Research on the Development and Assessment of Attitude toward Mathematics Instrument

Authors: Soofia Malik

Abstract:

The purpose of this study is to develop an instrument to measure undergraduate students’ attitudes toward mathematics (MAT) and to assess the data collected from the instrument for validity and reliability. The instrument is developed using five subscales: anxiety, enjoyment, self-confidence, value, and technology. The technology dimension is added as the fifth subscale of attitude toward mathematics because of the recent trend of incorporating online homework in mathematics courses as well as due to heavy reliance of higher education on using online learning management systems, such as Blackboard and Moodle. The sample consists of 163 (M = 82, F = 81) undergraduates enrolled in College Algebra course in the summer 2017 semester at a university in the USA. The data is analyzed to answer the research question: if and how do undergraduate students’ attitudes toward mathematics load using Principal Components Analysis (PCA)? As a result of PCA, three subscales emerged namely: anxiety/self-confidence scale, enjoyment, and value scale. After deleting the last five items or the last two subscales from the initial MAT scale, the Cronbach’s alpha was recalculated using the scores from 20 items and was found to be α = .95. It is important to note that the reliability of the initial MAT form was α = .93. This means that employing the final MAT survey form would yield consistent results in repeated uses. The final MAT form is, therefore, more reliable as compared to the initial MAT form.

Keywords: college algebra, Cronbach's alpha reliability coefficient, Principal Components Analysis, PCA, technology in mathematics

Procedia PDF Downloads 103
6950 Blended Learning in a Mathematics Classroom: A Focus in Khan Academy

Authors: Sibawu Witness Siyepu

Abstract:

This study explores the effects of instructional design using blended learning in the learning of radian measures among Engineering students. Blended learning is an education programme that combines online digital media with traditional classroom methods. It requires the physical presence of both lecturer and student in a mathematics computer laboratory. Blended learning provides element of class control over time, place, path or pace. The focus was on the use of Khan Academy to supplement traditional classroom interactions. Khan Academy is a non-profit educational organisation created by educator Salman Khan with a goal of creating an accessible place for students to learn through watching videos in a computer assisted computer. The researcher who is an also lecturer in mathematics support programme collected data through instructing students to watch Khan Academy videos on radian measures, and by supplying students with traditional classroom activities. Classroom activities entails radian measure activities extracted from the Internet. Students were given an opportunity to engage in class discussions, social interactions and collaborations. These activities necessitated students to write formative assessments tests. The purpose of formative assessments tests was to find out about the students’ understanding of radian measures, including errors and misconceptions they displayed in their calculations. Identification of errors and misconceptions serve as pointers of students’ weaknesses and strengths in their learning of radian measures. At the end of data collection, semi-structure interviews were administered to a purposefully sampled group to explore their perceptions and feedback regarding the use of blended learning approach in teaching and learning of radian measures. The study employed Algebraic Insight Framework to analyse data collected. Algebraic Insight Framework is a subset of symbol sense which allows a student to correctly enter expressions into a computer assisted systems efficiently. This study offers students opportunities to enter topics and subtopics on radian measures into a computer through the lens of Khan Academy. Khan academy demonstrates procedures followed to reach solutions of mathematical problems. The researcher performed the task of explaining mathematical concepts and facilitated the process of reinvention of rules and formulae in the learning of radian measures. Lastly, activities that reinforce students’ understanding of radian were distributed. Results showed that this study enthused the students in their learning of radian measures. Learning through videos prompted the students to ask questions which brought about clarity and sense making to the classroom discussions. Data revealed that sense making through reinvention of rules and formulae assisted the students in enhancing their learning of radian measures. This study recommends the use of Khan Academy in blended learning to be introduced as a socialisation programme to all first year students. This will prepare students that are computer illiterate to become conversant with the use of Khan Academy as a powerful tool in the learning of mathematics. Khan Academy is a key technological tool that is pivotal for the development of students’ autonomy in the learning of mathematics and that promotes collaboration with lecturers and peers.

Keywords: algebraic insight framework, blended learning, Khan Academy, radian measures

Procedia PDF Downloads 280
6949 Development of Researcher Knowledge in Mathematics Education: Towards a Confluence Framework

Authors: Igor Kontorovich, Rina Zazkis

Abstract:

We present a framework of researcher knowledge ‎development in conducting a study in mathematics education. The key ‎components of the framework are: knowledge germane to conducting a ‎particular study, processes of knowledge accumulation, and catalyzing ‎filters that influence a researcher decision making. The components of ‎the framework originated from a confluence between constructs and ‎theories in Mathematics Education, Higher Education and Sociology. ‎Drawing on a self-reflective interview with a leading researcher in ‎mathematics education, professor Michèle Artigue, we illustrate how ‎the framework can be utilized in data analysis. Criteria for framework ‎evaluation are discussed. ‎

Keywords: community of practice, knowledge development, mathematics education research, researcher knowledge

Procedia PDF Downloads 479
6948 Critical Mathematics Education and School Education in India: A Study of the National Curriculum Framework 2022 for Foundational Stage

Authors: Eish Sharma

Abstract:

Literature around Mathematics education suggests that democratic attitudes can be strengthened through teaching and learning Mathematics. Furthermore, connections between critical education and Mathematics education are observed in the light of critical pedagogy to locate Critical Mathematics Education (CME) as the theoretical framework. Critical pedagogy applied to Mathematics education is identified as one of the key themes subsumed under Critical Mathematics Education. Through the application of critical pedagogy in mathematics, unequal power relations and social injustice can be identified, analyzed, and challenged. The research question is: have educational policies in India viewed the role of critical pedagogy applied to mathematics education (i.e., critical mathematics education) to ensure social justice as an educational aim? The National Curriculum Framework (NCF), 2005 upholds education for democracy and the role of mathematics education in facilitating the same. More than this, NCF 2005 rests on Critical Pedagogy Framework and it recommends that critical pedagogy must be practiced in all dimensions of school education. NCF 2005 visualizes critical pedagogy for social sciences as well as sciences, stating that the science curriculum, including mathematics, must be used as an “instrument for achieving social change to reduce the divide based on economic class, gender, caste, religion, and the region”. Furthermore, the implementation of NCF 2005 led to a reform in the syllabus and textbooks in school mathematics at the national level, and critical pedagogy was applied to mathematics textbooks at the primary level. This intervention led to ethnomathematics and critical mathematics education in the school curriculum in India for the first time at the national level. In October 2022, the Ministry of Education launched the National Curriculum Framework for Foundational Stage (NCF-FS), developed in light of the National Education Policy, 2020, for children in the three to eight years age group. I want to find out whether critical pedagogy-based education and critical pedagogy-based mathematics education are carried forward in NCF 2022. To find this, an argument analysis of specific sections of the National Curriculum Framework 2022 document needs to be executed. Des Gasper suggests two tables: The first table contains four columns, namely, text component, comments on meanings, possible reformulation of the same text, and identified conclusions and assumptions (both stated and unstated). This table is for understanding the components and meanings of the text and is based on Scriven’s model for understanding the components and meanings of words in the text. The second table contains four columns i.e., claim identified, given data, warrant, and stated qualifier/rebuttal. This table is for describing the structure of the argument, how and how well the components fit together and is called ‘George Table diagram based on Toulmin-Bunn Model’.

Keywords: critical mathematics education, critical pedagogy, social justice, etnomathematics

Procedia PDF Downloads 47
6947 Distance Education: Using a Digital Platform to Improve Struggling University Students' Mathematical Skills

Authors: Robert Vanderburg, Nicholas Gibson

Abstract:

Objectives: There has been an increased focus in education students’ mathematics skills in the last two years. Universities have, specifically, had problems teaching students struggling with mathematics. This paper focuses on the ability of a digital platform to significantly improve mathematics skills for struggling students. Methods: 32 students who demonstrated low scores on a mathematics test were selected to take part in a one-month tutorial program using a digital mathematics portal. Students were provided feedback for questions posted on the portal and a fortnightly tutorial session. Results: A pre-test post-test design was analyzed using a one-way analysis of variance (ANOVA). The analysis suggested that students improved skills in algebra, geometry, statistics, probability, ratios, fractions, and probability. Conclusion: Distance university students can improve their mathematics skills using a digital platform.

Keywords: digital education, distance education, higher education, mathematics education

Procedia PDF Downloads 162
6946 Gamifying Content and Language Integrated Learning: A Study Exploring the Use of Game-Based Resources to Teach Primary Mathematics in a Second Language

Authors: Sarah Lister, Pauline Palmer

Abstract:

Research findings presented within this paper form part of a larger scale collaboration between academics at Manchester Metropolitan University and a technology company. The overarching aims of this project focus on developing a series of game-based resources to promote the teaching of aspects of mathematics through a second language (L2) in primary schools. This study explores the potential of game-based learning (GBL) as a dynamic way to engage and motivate learners, making learning fun and purposeful. The research examines the capacity of GBL resources to provide a meaningful and purposeful context for CLIL. GBL is a powerful learning environment and acts as an effective vehicle to promote the learning of mathematics through an L2. The fun element of GBL can minimise stress and anxiety associated with mathematics and L2 learning that can create barriers. GBL provides one of the few safe domains where it is acceptable for learners to fail. Games can provide a life-enhancing experience for learners, revolutionizing the routinized ways of learning through fusing learning and play. This study argues that playing games requires learners to think creatively to solve mathematical problems, using the L2 in order to progress, which can be associated with the development of higher-order thinking skills and independent learning. GBL requires learners to engage appropriate cognitive processes with increased speed of processing, sensitivity to environmental inputs, or flexibility in allocating cognitive and perceptual resources. At surface level, GBL resources provide opportunities for learners to learn to do things. Games that fuse subject content and appropriate learning objectives have the potential to make learning academic subjects more learner-centered, promote learner autonomy, easier, more enjoyable, more stimulating and engaging and therefore, more effective. Data includes observations of the children playing the games and follow up group interviews. Given that learning as a cognitive event cannot be directly observed or measured. A Cognitive Discourse Functions (CDF) construct was used to frame the research, to map the development of learners’ conceptual understanding in an L2 context and as a framework to observe the discursive interactions that occur learner to learner and between learner and teacher. Cognitively, the children were required to engage with mathematical content, concepts and language to make decisions quickly, to engage with the gameplay to reason, solve and overcome problems and learn through experimentation. The visual elements of the games supported the learning of new concepts. Children recognised the value of the games to consolidate their mathematical thinking and develop their understanding of new ideas. The games afforded them time to think and reflect. The teachers affirmed that the games provided meaningful opportunities for the learners to practise the language. The findings of this research support the view that using the game-based resources supported children’s grasp of mathematical ideas and their confidence and ability to use the L2. Engaging with the content and language through the games led to deeper learning.

Keywords: CLIL, gaming, language, mathematics

Procedia PDF Downloads 109
6945 Problem Solving: Process or Product? A Mathematics Approach to Problem Solving in Knowledge Management

Authors: A. Giannakopoulos, S. B. Buckley

Abstract:

Problem solving in any field is recognised as a prerequisite for any advancement in knowledge. For example in South Africa it is one of the seven critical outcomes of education together with critical thinking. As a systematic way to problem solving was initiated in mathematics by the great mathematician George Polya (the father of problem solving), more detailed and comprehensive ways in problem solving have been developed. This paper is based on the findings by the author and subsequent recommendations for further research in problem solving and critical thinking. Although the study was done in mathematics, there is no doubt by now in almost anyone’s mind that mathematics is involved to a greater or a lesser extent in all fields, from symbols, to variables, to equations, to logic, to critical thinking. Therefore it stands to reason that mathematical principles and learning cannot be divorced from any field. In management of knowledge situations, the types of problems are similar to mathematics problems varying from simple to analogical to complex; from well-structured to ill-structured problems. While simple problems could be solved by employees by adhering to prescribed sequential steps (the process), analogical and complex problems cannot be proceduralised and that diminishes the capacity of the organisation of knowledge creation and innovation. The low efficiency in some organisations and the low pass rates in mathematics prompted the author to view problem solving as a product. The authors argue that using mathematical approaches to knowledge management problem solving and treating problem solving as a product will empower the employee through further training to tackle analogical and complex problems. The question the authors asked was: If it is true that problem solving and critical thinking are indeed basic skills necessary for advancement of knowledge why is there so little literature of knowledge management (KM) about them and how they are connected and advance KM?This paper concludes with a conceptual model which is based on general accepted principles of knowledge acquisition (developing a learning organisation), knowledge creation, sharing, disseminating and storing thereof, the five pillars of knowledge management (KM). This model, also expands on Gray’s framework on KM practices and problem solving and opens the doors to a new approach to training employees in general and domain specific areas problems which can be adapted in any type of organisation.

Keywords: critical thinking, knowledge management, mathematics, problem solving

Procedia PDF Downloads 561
6944 Application of GeoGebra into Teaching and Learning of Linear and Quadratic Equations amongst Senior Secondary School Students in Fagge Local Government Area of Kano State, Nigeria

Authors: Musa Auwal Mamman, S. G. Isa

Abstract:

This study was carried out in order to investigate the effectiveness of GeoGebra software in teaching and learning of linear and quadratic equations amongst senior secondary school students in Fagge Local Government Area, Kano State–Nigeria. Five research items were raised in objectives, research questions and hypotheses respectively. A random sampling method was used in selecting 398 students from a population of 2098 of SS2 students. The experimental group was taught using the GeoGebra software while the control group was taught using the conventional teaching method. The instrument used for the study was the mathematics performance test (MPT) which was administered at the beginning and at the end of the study. The results of the study revealed that students taught with GeoGebra software (experimental group) performed better than students taught with traditional teaching method. The t- test was used to analyze the data obtained from the study.

Keywords: GeoGebra Software, mathematics performance, random sampling, mathematics teaching

Procedia PDF Downloads 220
6943 Summer STEM Camp for Elementary Students: A Conduit to Pre-Service Teacher Training to Learn How to Include a Makerspace for an Inclusive Classroom

Authors: Jennifer Gallup, Beverly Ray, Esther Ntuli

Abstract:

Many students such as students from linguistically or culturally diverse backgrounds and those with a disability remain chronically underrepresented in higher level science and mathematics disciplines as well as many hands-on-lab-based activities due to the need for remedial reading and mathematics instruction. Makerspace labs can be a conduit for supporting inclusive learning for these students through hands-on active learning strategies that support equitable access to STEM disciplines. Makerspace is a physical space where individuals gather to create, invent, innovate, and learn while using hands-on materials such as 2D and 3D printers, software programs, electronics, and other tools and supplies. Makerspaces are emerging across many P-12 settings; however, many teachers enter the field not prepared to harness the power inherent in a makerspace, especially for those with disabilities and differing needs. This paper offers suggestions on teaching pre-service teachers and practicing teachers how to incorporate a makerspace into their professional practice through guided instruction and hands-on practice. Recommendations for interested stakeholders are included as well.

Keywords: STEM learning, technology, autism, students with disabilities, makerspace

Procedia PDF Downloads 53
6942 The Impact of Supporting Productive Struggle in Learning Mathematics: A Quasi-Experimental Study in High School Algebra Classes

Authors: Sumeyra Karatas, Veysel Karatas, Reyhan Safak, Gamze Bulut-Ozturk, Ozgul Kartal

Abstract:

Productive struggle entails a student's cognitive exertion to comprehend mathematical concepts and uncover solutions not immediately apparent. The significance of productive struggle in learning mathematics is accentuated by influential educational theorists, emphasizing its necessity for learning mathematics with understanding. Consequently, supporting productive struggle in learning mathematics is recognized as a high-leverage and effective mathematics teaching practice. In this study, the investigation into the role of productive struggle in learning mathematics led to the development of a comprehensive rubric for productive struggle pedagogy through an exhaustive literature review. The rubric consists of eight primary criteria and 37 sub-criteria, providing a detailed description of teacher actions and pedagogical choices that foster students' productive struggles. These criteria encompass various pedagogical aspects, including task design, tool implementation, allowing time for struggle, posing questions, scaffolding, handling mistakes, acknowledging efforts, and facilitating discussion/feedback. Utilizing this rubric, a team of researchers and teachers designed eight 90-minute lesson plans, employing a productive struggle pedagogy, for a two-week unit on solving systems of linear equations. Simultaneously, another set of eight lesson plans on the same topic, featuring identical content and problems but employing a traditional lecture-and-practice model, was designed by the same team. The objective was to assess the impact of supporting productive struggle on students' mathematics learning, defined by the strands of mathematical proficiency. This quasi-experimental study compares the control group, which received traditional lecture- and practice instruction, with the treatment group, which experienced a productive struggle in pedagogy. Sixty-six 10th and 11th-grade students from two algebra classes, taught by the same teacher at a high school, underwent either the productive struggle pedagogy or lecture-and-practice approach over two-week eight 90-minute class sessions. To measure students' learning, an assessment was created and validated by a team of researchers and teachers. It comprised seven open-response problems assessing the strands of mathematical proficiency: procedural and conceptual understanding, strategic competence, and adaptive reasoning on the topic. The test was administered at the beginning and end of the two weeks as pre-and post-test. Students' solutions underwent scoring using an established rubric, subjected to expert validation and an inter-rater reliability process involving multiple criteria for each problem based on their steps and procedures. An analysis of covariance (ANCOVA) was conducted to examine the differences between the control group, which received traditional pedagogy, and the treatment group, exposed to the productive struggle pedagogy, on the post-test scores while controlling for the pre-test. The results indicated a significant effect of treatment on post-test scores for procedural understanding (F(2, 63) = 10.47, p < .001), strategic competence (F(2, 63) = 9.92, p < .001), adaptive reasoning (F(2, 63) = 10.69, p < .001), and conceptual understanding (F(2, 63) = 10.06, p < .001), controlling for pre-test scores. This demonstrates the positive impact of supporting productive struggle in learning mathematics. In conclusion, the results revealed the significance of the role of productive struggle in learning mathematics. The study further explored the practical application of productive struggle through the development of a comprehensive rubric describing the pedagogy of supporting productive struggle.

Keywords: effective mathematics teaching practice, high school algebra, learning mathematics, productive struggle

Procedia PDF Downloads 22
6941 Building Teacher Capacity: Including All Students in Mathematics Experiences

Authors: Jay-R M. Mendoza

Abstract:

In almost all mathematics classrooms, students demonstrated discrepancies in their knowledge, skills, and understanding. OECD reports predicted that this continued to aggravate as not all teachers were sufficiently trained to handle this concentration. In response, the paper explored the potential of reSolve’s professional learning module 3 (PLM3) as an affordable and accessible professional development (PD) resource. Participants’ hands-on experience and exposure to PLM3 were audio recorded. After it was transcribed and examined and their work samples were analysed, there were four issues emerged: (1) criticality of conducting preliminary data collections and increasing the validity of inferences about what students can and cannot do by addressing the probabilistic nature of their performance; (2) criticality of the conclusion: a > b and/or (a-b) ∈ Z⁺ among students’ algebraic reasoning; (3) enabling and extending prompts provided by reSolve were found useful; and (4) dynamic adaptation of reSolve PLM3 through developing transferable skills and collaboration among teachers. PLM3 provided valuable insights on assessment, teaching, and planning to include all students in mathematics experiences.

Keywords: algebraic reasoning, building teacher capacity, including all students in mathematics experiences, professional development

Procedia PDF Downloads 98
6940 Design and Construction of an Intelligent Multiplication Table for Enhanced Education and Increased Student Engagement

Authors: Zahra Alikhani Koopaei

Abstract:

In the fifth lesson of the third-grade mathematics book, students are introduced to the concept of multiplication. However, some students showed a lack of interest in learning this topic. To address this, a simple electronic multiplication table was designed with the aim of making the concept of multiplication entertaining and engaging for students. It provides them with moments of excitement during the learning process. To achieve this goal, a device was created that produced a bell sound when two wire ends were connected. Each wire end was connected to a specific number in the multiplication table, and the other end was linked to the corresponding answer. Consequently, if the answer is correct, the bell will ring. This study employs interactive and engaging methods to teach mathematics, particularly to students who have previously shown little interest in the subject. By integrating game-based learning and critical thinking, we observed an increase in understanding and interest in learning multiplication compared to before using this method. This further motivated the students. As a result, the intelligent multiplication table was successfully designed. Students, under the instructor's supervision, could easily construct the device during the lesson. Through the implementation of these operations, the concept of multiplication was firmly established in the students' minds. Engaging multiple intelligences in each student enhances a more stable and improved understanding of the concept of multiplication.

Keywords: intelligent multiplication table, design, construction, education, increased interest, students

Procedia PDF Downloads 33
6939 Impact of an Instructional Design Model in a Mathematics Game for Enhancing Students’ Motivation in Developing Countries

Authors: Shafaq Rubab

Abstract:

One of the biggest reasons of dropouts from schools is lack of motivation and interest among the students, particularly in mathematics. Many developing countries are facing this problem and this issue is lowering the literacy rate in these developing countries. The best solution for increasing motivation level and interest among the students is using tablet game-based learning. However, a pedagogically sound game required a well-planned instructional design model to enhance learner’s attention and confidence otherwise effectiveness of the learning games suffers badly. This research aims to evaluate the impact of the pedagogically sound instructional design model on students’ motivation by using tablet game-based learning. This research was conducted among the out-of-school-students having an age range from 7 to 12 years and the sample size of two hundred students was purposively selected without any gender discrimination. Qualitative research was conducted by using a survey tool named Instructional Material Motivational Survey (IMMS) adapted from Keller Arcs model. A comparison of results from both groups’ i.e. experimental group and control group revealed that motivation level of the students taught by the game was higher than the students instructed by using conventional methodologies. Experimental group’s students were more attentive, confident and satisfied as compared to the control group’s students. This research work not only promoted the trend of digital game-based learning in developing countries but also supported that a pedagogically sound instructional design model utilized in an educational game can increase the motivation level of the students and can make the learning process a totally immersive and interactive fun loving activity.

Keywords: digital game-based learning, student’s motivation, instructional design model, learning process

Procedia PDF Downloads 396
6938 A Review of Machine Learning for Big Data

Authors: Devatha Kalyan Kumar, Aravindraj D., Sadathulla A.

Abstract:

Big data are now rapidly expanding in all engineering and science and many other domains. The potential of large or massive data is undoubtedly significant, make sense to require new ways of thinking and learning techniques to address the various big data challenges. Machine learning is continuously unleashing its power in a wide range of applications. In this paper, the latest advances and advancements in the researches on machine learning for big data processing. First, the machine learning techniques methods in recent studies, such as deep learning, representation learning, transfer learning, active learning and distributed and parallel learning. Then focus on the challenges and possible solutions of machine learning for big data.

Keywords: active learning, big data, deep learning, machine learning

Procedia PDF Downloads 406
6937 Mathematical Games with RPG and Sci-Fi Elements to Enhance Motivation

Authors: Santiago Moll Lopez, Erica Vega Fleitas, Dolors Rosello Ferragud, Luis Manuel Sanchez Ruiz, Jose Antonio Moraño Fernandez

Abstract:

Game-based learning (GBL) is becoming popular in education. Learning through games offers students a motivating experience related to the social aspect of games. Among the significant positive outcomes are promoting positive emotions and collaboration, improving the assimilation of concepts, and creating an attractive and dynamic environment standout. This work presents a study of the design and implementation of games created with RPG Maker MZ software with a Sci-Fi storytelling environment for developing specific and transversal skills in a Mathematics subject at the Beng in Aerospace Engineering. Games were applied during regular classes and as a part of a Flip-Teaching methodology to increase the motivation and the assimilation of mathematical concepts in an engaging way. The key features of the games were the introduction of avatar design and the promotion of collaboration among students. Students' opinions and grades obtained in the activities and exams showed increased motivation and a significant improvement in their performance compared with other groups or past students' performances.

Keywords: game-based learning, rol games, mathematics, science fiction

Procedia PDF Downloads 56
6936 Integration of Best Practices and Requirements for Preliminary E-Learning Courses

Authors: Sophie Huck, Knut Linke

Abstract:

This study will examine how IT practitioners can be motivated for IT studies and which kind of support they need during their occupational studies. Within this research project, the challenge of supporting students being engaged in business for several years arose. Here, it is especially important to successfully guide them through their studies. The problem of this group is that they finished their school education years ago. In order to gather first experiences, preliminary e-learning courses were introduced and tested with a group of users studying General Management. They had to work with these courses and have been questioned later on about their approach to the different methods. Moreover, a second group of potential students was interviewed with the help of online questionnaires to give information about their expectations regarding extra occupational studies. We also want to present best practices and cases in e-education in the subarea of mathematics and distance learning. Within these cases and practices, we use state of the art systems and technologies in e-education to find a way to increase teaching quality and the success of students. Our research indicated that the first group of enrolled students appreciated the new preliminary e-learning courses. The second group of potential students was convinced of this way of learning as a significant component of extra occupational studies. It can be concluded that this part of the project clarified the acceptance of the e-learning strategy by both groups and led to satisfactory results with the enrolled students.

Keywords: e-learning evaluation, self-learning, virtual classroom, virtual learning environments

Procedia PDF Downloads 293
6935 Perceived Causes of Mathematics Phobia Amongst Senior Secondary School Students in Yenagoa Metropolis, Bayelsa State, Nigeria

Authors: Iniye Irene Wodi, Kennedy B. Gibson

Abstract:

Students’ poor performance in mathematics in both internal and external examinations has been a source of concern to researchers in Nigeria. The cause of this has been attributed to both teachers and students. To this end, this study sought to find out students’ perceptions of teachers’ attributes as a cause of mathematics phobia among secondary school students in Bayelsa State Nigeria. The population of the study comprised of all students of senior secondary schools in Yenagoa metropolis. A sample of 120 students was drawn from this population using clustering and simple random sampling techniques. The instrument for data collection was a researcher constructed questionnaire titled Mathematics Phobia Questionnaire (MPQ). Data were analysed, and the results revealed that students perceived teachers’ attributes such as methods and styles of teaching, difficulty in communication, etc. as causes of mathematics phobia among students in senior secondary schools in Bayelsa State. Based on the result, it was therefore recommended that mathematics teachers should be retrained periodically in order to learn new and innovative ways of teaching mathematics to prevent its phobia among students.

Keywords: mathematics phobia, teacher attributes, teaching method, teaching style

Procedia PDF Downloads 90
6934 Didactic Suitability and Mathematics Through Robotics and 3D Printing

Authors: Blanco T. F., Fernández-López A.

Abstract:

Nowadays, education, motivated by the new demands of the 21st century, acquires a dimension that converts the skills that new generations may need into a huge and uncertain set of knowledge too broad to be entirety covered. Within this set, and as tools to reach them, we find Learning and Knowledge Technologies (LKT). Thus, in order to prepare students for an everchanging society in which the technological boom involves everything, it is essential to develop digital competence. Nevertheless LKT seems not to have found their place in the educational system. This work is aimed to go a step further in the research of the most appropriate procedures and resources for technological integration in the classroom. The main objective of this exploratory study is to analyze the didactic suitability (epistemic, cognitive, affective, interactional, mediational and ecological) for teaching and learning processes of mathematics with robotics and 3D printing. The analysis carried out is drawn from a STEAM (Science, Technology, Engineering, Art and Mathematics) project that has the Pilgrimage way to Santiago de Compostela as a common thread. The sample is made up of 25 Primary Education students (10 and 11 years old). A qualitative design research methodology has been followed, the sessions have been distributed according to the type of technology applied. Robotics has been focused towards learning two-dimensional mathematical notions while 3D design and printing have been oriented towards three-dimensional concepts. The data collection instruments used are evaluation rubrics, recordings, field notebooks and participant observation. Indicators of didactic suitability proposed by Godino (2013) have been used for the analysis of the data. In general, the results show a medium-high level of didactic suitability. Above these, a high mediational and cognitive suitability stands out, which led to a better understanding of the positions and relationships of three-dimensional bodies in space and the concept of angle. With regard to the other indicators of the didactic suitability, it should be noted that the interactional suitability would require more attention and the affective suitability a deeper study. In conclusion, the research has revealed great expectations around the combination of teaching-learning processes of mathematics and LKT. Although there is still a long way to go in terms of the provision of means and teacher training.

Keywords: 3D printing, didactic suitability, educational design, robotics

Procedia PDF Downloads 73
6933 Mathematical Beliefs, Attitudes, and Performance of Freshman College Students

Authors: Johna Bernice Ablaza, Bryan Lim Corpuz, Joanna Marie Estrada, Mary Ann Cristine Olgado, Rhina Recato

Abstract:

This study aimed to describe the mathematical beliefs and attitudes in relation to the mathematics performance of freshman college students. The descriptive design using the correlational study was used to describe the relationship among mathematical beliefs, attitudes, and performance of freshman college students. This study involved one hundred fifty (150) freshman college students of Philippine Normal University during the third trimester of school year 2015-2016. The research instruments used to gather the information needed in the study are the beliefs about Mathematics Questionnaire, the KIM-Project Questionnaire, and the ACT Compass Mathematics Test. The data gathered were analyzed using the percentages, mean, standard deviation, and Pearson r-moment correlation. The results of this study have shown that although students believe that Mathematics is significant in their lives, the overall result on their beliefs and attitudes are positively low. There is a significant relationship between the students’ mathematical beliefs and mathematics performance. Likewise, their attitudes in mathematics have significant relationship to mathematics performance.

Keywords: attitudes, diligence, interest, mathematical beliefs, mathematical performance, self-confidence

Procedia PDF Downloads 247
6932 Didactical and Semiotic Affordance of GeoGebra in a Productive Mathematical Discourse

Authors: Isaac Benning

Abstract:

Using technology to expand the learning space is critical for a productive mathematical discourse. This is a case study of two teachers who developed and enacted GeoGebra-based mathematics lessons following their engagement in a two-year professional development. The didactical and semiotic affordance of GeoGebra in widening the learning space for a productive mathematical discourse was explored. The approach of thematic analysis was used for lesson artefact, lesson observation, and interview data. The results indicated that constructing tools in GeoGebra provided a didactical milieu where students used them to explore mathematical concepts with little or no support from their teacher. The prompt feedback from the GeoGebra motivated students to practice mathematical concepts repeatedly in which they privately rethink their solutions before comparing their answers with that of their colleagues. The constructing tools enhanced self-discovery, team spirit, and dialogue among students. With regards to the semiotic construct, the tools widened the physical and psychological atmosphere of the classroom by providing animations that served as virtual concrete to enhance the recording, manipulation, testing of a mathematical idea, construction, and interpretation of geometric objects. These findings advance the discussion of widening the classroom for a productive mathematical discourse within the context of the mathematics curriculum of Ghana and similar Sub-Saharan African countries.

Keywords: GeoGebra, theory of didactical situation, semiotic mediation, mathematics laboratory, mathematical discussion

Procedia PDF Downloads 94
6931 Investigating the Dynamics of Knowledge Acquisition in Learning Using Differential Equations

Authors: Gilbert Makanda, Roelf Sypkens

Abstract:

A mathematical model for knowledge acquisition in teaching and learning is proposed. In this study we adopt the mathematical model that is normally used for disease modelling into teaching and learning. We derive mathematical conditions which facilitate knowledge acquisition. This study compares the effects of dropping out of the course at early stages with later stages of learning. The study also investigates effect of individual interaction and learning from other sources to facilitate learning. The study fits actual data to a general mathematical model using Matlab ODE45 and lsqnonlin to obtain a unique mathematical model that can be used to predict knowledge acquisition. The data used in this study was obtained from the tutorial test results for mathematics 2 students from the Central University of Technology, Free State, South Africa in the department of Mathematical and Physical Sciences. The study confirms already known results that increasing dropout rates and forgetting taught concepts reduce the population of knowledgeable students. Increasing teaching contacts and access to other learning materials facilitate knowledge acquisition. The effect of increasing dropout rates is more enhanced in the later stages of learning than earlier stages. The study opens up a new direction in further investigations in teaching and learning using differential equations.

Keywords: differential equations, knowledge acquisition, least squares nonlinear, dynamical systems

Procedia PDF Downloads 342
6930 Mathematics Teachers’ Background Characteristics as a Correlate of Secondary School Students’ Achievement in Mathematics in Gombe State, Nigeria

Authors: Ali Adamu

Abstract:

Teachers’ background characteristics as a correlate of students’ achievement in Mathematics were studied in Gombe State. Pearson Product Moment Correlation Coefficient was used for the analysis. Five Hundred and Twelve (512) students and 20 teachers from 12 schools in Gombe State of Nigeria were used for the study. Students’ Achievement Tests and Mathematics Teachers’ backgrounds were instruments for the study. The findings indicated that teachers’ qualifications, experience of the teacher, and teachers’ personalities had a positive correlation with students’ achievement. Recommendations are made, which include allowing the teachers to go for training as well as the government should ensure recruiting teachers that have experience in the teaching job.

Keywords: achievement-test, teachers’ personality, teaching mathematics, teacher-background

Procedia PDF Downloads 62