Search results for: imaging phantom
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1295

Search results for: imaging phantom

245 3D Microscopy, Image Processing, and Analysis of Lymphangiogenesis in Biological Models

Authors: Thomas Louis, Irina Primac, Florent Morfoisse, Tania Durre, Silvia Blacher, Agnes Noel

Abstract:

In vitro and in vivo lymphangiogenesis assays are essential for the identification of potential lymphangiogenic agents and the screening of pharmacological inhibitors. In the present study, we analyse three biological models: in vitro lymphatic endothelial cell spheroids, in vivo ear sponge assay, and in vivo lymph node colonisation by tumour cells. These assays provide suitable 3D models to test pro- and anti-lymphangiogenic factors or drugs. 3D images were acquired by confocal laser scanning and light sheet fluorescence microscopy. Virtual scan microscopy followed by 3D reconstruction by image aligning methods was also used to obtain 3D images of whole large sponge and ganglion samples. 3D reconstruction, image segmentation, skeletonisation, and other image processing algorithms are described. Fixed and time-lapse imaging techniques are used to analyse lymphatic endothelial cell spheroids behaviour. The study of cell spatial distribution in spheroid models enables to detect interactions between cells and to identify invasion hierarchy and guidance patterns. Global measurements such as volume, length, and density of lymphatic vessels are measured in both in vivo models. Branching density and tortuosity evaluation are also proposed to determine structure complexity. Those properties combined with vessel spatial distribution are evaluated in order to determine lymphangiogenesis extent. Lymphatic endothelial cell invasion and lymphangiogenesis were evaluated under various experimental conditions. The comparison of these conditions enables to identify lymphangiogenic agents and to better comprehend their roles in the lymphangiogenesis process. The proposed methodology is validated by its application on the three presented models.

Keywords: 3D image segmentation, 3D image skeletonisation, cell invasion, confocal microscopy, ear sponges, light sheet microscopy, lymph nodes, lymphangiogenesis, spheroids

Procedia PDF Downloads 340
244 Surface Modification of Co-Based Nanostructures to Develop Intrinsic Fluorescence and Catalytic Activity

Authors: Monalisa Pal, Kalyan Mandal

Abstract:

Herein we report the molecular functionalization of promising transition metal oxide nanostructures, such as Co3O4 nanocubes, using nontoxic and biocompati-ble organic ligand sodium tartrate. The electronic structural modification of the nanocubes imparted through functionalization and subsequent water solubilization reveals multiple absorption bands in the UV-vis region. Further surface modification of the solubilized nanocubes, leads to the emergence of intrinsic multi-color fluorescence (from blue, cyan, green to red region of the spectrum), upon excitation at proper wavelengths, where the respective excitation wavelengths have a direct correlation with the observed UV-vis absorption bands. Using a multitude of spectroscopic tools we have investigated the mechanistic insight behind the origin of different UV-vis absorption bands and emergence of multicolor photoluminescence from the functionalized nanocubes. Our detailed study shows that ligand to metal charge transfer (LMCT) from tartrate ligand to Co2+/Co3+ ions and d-d transitions involving Co2+/Co3+ ions are responsible for generation of this novel optical properties. Magnetic study reveals that, antiferromagnetic nature of Co3O4 nanocubes changes to ferromagnetic behavior upon functionalization, however, the overall magnetic response was very weak. To combine strong magnetism with this novel optical property, we followed the same surface modification strategy in case of CoFe2O4 nanoparticles, which reveals that irrespective of size and shape, all Co-based oxides can develop intrinsic multi-color fluorescence upon facile functionalization with sodium tartrate ligands and the magnetic response was significantly higher. Surface modified Co-based oxide nanostructures also show excellent catalytic activity in degradation of biologically and environmentally harmful dyes. We hope that, our developed facile functionalization strategy of Co-based oxides will open up new opportunities in the field of biomedical applications such as bio-imaging and targeted drug delivery.

Keywords: co-based oxide nanostructures, functionalization, multi-color fluorescence, catalysis

Procedia PDF Downloads 360
243 Cadmium Telluride Quantum Dots (CdTe QDs)-Thymine Conjugate Based Fluorescence Biosensor for Sensitive Determination of Nucleobases/Nucleosides

Authors: Lucja Rodzik, Joanna Lewandowska-Lancucka, Michal Szuwarzynski, Krzysztof Szczubialka, Maria Nowakowska

Abstract:

The analysis of nucleobases is of great importance for bioscience since their abnormal concentration in body fluids suggests the deficiency and mutation of the immune system, and it is considered to be an important parameter for diagnosis of various diseases. The presented conjugate meets the need for development of the effective, selective and highly sensitive sensor for nucleobase/nucleoside detection. The novel, highly fluorescent cadmium telluride quantum dots (CdTe QDs) functionalized with thymine and stabilized with thioglycolic acid (TGA) conjugates has been developed and thoroughly characterized. Successful formation of the material was confirmed by elemental analysis, and UV–Vis fluorescence and FTIR spectroscopies. The crystalline structure of the obtained product was characterized with X-ray diffraction (XRD) method. The composition of CdTe QDs and their thymine conjugate was also examined using X-ray photoelectron spectroscopy (XPS). The size of the CdTe-thymine was 3-6 nm as demonstrated using atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM) imaging. The plasmon resonance fluorescence band at 540 nm on excitation at 351 nm was observed for these nanoparticles. The intensity of this band increased with the increase in the amount of conjugated thymine with no shift in its position. Based on the fluorescence measurements, it was found that the CdTe-thymine conjugate interacted efficiently and selectively not only with adenine, a nucleobase complementary to thymine, but also with nucleosides and adenine-containing modified nucleosides, i.e., 5′-deoxy-5′-(methylthio)adenosine (MTA) and 2’-O-methyladenosine, the urinary tumor markers which allow monitoring of the disease progression. The applicability of the CdTe-thymine sensor for the real sample analysis was also investigated in simulated urine conditions. High sensitivity and selectivity of CdTe-thymine fluorescence towards adenine, adenosine and modified adenosine suggest that obtained conjugate can be potentially useful for development of the biosensor for complementary nucleobase/nucleoside detection.

Keywords: CdTe quantum dots, conjugate, sensor, thymine

Procedia PDF Downloads 377
242 Segmenting 3D Optical Coherence Tomography Images Using a Kalman Filter

Authors: Deniz Guven, Wil Ward, Jinming Duan, Li Bai

Abstract:

Over the past two decades or so, Optical Coherence Tomography (OCT) has been used to diagnose retina and optic nerve diseases. The retinal nerve fibre layer, for example, is a powerful diagnostic marker for detecting and staging glaucoma. With the advances in optical imaging hardware, the adoption of OCT is now commonplace in clinics. More and more OCT images are being generated, and for these OCT images to have clinical applicability, accurate automated OCT image segmentation software is needed. Oct image segmentation is still an active research area, as OCT images are inherently noisy, with the multiplicative speckling noise. Simple edge detection algorithms are unsuitable for detecting retinal layer boundaries in OCT images. Intensity fluctuation, motion artefact, and the presence of blood vessels also decrease further OCT image quality. In this paper, we introduce a new method for segmenting three-dimensional (3D) OCT images. This involves the use of a Kalman filter, which is commonly used in computer vision for object tracking. The Kalman filter is applied to the 3D OCT image volume to track the retinal layer boundaries through the slices within the volume and thus segmenting the 3D image. Specifically, after some pre-processing of the OCT images, points on the retinal layer boundaries in the first image are identified, and curve fitting is applied to them such that the layer boundaries can be represented by the coefficients of the curve equations. These coefficients then form the state space for the Kalman Filter. The filter then produces an optimal estimate of the current state of the system by updating its previous state using the measurements available in the form of a feedback control loop. The results show that the algorithm can be used to segment the retinal layers in OCT images. One of the limitations of the current algorithm is that the curve representation of the retinal layer boundary does not work well when the layer boundary is split into two, e.g., at the optic nerve, the layer boundary split into two. This maybe resolved by using a different approach to representing the boundaries, such as b-splines or level sets. The use of a Kalman filter shows promise to developing accurate and effective 3D OCT segmentation methods.

Keywords: optical coherence tomography, image segmentation, Kalman filter, object tracking

Procedia PDF Downloads 454
241 AI/ML Atmospheric Parameters Retrieval Using the “Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN)”

Authors: Thomas Monahan, Nicolas Gorius, Thanh Nguyen

Abstract:

Exoplanet atmospheric parameters retrieval is a complex, computationally intensive, inverse modeling problem in which an exoplanet’s atmospheric composition is extracted from an observed spectrum. Traditional Bayesian sampling methods require extensive time and computation, involving algorithms that compare large numbers of known atmospheric models to the input spectral data. Runtimes are directly proportional to the number of parameters under consideration. These increased power and runtime requirements are difficult to accommodate in space missions where model size, speed, and power consumption are of particular importance. The use of traditional Bayesian sampling methods, therefore, compromise model complexity or sampling accuracy. The Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN) is a deep convolutional generative adversarial network that improves on the previous model’s speed and accuracy. We demonstrate the efficacy of artificial intelligence to quickly and reliably predict atmospheric parameters and present it as a viable alternative to slow and computationally heavy Bayesian methods. In addition to its broad applicability across instruments and planetary types, ARcGAN has been designed to function on low power application-specific integrated circuits. The application of edge computing to atmospheric retrievals allows for real or near-real-time quantification of atmospheric constituents at the instrument level. Additionally, edge computing provides both high-performance and power-efficient computing for AI applications, both of which are critical for space missions. With the edge computing chip implementation, ArcGAN serves as a strong basis for the development of a similar machine-learning algorithm to reduce the downlinked data volume from the Compact Ultraviolet to Visible Imaging Spectrometer (CUVIS) onboard the DAVINCI mission to Venus.

Keywords: deep learning, generative adversarial network, edge computing, atmospheric parameters retrieval

Procedia PDF Downloads 145
240 The Dual Catastrophe of Behçet’s Disease Visual Loss Followed by Acute Spinal Shock After Lumbar Drain Removal

Authors: Naim Izet Kajtazi

Abstract:

Context: Increased intracranial pressure and associated symptoms such as headache, papilledema, motor or sensory deficits, seizures, and conscious disturbance are well-known in acute CVT. However, visual loss is not commonly associated with this disease, except in the case of secondary IIH associated with it. Process: We report a case of a 40-year-old male with Behçet’s disease and cerebral venous thrombosis, and other multiple comorbidities admitted with a four-day history of increasing headache and rapidly progressive visual loss bilaterally. The neurological examination was positive for bilateral papilledema of grade 3 with light perception on the left eye and counting fingers on the right eye. Brain imaging showed old findings of cerebral venous thrombosis without any intraparenchymal lesions to suggest a flare-up of Behçet’s disease. The lumbar puncture, followed by the lumbar drain insertion, gave no benefit in headache or vision. However, he completely lost sight. The right optic nerve sheath fenestration did not result in vision improvement. The acute spinal shock complicated the lumbar drain removal due to epidural hematoma. An urgent lumbar laminectomy with hematoma evacuation undertook. Intra-operatively, the neurosurgeon noted suspicious abnormal vessels at conus medullaris with the possibility of an arteriovenous malformation. Outcome: In a few days following the spinal surgery, the patient vision started to improve. Further improvement was achieved after plasma exchange sessions followed by cyclophosphamide. In the recent follow-up in the clinic, he reported better vision, drove, and completed his Ph.D. studies. Relevance: Visual loss in patients with Behçet’s disease should always be anticipated and taken reasonable care of, ensuring that they receive well-combined immunosuppression with anticoagulation and agents to reduce intracranial pressure. This patient’s story is significant for a high disease burden and complicated hospital course by acute spinal shock due to spinal lumbar drain removal with a possible underlying spinal arteriovenous malformation.

Keywords: Behcet disease, optic neuritis, IIH, CVT

Procedia PDF Downloads 43
239 Transcranial Electric Field Treatments on Redox-Toxic Iron Deposits in Transgenic Alzheimer’s Disease Mouse Models: The Electroceutical Targeting of Alzheimer’s Disease

Authors: Choi Younshick, Lee Wonseok, Lee Jaemeun, Park Sun-Hyun, Kim Sunwoung, Park Sua, Kim Eun Ho, Kim Jong-Ki

Abstract:

Iron accumulation in the brain accelerates Alzheimer’s disease progression. To cure iron toxicity, we assessed the therapeutic effects of noncontact transcranial electric field stimulation to the brain on toxic iron deposits in either the Aβ-fibril structure or the Aβ plaque in a mouse model of Alzheimer’s disease (AD). A capacitive electrode-based alternating electric field (AEF) was applied to a suspension of magnetite (Fe₃O₄) to measure the field-sensitized electro-Fenton effect and resultant reactive oxygen species (ROS) generation. The increase in ROS generation compared to the untreated control was both exposure-time and AEF-frequency dependent. The frequency-specific exposure of AEF to 0.7–1.4 V/cm on a magnetite-bound Aβ-fibril or a transgenic Alzheimer’s disease (AD) mouse model revealed the removal of intraplaque ferrous magnetite iron deposit and Aβ-plaque burden together at the same time compared to the untreated control. The results of the behavioral tests show an improvement in impaired cognitive function following AEF treatment on the AD mouse model. Western blot assay found some disease-modifying biological responses, including down-regulating ferroptosis, neuroinflammation and reactive astrocytes that eventually made cognitive improvement feasible. Tissue clearing and 3D-imaging analysis revealed no induced damage to the neuronal structures of normal brain tissue following AEF treatment. In conclusion, our results suggest that the effective degradation of magnetite-bound amyloid fibrils or plaques in the AD brain by the electro-Fenton effect from electric field-sensitized magnetite offers a potential electroceutical treatment option for AD.

Keywords: electroceutical, intraplaque magnetite, alzheimer’s disease, transcranial electric field, electro-fenton effect

Procedia PDF Downloads 44
238 Photoelectrical Stimulation for Cancer Therapy

Authors: Mohammad M. Aria, Fatma Öz, Yashar Esmaeilian, Marco Carofiglio, Valentina Cauda, Özlem Yalçın

Abstract:

Photoelectrical stimulation of cells with semiconductor organic polymers have been shown promising applications in neuroprosthetics such as retinal prosthesis. Photoelectrical stimulation of the cell membranes can be induced through a photo-electric charge separation mechanism in the semiconductor materials, and it can alter intracellular calcium level through both stimulation of voltage-gated ion channels and increase of intracellular reactive oxygen species (ROS) level. On the other hand, targeting voltage-gated ion channels in cancer cells to induce cell apoptosis through calcium signaling alternation is an effective mechanism which has been explained before. In this regard, remote control of the voltage-gated ion channels aimed to alter intracellular calcium by using photo-active organic polymers can be novel technology in cancer therapy. In this study, we used P (ITO/Indium thin oxide)/P3HT(poly(3-hexylthiophene-2,5-diyl)) and PN (ITO/ZnO/P3HT) photovoltaic junctions to stimulate MDA-MB-231 breast cancer cells. We showed that the photo-stimulation of breast cancer cells through photo capacitive current generated by the photovoltaic junctions are able to excite the cells and alternate intracellular calcium based on the calcium imaging (at 8mW/cm² green light intensity and 10-50 ms light durations), which has been reported already to safety stimulate neurons. The control group did not undergo light treatment and was cultured in T-75 flasks. We detected 20-30% cell death for ITO/P3HT and 51-60% cell death for ITO/ZnO/P3HT samples in the light treated MDA-MB-231 cell group. Western blot analysis demonstrated poly(ADP-ribose) polymerase (PARP) activated cell death in the light treated group. Furthermore, Annexin V and PI fluorescent staining indicated both apoptosis and necrosis in treated cells. In conclusion, our findings revealed that the photoelectrical stimulation of cells (through long time overstimulation) can induce cell death in cancer cells.

Keywords: Ca²⁺ signaling, cancer therapy, electrically excitable cells, photoelectrical stimulation, voltage-gated ion channels

Procedia PDF Downloads 147
237 Posterior Circulation Ischemic Strokes in Olympic and Division 1 Wrestlers

Authors: Christen Kutz

Abstract:

Objective: The aim of this study is to review a case series of 4 high-level Olympic and Division 1 wrestlers who experienced debilitating posterior circulation ischemic strokes during or after a competitive wrestling event and to identify risk factors, etiology and outcomes of stroke in young, healthy elite wrestlers. Background: Stroke occurs in one in 10,000 people under age 64. In young adults, the most common causes of stroke are cardiac embolism, hypercoagulable state, and vasculopathy. One-third of these strokes occur in young, fit individuals. There is little published literature about ischemic strokes that occur in wrestlers. Based on the nature of wrestling, the risk of injury or dissection to neurovascular structures may be a possible theory, but very few case reports exist. Methodology: 4 wrestlers under the age of 44 with a known history of ischemic stroke participated in individual interviews either in person or virtually. Each of the wrestlers provided their demographic information, wrestling background, clinical presentation at the time of stroke, imaging results, identification of potential risk factors, acute treatment and recovery. Results: 3 white male Division 1 wrestlers (2 Lehigh University, 1 Lock Haven University) and 1 black male 2008 Olympian experienced posterior circulation strokes. Case #1 felt a “pop” while wrestling (lateral medullary infarct, possible vertebral artery dissection); Case #2 awoke with severe vertigo, sweating, and vomiting after wrestling the previous day (left cerebellar infarct, (+) protein S deficiency); Case #3 severe vertigo, ataxia, and sensation of impending doom after wrestling earlier that week (left cerebellar infarct, hypoplastic left vertebral artery (+) anti-cardiolipin antibodies). Case #4 severe dizziness, confusion (left cerebellar stroke, vertebral artery dissection, small PFO). Conclusion: 3 wrestlers were started on anti-platelet therapy, risk factors were modified, and returned to their sport. 1 wrestler was placed on anti-coagulation and retired from competition.

Keywords: stroke, wrestling, Olympic, posterior circulation

Procedia PDF Downloads 42
236 Management of Acute Appendicitis with Preference on Delayed Primary Suturing of Surgical Incision

Authors: N. A. D. P. Niwunhella, W. G. R. C. K. Sirisena

Abstract:

Appendicitis is one of the most encountered abdominal emergencies worldwide. Proper clinical diagnosis and appendicectomy with minimal post operative complications are therefore priorities. Aim of this study was to ascertain the overall management of acute appendicitis in Sri Lanka in special preference to delayed primary suturing of the surgical site, comparing other local and international treatment outcomes. Data were collected prospectively from 155 patients who underwent appendicectomy following clinical and radiological diagnosis with ultrasonography. Histological assessment was done for all the specimens. All perforated appendices were managed with delayed primary closure. Patients were followed up for 28 days to assess complications. Mean age of patient presentation was 27 years; mean pre-operative waiting time following admission was 24 hours; average hospital stay was 72 hours; accuracy of clinical diagnosis of appendicitis as confirmed by histology was 87.1%; post operative wound infection rate was 8.3%, and among them 5% had perforated appendices; 4 patients had post operative complications managed without re-opening. There was no fistula formation or mortality reported. Current study was compared with previously published data: a comparison on management of acute appendicitis in Sri Lanka vs. United Kingdom (UK). The diagnosis of current study was equally accurate, but post operative complications were significantly reduced - (current study-9.6%, compared Sri Lankan study-16.4%; compared UK study-14.1%). During the recent years, there has been an exponential rise in the use of Computerised Tomography (CT) imaging in the assessment of patients with acute appendicitis. Even though, the diagnostic accuracy without using CT, and treatment outcome of acute appendicitis in this study match other local studies as well as with data compared to UK. Therefore CT usage has not increased the diagnostic accuracy of acute appendicitis significantly. Especially, delayed primary closure may have reduced post operative wound infection rate for ruptured appendices, therefore suggest this approach for further evaluation as a safer and an effective practice in other hospitals worldwide as well.

Keywords: acute appendicitis, computerised tomography, diagnostic accuracy, delayed primary closure

Procedia PDF Downloads 123
235 In-Situ Sludge Minimization Using Integrated Moving Bed Biofilm Reactor for Industrial Wastewater Treatment

Authors: Vijay Sodhi, Charanjit Singh, Neelam Sodhi, Puneet P. S. Cheema, Reena Sharma, Mithilesh K. Jha

Abstract:

The management and secure disposal of the biosludge generated from widely commercialized conventional activated sludge (CAS) treatments become a potential environmental issue. Thus, a sustainable technological upgradation to the CAS for sludge yield minimization has recently been gained serious attention of the scientific community. A number of recently reported studies effectively addressed the remedial technological advancements that in monopoly limited to the municipal wastewater. Moreover, the critical review of the literature signifies side-stream sludge minimization as a complex task to maintain. In this work, therefore, a hybrid moving bed biofilm reactor (MBBR) configuration (named as AMOMOX process) for in-situ minimization of the excess biosludge generated from high organic strength tannery wastewater has been demonstrated. The AMOMOX collectively stands for anoxic MBBR (as AM), aerobic MBBR (OM) and an oxic CAS (OX). The AMOMOX configuration involved a combined arrangement of an anoxic MBBR and oxic MBBR coupled with the aerobic CAS. The AMOMOX system was run in parallel with an identical CAS reactor. Both system configurations were fed with same influent to judge the real-time operational changes. For the AMOMOX process, the strict maintenance of operational strategies resulted about 95% removal of NH4-N and SCOD from tannery wastewater. Here, the nourishment of filamentous microbiota and purposeful promotion of cell-lysis effectively sustained sludge yield (Yobs) lowering upto 0.51 kgVSS/kgCOD. As a result, the volatile sludge scarcity apparent in the AMOMOX system succeeded upto 47% reduction of the excess biosludge. The corroborated was further supported by FE-SEM imaging and thermogravimetric analysis. However, the detection of microbial strains habitat underlying extended SRT (23-26 days) of the AMOMOX system would be the matter of further research.

Keywords: tannery wastewater, moving bed biofilm reactor, sludhe yield, sludge minimization, solids retention time

Procedia PDF Downloads 42
234 When Creativity Is the Solution: How to Transform Makkah into a Creative City

Authors: Saeed Al Amoudy

Abstract:

During the last decade, the rapidly growing prestige of so-called Creative Cities has inspired many other cities seeking to enhance their attractiveness, creativity, and success. However, the concept of a creative city seems to be an elusive one because it reflects a set of distinct ideologies which apply distinct ideas of creativity to physical and economic urban development. The main aim of this study is to investigate the ways in which the theoretical concept of the creative city can be usefully and practically employed to develop the urban services and global identity of Makkah, Saudi Arabia. This is a challenging prospect since no research on creative cities in the Middle East has previously been conducted. The city of Makkah and its holy sites is known as the focus of religious devotion for one and half billion Muslims around the globe, with millions travelling there on annual pilgrimage. The ideas of three of the key authors who have addressed relevant aspects of the concept of the creative city, Landry, Howkins and Florida, were explored in depth for the purpose of identifying the model which would be best suited to Makkah’s identity as a sacred city. Of these, it was the approach of Landry and others whose work was originally focused on finding creative solutions to the problems faced by cities which proved most suitable for the context of Makkah. The development strategies of five case studies of Creative Cities situated in different parts of the world, namely Vancouver, Yokohama, Glasgow, Barcelona, and Sydney, were also examined. Inspired by their diverse experiences, a model, referred to by the acronym CREATIVE, was developed by bringing together the key elements which seemed to ,account for the success of these five creative cities: Concept, Resources, Events, Attractiveness, Technology, Involvement, Vision and Enthusiasm. Expert opinion was sought on the model by presenting this for discussion at five international conferences. This model was used to guide both the process of data collection via interviews, documentation and field notes, and for analysing this, revealing that Makkah has great potential to become a Creative City. The results suggested that implementation of the CREATIVE model in Makkah would help produce creative solutions to address the problems that the city currently faces due to the growing number of pilgrims every year.

Keywords: creative city, city imaging, Makkah, sacred city

Procedia PDF Downloads 379
233 Detection of Temporal Change of Fishery and Island Activities by DNB and SAR on the South China Sea

Authors: I. Asanuma, T. Yamaguchi, J. Park, K. J. Mackin

Abstract:

Fishery lights on the surface could be detected by the Day and Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (Suomi-NPP). The DNB covers the spectral range of 500 to 900 nm and realized a higher sensitivity. The DNB has a difficulty of identification of fishing lights from lunar lights reflected by clouds, which affects observations for the half of the month. Fishery lights and lights of the surface are identified from lunar lights reflected by clouds by a method using the DNB and the infrared band, where the detection limits are defined as a function of the brightness temperature with a difference from the maximum temperature for each level of DNB radiance and with the contrast of DNB radiance against the background radiance. Fishery boats or structures on islands could be detected by the Synthetic Aperture Radar (SAR) on the polar orbit satellites using the reflected microwave by the surface reflecting targets. The SAR has a difficulty of tradeoff between spatial resolution and coverage while detecting the small targets like fishery boats. A distribution of fishery boats and island activities were detected by the scan-SAR narrow mode of Radarsat-2, which covers 300 km by 300 km with various combinations of polarizations. The fishing boats were detected as a single pixel of highly scattering targets with the scan-SAR narrow mode of which spatial resolution is 30 m. As the look angle dependent scattering signals exhibits the significant differences, the standard deviations of scattered signals for each look angles were taken into account as a threshold to identify the signal from fishing boats and structures on the island from background noise. It was difficult to validate the detected targets by DNB with SAR data because of time lag of observations for 6 hours between midnight by DNB and morning or evening by SAR. The temporal changes of island activities were detected as a change of mean intensity of DNB for circular area for a certain scale of activities. The increase of DNB mean intensity was corresponding to the beginning of dredging and the change of intensity indicated the ending of reclamation and following constructions of facilities.

Keywords: day night band, SAR, fishery, South China Sea

Procedia PDF Downloads 210
232 Projected Uncertainties in Herbaceous Production Result from Unpredictable Rainfall Pattern and Livestock Grazing in a Humid Tropical Savanna Ecosystem

Authors: Daniel Osieko Okach, Joseph Otieno Ondier, Gerhard Rambold, John Tenhunen, Bernd Huwe, Dennis Otieno

Abstract:

Increased human activities such as grazing, logging, and agriculture alongside unpredictable rainfall patterns have been detrimental to the ecosystem service delivery, therefore compromising its productivity potential. This study aimed at simulating the impact of drought (50%) and enhanced rainfall (150%) on the future herbaceous CO2 uptake, biomass production and soil C:N dynamics in a humid savanna ecosystem influenced by livestock grazing. Rainfall pattern was predicted using manipulation experiments set up to reduce (50%) and increase (150%) ambient (100%) rainfall amounts in grazed and non-grazed plots. The impact of manipulated rainfall regime on herbaceous CO2 fluxes, biomass production and soil C:N dynamics was measured against volumetric soil water content (VWC) logged every 30 minutes using the 5TE (Decagon Devices Inc., Washington, USA) soil moisture sensors installed (at 20 cm soil depth) in every plots. Herbaceous biomass was estimated using destructive method augmented by standardized photographic imaging. CO2 fluxes were measured using the ecosystem chamber method and the gas analysed using LI-820 gas analyzer (USA). C:N ratio was calculated from the soil carbon and Nitrogen contents (analyzed using EA2400CHNS/O and EA2410 N elemental analyzers respectively) of different plots under study. The patterning of VWC was directly influenced by the rainfall amount with lower VWC observed in the grazed compared to the non-grazed plots. Rainfall variability, grazing and their interaction significantly affected changes in VWC (p < 0.05) and subsequently total biomass and CO2 fluxes. VWC had a strong influence on CO2 fluxes under 50% rainfall reduction in the grazed (r2 = 0.91; p < 0.05) and ambient rainfall in the ungrazed (r2 = 0.77; p < 0.05). The dependence of biomass on VWC across plots was enhanced under grazed (r2 = 0.78 - 0.87; p < 0.05) condition as compared to ungrazed (r2 = 0.44 - 0.85; p < 0.05). The C:N ratio was however not correlated to VWC across plots. This study provides insight on how the predicted trends in humid savanna will respond to changes influenced by rainfall variability and livestock grazing and consequently the sustainable management of such ecosystems.

Keywords: CO2 fluxes, rainfall manipulation, soil properties, sustainability

Procedia PDF Downloads 103
231 3D Interpenetrated Network Based on 1,3-Benzenedicarboxylate and 1,2-Bis(4-Pyridyl) Ethane

Authors: Laura Bravo-García, Gotzone Barandika, Begoña Bazán, M. Karmele Urtiaga, Luis M. Lezama, María I. Arriortua

Abstract:

Solid coordination networks (SCNs) are materials consisting of metal ions or clusters that are linked by polyfunctional organic ligands and can be designed to form tridimensional frameworks. Their structural features, as for example high surface areas, thermal stability, and in other cases large cavities, have opened a wide range of applications in fields like drug delivery, host-guest chemistry, biomedical imaging, chemical sensing, heterogeneous catalysis and others referred to greenhouse gases storage or even separation. In this sense, the use of polycarboxylate anions and dipyridyl ligands is an effective strategy to produce extended structures with the needed characteristics for these applications. In this context, a novel compound, [Cu4(m-BDC)4(bpa)2DMF]•DMF has been obtained by microwave synthesis, where m-BDC is 1,3-benzenedicarboxylate and bpa 1,2-bis(4-pyridyl)ethane. The crystal structure can be described as a three dimensional framework formed by two equal, interpenetrated networks. Each network consists of two different CuII dimers. Dimer 1 have two coppers with a square pyramidal coordination, and dimer 2 have one with a square pyramidal coordination and other with octahedral one, the last dimer is unique in literature. Therefore, the combination of both type of dimers is unprecedented. Thus, benzenedicarboxylate ligands form sinusoidal chains between the same type of dimers, and also connect both chains forming these layers in the (100) plane. These layers are connected along the [100] direction through the bpa ligand, giving rise to a 3D network with 10 Å2 voids in average. However, the fact that there are two interpenetrated networks results in a significant reduction of the available volume. Structural analysis was carried out by means of single crystal X-ray diffraction and IR spectroscopy. Thermal and magnetic properties have been measured by means of thermogravimetry (TG), X-ray thermodiffractometry (TDX), and electron paramagnetic resonance (EPR). Additionally, CO2 and CH4 high pressure adsorption measurements have been carried out for this compound.

Keywords: gas adsorption, interpenetrated networks, magnetic measurements, solid coordination network (SCN), thermal stability

Procedia PDF Downloads 293
230 An Advanced Automated Brain Tumor Diagnostics Approach

Authors: Berkan Ural, Arif Eser, Sinan Apaydin

Abstract:

Medical image processing is generally become a challenging task nowadays. Indeed, processing of brain MRI images is one of the difficult parts of this area. This study proposes a hybrid well-defined approach which is consisted from tumor detection, extraction and analyzing steps. This approach is mainly consisted from a computer aided diagnostics system for identifying and detecting the tumor formation in any region of the brain and this system is commonly used for early prediction of brain tumor using advanced image processing and probabilistic neural network methods, respectively. For this approach, generally, some advanced noise removal functions, image processing methods such as automatic segmentation and morphological operations are used to detect the brain tumor boundaries and to obtain the important feature parameters of the tumor region. All stages of the approach are done specifically with using MATLAB software. Generally, for this approach, firstly tumor is successfully detected and the tumor area is contoured with a specific colored circle by the computer aided diagnostics program. Then, the tumor is segmented and some morphological processes are achieved to increase the visibility of the tumor area. Moreover, while this process continues, the tumor area and important shape based features are also calculated. Finally, with using the probabilistic neural network method and with using some advanced classification steps, tumor area and the type of the tumor are clearly obtained. Also, the future aim of this study is to detect the severity of lesions through classes of brain tumor which is achieved through advanced multi classification and neural network stages and creating a user friendly environment using GUI in MATLAB. In the experimental part of the study, generally, 100 images are used to train the diagnostics system and 100 out of sample images are also used to test and to check the whole results. The preliminary results demonstrate the high classification accuracy for the neural network structure. Finally, according to the results, this situation also motivates us to extend this framework to detect and localize the tumors in the other organs.

Keywords: image processing algorithms, magnetic resonance imaging, neural network, pattern recognition

Procedia PDF Downloads 384
229 Generation of High-Quality Synthetic CT Images from Cone Beam CT Images Using A.I. Based Generative Networks

Authors: Heeba A. Gurku

Abstract:

Introduction: Cone Beam CT(CBCT) images play an integral part in proper patient positioning in cancer patients undergoing radiation therapy treatment. But these images are low in quality. The purpose of this study is to generate high-quality synthetic CT images from CBCT using generative models. Material and Methods: This study utilized two datasets from The Cancer Imaging Archive (TCIA) 1) Lung cancer dataset of 20 patients (with full view CBCT images) and 2) Pancreatic cancer dataset of 40 patients (only 27 patients having limited view images were included in the study). Cycle Generative Adversarial Networks (GAN) and its variant Attention Guided Generative Adversarial Networks (AGGAN) models were used to generate the synthetic CTs. Models were evaluated by visual evaluation and on four metrics, Structural Similarity Index Measure (SSIM), Peak Signal Noise Ratio (PSNR) Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), to compare the synthetic CT and original CT images. Results: For pancreatic dataset with limited view CBCT images, our study showed that in Cycle GAN model, MAE, RMSE, PSNR improved from 12.57to 8.49, 20.94 to 15.29 and 21.85 to 24.63, respectively but structural similarity only marginally increased from 0.78 to 0.79. Similar, results were achieved with AGGAN with no improvement over Cycle GAN. However, for lung dataset with full view CBCT images Cycle GAN was able to reduce MAE significantly from 89.44 to 15.11 and AGGAN was able to reduce it to 19.77. Similarly, RMSE was also decreased from 92.68 to 23.50 in Cycle GAN and to 29.02 in AGGAN. SSIM and PSNR also improved significantly from 0.17 to 0.59 and from 8.81 to 21.06 in Cycle GAN respectively while in AGGAN SSIM increased to 0.52 and PSNR increased to 19.31. In both datasets, GAN models were able to reduce artifacts, reduce noise, have better resolution, and better contrast enhancement. Conclusion and Recommendation: Both Cycle GAN and AGGAN were significantly able to reduce MAE, RMSE and PSNR in both datasets. However, full view lung dataset showed more improvement in SSIM and image quality than limited view pancreatic dataset.

Keywords: CT images, CBCT images, cycle GAN, AGGAN

Procedia PDF Downloads 55
228 A Study of Topical and Similarity of Sebum Layer Using Interactive Technology in Image Narratives

Authors: Chao Wang

Abstract:

Under rapid innovation of information technology, the media plays a very important role in the dissemination of information, and it has a totally different analogy generations face. However, the involvement of narrative images provides more possibilities of narrative text. "Images" through the process of aperture, a camera shutter and developable photosensitive processes are manufactured, recorded and stamped on paper, displayed on a computer screen-concretely saved. They exist in different forms of files, data, or evidence as the ultimate looks of events. By the interface of media and network platforms and special visual field of the viewer, class body space exists and extends out as thin as sebum layer, extremely soft and delicate with real full tension. The physical space of sebum layer of confuses the fact that physical objects exist, needs to be established under a perceived consensus. As at the scene, the existing concepts and boundaries of physical perceptions are blurred. Sebum layer physical simulation shapes the “Topical-Similarity" immersing, leading the contemporary social practice communities, groups, network users with a kind of illusion without the presence, i.e. a non-real illusion. From the investigation and discussion of literatures, digital movies editing manufacture and produce the variability characteristics of time (for example, slices, rupture, set, and reset) are analyzed. Interactive eBook has an unique interaction in "Waiting-Greeting" and "Expectation-Response" that makes the operation of image narrative structure more interpretations functionally. The works of digital editing and interactive technology are combined and further analyze concept and results. After digitization of Interventional Imaging and interactive technology, real events exist linked and the media handing cannot be cut relationship through movies, interactive art, practical case discussion and analysis. Audience needs more rational thinking about images carried by the authenticity of the text.

Keywords: sebum layer, topical and similarity, interactive technology, image narrative

Procedia PDF Downloads 362
227 A Significant Clinical Role for the Capitalbio™ DNA Microarray in the Diagnosis of Multidrug-Resistant Tuberculosis in Patients with Tuberculous Spondylitis Simultaneous with Pulmonary Tuberculosis in High Prevalence Settings in China

Authors: Wenjie Wu, Peng Cheng, Zehua Zhang, Fei Luo, Feng Wu, Min Zhong, Jianzhong Xu

Abstract:

Background: There has been limited research into the therapeutic efficacy of rapid diagnosis of spinal tuberculosis complicated with pulmonary tuberculosis. We attempted to discover whether the utilization of a DNA microarray assay to detect multidrug-resistant spinal tuberculosis complicated with pulmonary tuberculosis can improve clinical outcomes. Methods: A prospective study was conducted from February 2006 to September 2015. One hundred and forty-three consecutive culture–confirmed, clinically and imaging diagnosed MDR-TB patients with spinal tuberculosis complicated by pulmonary tuberculosis were enrolled into the study. The initial time to treatment for MDR-TB, the method of infection control, radiological indicators of spinal tubercular infectious foci, culture conversion, and adverse drug reactions were compared with the standard culture methods. Results: Of the total of 143 MDR-TB patients, 68 (47.6%) were diagnosed by conventional culture methods and 75 (52.4%) following the implementation of detection using the DNA microarray. Patients in the microarray group began rational use of the second-line drugs schedule more speedily than sufferers in the culture group (17.3 vs. 74.1 days). Among patients were admitted to a general tuberculosis ward, those from the microarray group spent less time in the ward than those from the culture group (7.8 vs. 49.2 days). In those patients with six months follow-up (n=134), patients in the microarray group had a higher rate of sputum negativity conversion at six months (89% vs. 73%). In the microarray group, the rate of drug adverse reactions was significantly lower (22.2% vs. 67.7%). At the same time, they had a more obvious reduction of the area with spinal tuberculous lesions in radiological examinations (77% vs. 108%). Conclusions: The application of the CapitalBio™ DNA Microarray assay caused noteworthy clinical advances including an earlier time to begin MDR-TB treatment, increased sputum culture conversion, improved infection control measures and better radiographical results

Keywords: tuberculosis, multidrug-resistant, tuberculous spondylitis, DNA microarray, clinical outcomes

Procedia PDF Downloads 260
226 Combined Use of FMRI and Voxel-Based Morphometry in Assessment of Memory Impairment in Alzheimer's Disease Patients

Authors: A. V. Sokolov, S. V. Vorobyev, A. Yu. Efimtcev, V. Yu. Lobzin, I. A. Lupanov, O. A. Cherdakov, V. A. Fokin

Abstract:

Alzheimer’s disease (AD) is the most common form of dementia. Different brain regions are involved to the pathological process of AD. The purpose of this study was to evaluate brain activation by visual memory task in patients with Alzheimer's disease and determine correlation between memory impairment and atrophy of memory specific brain regions of frontal and medial temporal lobes. To investigate the organization of memory and localize cortical areas activated by visual memory task we used functional magnetic resonance imaging and to evaluate brain atrophy of patients with Alzheimer's disease we used voxel-based morphometry. FMRI was performed on 1.5 T MR-scanner Siemens Magnetom Symphony with BOLD (Blood Oxygenation Level Dependent) technique, based on distinctions of magnetic properties of hemoglobin. For test stimuli we used series of 12 not related images for "Baseline" and 12 images with 6 presented before for "Active". Stimuli were presented 3 times with reduction of repeated images to 4 and 2. Patients with Alzheimer's disease showed less activation in hippocampal formation (HF) region and parahippocampal gyrus then healthy persons of control group (p<0.05). The study also showed reduced activation in posterior cingulate cortex (p<0.001). Voxel-based morphometry showed significant atrophy of grey matter in Alzheimer’s disease patients, especially of both temporal lobes (fusiform and parahippocampal gyri); frontal lobes (posterior cingulate and superior frontal gyri). The study showed correlation between memory impairment and atrophy of memory specific brain regions of frontal and medial temporal lobes. Thus, reduced activation in hippocampal formation and parahippocampal gyri, in posterior cingulate gyrus in patients with Alzheimer's disease correlates to significant atrophy of these regions, detected by voxel-based morphometry, and to deterioration of specific cognitive functions.

Keywords: Alzheimer’s disease, functional MRI, voxel-based morphometry

Procedia PDF Downloads 287
225 Extensive Cerebral Venous Thrombosis after Resection of Third Ventricle Colloid Cyst

Authors: Naim Izet Kajtazi

Abstract:

Context: The third ventricle colloid cyst (CC) is a benign growth usually located in the third ventricle and can cause various neurological symptoms, including sudden death. Modern surgical interventions may still result in a wide range of complications and cerebral venous thrombosis (CVT) is among them. Process: A 38-year-old female with an existing diagnosis of diabetes mellitus (DM) and hypothyroidism and a six-month history of headaches, blurred vision, and vomiting presented to our clinic three days after the headaches became excessively severe. Neurological examination on admission revealed bilateral papilledema without any associated focal neurological deficits. Brain computed tomography (CT) and magnetic resonance imaging (MRI) confirmed the presence of a third ventricle colloid cyst and associated non-communicating hydrocephalus involving the lateral ventricles. As a result, the patient underwent emergency bilateral external ventricular drainage (EVD) insertion followed by a third ventricular CC excision under neuronavigation through a right frontal craniotomy. Twelve days post-operatively, the patient developed further headaches, followed by a generalized tonic-clonic seizure that led to no postictal neurological deficits. Nonetheless, computed tomography venography of the brain revealed extensive thrombosis of the superior sagittal sinus, inferior sagittal sinus, right sigmoid sinus, and right internal jugular vein. A newly diagnosed CVT was treated with intravenous heparin. The patient was discharged with warfarin, which was discontinued after 12 months. Ten years after her illness, she remained stable and free from any neurological deficits but still suffered from mild chronic headaches. Outcome: Ten years after her illness, she remained stable and free from any neurological deficits but still suffered from mild chronic headaches. Relevance: A preoperative venous study should be performed in all cases to gain a better understanding of the venous anatomy. We advocate meticulous microsurgical techniques to protect the venous system surrounding the foramen of Monro and reduce the amount of retraction during surgery.

Keywords: CVT, seizures, third ventricle colloid cyst, MRI of brain

Procedia PDF Downloads 41
224 Exploration of Hydrocarbon Unconventional Accumulations in the Argillaceous Formation of the Autochthonous Miocene Succession in the Carpathian Foredeep

Authors: Wojciech Górecki, Anna Sowiżdżał, Grzegorz Machowski, Tomasz Maćkowski, Bartosz Papiernik, Michał Stefaniuk

Abstract:

The article shows results of the project which aims at evaluating possibilities of effective development and exploitation of natural gas from argillaceous series of the Autochthonous Miocene in the Carpathian Foredeep. To achieve the objective, the research team develop a world-trend based but unique methodology of processing and interpretation, adjusted to data, local variations and petroleum characteristics of the area. In order to determine the zones in which maximum volumes of hydrocarbons might have been generated and preserved as shale gas reservoirs, as well as to identify the most preferable well sites where largest gas accumulations are anticipated a number of task were accomplished. Evaluation of petrophysical properties and hydrocarbon saturation of the Miocene complex is based on laboratory measurements as well as interpretation of well-logs and archival data. The studies apply mercury porosimetry (MICP), micro CT and nuclear magnetic resonance imaging (using the Rock Core Analyzer). For prospective location (e.g. central part of Carpathian Foredeep – Brzesko-Wojnicz area) reprocessing and reinterpretation of detailed seismic survey data with the use of integrated geophysical investigations has been made. Construction of quantitative, structural and parametric models for selected areas of the Carpathian Foredeep is performed on the basis of integrated, detailed 3D computer models. Modeling are carried on with the Schlumberger’s Petrel software. Finally, prospective zones are spatially contoured in a form of regional 3D grid, which will be framework for generation modelling and comprehensive parametric mapping, allowing for spatial identification of the most prospective zones of unconventional gas accumulation in the Carpathian Foredeep. Preliminary results of research works indicate a potentially prospective area for occurrence of unconventional gas accumulations in the Polish part of Carpathian Foredeep.

Keywords: autochthonous Miocene, Carpathian foredeep, Poland, shale gas

Procedia PDF Downloads 199
223 One-Step Synthesis and Characterization of Biodegradable ‘Click-Able’ Polyester Polymer for Biomedical Applications

Authors: Wadha Alqahtani

Abstract:

In recent times, polymers have seen a great surge in interest in the field of medicine, particularly chemotherapeutics. One recent innovation is the conversion of polymeric materials into “polymeric nanoparticles”. These nanoparticles can be designed and modified to encapsulate and transport drugs selectively to cancer cells, minimizing collateral damage to surrounding healthy tissues, and improve patient quality of life. In this study, we have synthesized pseudo-branched polyester polymers from bio-based small molecules, including sorbitol, glutaric acid and a propargylic acid derivative to further modify the polymer to make it “click-able" with an azide-modified target ligand. Melt polymerization technique was used for this polymerization reaction, using lipase enzyme catalyst NOVO 435. This reaction was conducted between 90- 95 °C for 72 hours. The polymer samples were collected in 24-hour increments for characterization and to monitor reaction progress. The resulting polymer was purified with the help of methanol dissolving and filtering with filter paper then characterized via NMR, GPC, FTIR, DSC, TGA and MALDI-TOF. Following characterization, these polymers were converted to a polymeric nanoparticle drug delivery system using solvent diffusion method, wherein DiI optical dye and chemotherapeutic drug Taxol can be encapsulated simultaneously. The efficacy of the nanoparticle’s apoptotic effects were analyzed in-vitro by incubation with prostate cancer (LNCaP) and healthy (CHO) cells. MTT assays and fluorescence microscopy were used to assess the cellular uptake and viability of the cells after 24 hours at 37 °C and 5% CO2 atmosphere. Results of the assays and fluorescence imaging confirmed that the nanoparticles were successful in both selectively targeting and inducing apoptosis in 80% of the LNCaP cells within 24 hours without affecting the viability of the CHO cells. These results show the potential of using biodegradable polymers as a vehicle for receptor-specific drug delivery and a potential alternative for traditional systemic chemotherapy. Detailed experimental results will be discussed in the e-poster.

Keywords: chemotherapeutic drug, click chemistry, nanoparticle, prostat cancer

Procedia PDF Downloads 91
222 Dosimetry in Interventional Radiology Examinations for Occupational Exposure Monitoring

Authors: Ava Zarif Sanayei, Sedigheh Sina

Abstract:

Interventional radiology (IR) uses imaging guidance, including X-rays and CT scans, to deliver therapy precisely. Most IR procedures are performed under local anesthesia and start with a small needle being inserted through the skin, which may be called pinhole surgery or image-guided surgery. There is increasing concern about radiation exposure during interventional radiology procedures due to procedure complexity. The basic aim of optimizing radiation protection as outlined in ICRP 139, is to strike a balance between image quality and radiation dose while maximizing benefits, ensuring that diagnostic interpretation is satisfactory. This study aims to estimate the equivalent doses to the main trunk of the body for the Interventional radiologist and Superintendent using LiF: Mg, Ti (TLD-100) chips at the IR department of a hospital in Shiraz, Iran. In the initial stage, the dosimeters were calibrated with the use of various phantoms. Afterward, a group of dosimeters was prepared, following which they were used for three months. To measure the personal equivalent dose to the body, three TLD chips were put in a tissue-equivalent batch and used under a protective lead apron. After the completion of the duration, TLDs were read out by a TLD reader. The results revealed that these individuals received equivalent doses of 387.39 and 145.11 µSv, respectively. The findings of this investigation revealed that the total radiation exposure to the staff was less than the annual limit of occupational exposure. However, it's imperative to implement appropriate radiation protection measures. Although the dose received by the interventional radiologist is a bit noticeable, it may be due to the reason for using conventional equipment with over-couch x-ray tubes for interventional procedures. It is therefore important to use dedicated equipment and protective means such as glasses and screens whenever compatible with the intervention when they are available or have them fitted to equipment if they are not present. Based on the results, the placement of staff in an appropriate location led to increasing the dose to the radiologist. Manufacturing and installation of moveable lead curtains with a thickness of 0.25 millimeters can effectively minimize the radiation dose to the body. Providing adequate training on radiation safety principles, particularly for technologists, can be an optimal approach to further decreasing exposure.

Keywords: interventional radiology, personal monitoring, radiation protection, thermoluminescence dosimetry

Procedia PDF Downloads 34
221 Colour and Travel: Design of an Innovative Infrastructure for Travel Applications with Entertaining and Playful Features

Authors: Avrokomi Zavitsanou, Spiros Papadopoulos, Theofanis Alexandridis

Abstract:

This paper presents the research project ‘Colour & Travel’, which is co-funded by the European Union and national resources through the Operational Programme “Competitiveness, Entrepreneurship and Innovation” 2014-2020, under the Single RTDI State Aid Action "RESEARCH - CREATE - INNOVATE". The research project proposes the design of an innovative, playful framework for exploring a variety of travel destinations and creating personalised travel narratives, aiming to entertain, educate, and promote culture and tourism. Gamification of the cultural and touristic environment can enhance its experiential, multi-sensory aspects and broaden the perception of the traveler. The latter's involvement in creating and shaping his personal travel narrations and the possibility of sharing it with others can offer him an alternative, more binding way of getting acquainted with a place. In particular, the paper presents the design of an infrastructure: (a) for the development of interactive travel guides for mobile devices, where sites with specific points of interest will be recommended, with which the user can interact in playful ways and then create his personal travel narratives, (b) for the development of innovative games within virtual reality environment, where the interaction will be offered while the user is moving within the virtual environment; and (c) for an online application where the content will be offered through the browser and the modern 3D imaging technologies (WebGL). The technological products that will be developed within the proposed project can strengthen important sectors of economic and social life, such as trade, tourism, exploitation and promotion of the cultural environment, creative industries, etc. The final applications delivered at the end of the project will guarantee an improved level of service for visitors and will be a useful tool for content creators with increased adaptability, expansibility, and applicability in many regions of Greece and abroad. This paper aims to present the research project by referencing the state of the art and the methodological scheme, ending with a brief reflection on the expected outcome in terms of results.

Keywords: gamification, culture, tourism, AR, VR, applications

Procedia PDF Downloads 116
220 Feasibility of Voluntary Deep Inspiration Breath-Hold Radiotherapy Technique Implementation without Deep Inspiration Breath-Hold-Assisting Device

Authors: Auwal Abubakar, Shazril Imran Shaukat, Noor Khairiah A. Karim, Mohammed Zakir Kassim, Gokula Kumar Appalanaido, Hafiz Mohd Zin

Abstract:

Background: Voluntary deep inspiration breath-hold radiotherapy (vDIBH-RT) is an effective cardiac dose reduction technique during left breast radiotherapy. This study aimed to assess the accuracy of the implementation of the vDIBH technique among left breast cancer patients without the use of a special device such as a surface-guided imaging system. Methods: The vDIBH-RT technique was implemented among thirteen (13) left breast cancer patients at the Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia. Breath-hold monitoring was performed based on breath-hold skin marks and laser light congruence observed on zoomed CCTV images from the control console during each delivery. The initial setup was verified using cone beam computed tomography (CBCT) during breath-hold. Each field was delivered using multiple beam segments to allow a delivery time of 20 seconds, which can be tolerated by patients in breath-hold. The data were analysed using an in-house developed MATLAB algorithm. PTV margin was computed based on van Herk's margin recipe. Results: The setup error analysed from CBCT shows that the population systematic error in lateral (x), longitudinal (y), and vertical (z) axes was 2.28 mm, 3.35 mm, and 3.10 mm, respectively. Based on the CBCT image guidance, the Planning target volume (PTV) margin that would be required for vDIBH-RT using CCTV/Laser monitoring technique is 7.77 mm, 10.85 mm, and 10.93 mm in x, y, and z axes, respectively. Conclusion: It is feasible to safely implement vDIBH-RT among left breast cancer patients without special equipment. The breath-hold monitoring technique is cost-effective, radiation-free, easy to implement, and allows real-time breath-hold monitoring.

Keywords: vDIBH, cone beam computed tomography, radiotherapy, left breast cancer

Procedia PDF Downloads 21
219 The Effect of Three-Dimensional Morphology on Vulnerability Assessment of Atherosclerotic Plaque

Authors: M. Zareh, H. Mohammadi, B. Naser

Abstract:

Atherosclerotic plaque rupture is the main trigger of heart attack and brain stroke which are the leading cause of death in developed countries. Better understanding of rupture-prone plaque can help clinicians detect vulnerable plaques- rupture prone or instable plaques- and apply immediate medical treatment to prevent these life-threatening cardiovascular events. Therefore, there are plenty of studies addressing disclosure of vulnerable plaques properties. Necrotic core and fibrous tissue are two major tissues constituting atherosclerotic plaque; using histopathological and numerical approaches, many studies have demonstrated that plaque rupture is strongly associated with a large necrotic core and a thin fibrous cap, two morphological characteristic which can be acquired by two-dimensional imaging of atherosclerotic plaque present in coronary and carotid arteries. Plaque rupture is widely considered as a mechanical failure inside plaque tissue; this failure occurs when the stress within plaque excesses the strength of tissue material; hence, finite element method, a strong numerical approach, has been extensively applied to estimate stress distribution within plaques with different compositions which is then used for assessment of various vulnerability characteristics including plaque morphology, material properties and blood pressure. This study aims to evaluate significance of three-dimensional morphology on vulnerability degree of atherosclerotic plaque. To reach this end, different two-dimensional geometrical models of atherosclerotic plaques are considered based on available data and named Main 2D Models (M2M). Then, for each of these M2Ms, two three-dimensional idealistic models are created. These two 3D models represent two possible three-dimensional morphologies which might exist for a plaque with similar 2D morphology to one of M2Ms. Finite element method is employed to estimate stress, von-Mises stress, within each 3D models. Results indicate that for each M2Ms stress can significantly varies due to possible 3D morphological changes in that plaque. Also, our results show that an atherosclerotic plaque with thick cap may experience rupture if it has a critical 3D morphology. This study highlights the effect of 3D geometry of plaque on its instability degree and suggests that 3D morphology of plaque might be necessary to more effectively and accurately assess atherosclerotic plaque vulnerability.

Keywords: atherosclerotic plaque, plaque rupture, finite element method, 3D model

Procedia PDF Downloads 286
218 Development of Micelle-Mediated Sr(II) Fluorescent Analysis System

Authors: K. Akutsu, S. Mori, T. Hanashima

Abstract:

Fluorescent probes are useful for the selective detection of trace amount of ions and biomolecular imaging in living cells. Various kinds of metal ion-selective fluorescent compounds have been developed, and some compounds have been applied as effective metal ion-selective fluorescent probes. However, because competition between the ligand and water molecules for the metal ion constitutes a major contribution to the stability of a complex in aqueous solution, it is difficult to develop a highly sensitive, selective, and stable fluorescent probe in aqueous solution. The micelles, these are formed in the surfactant aqueous solution, provides a unique hydrophobic nano-environment for stabilizing metal-organic complexes in aqueous solution. Therefore, we focused on the unique properties of micelles to develop a new fluorescence analysis system. We have been developed a fluorescence analysis system for Sr(II) by using a Sr(II) fluorescent sensor, N-(2-hydroxy-3-(1H-benzimidazol-2-yl)-phenyl)-1-aza-18-crown-6-ether (BIC), and studied its complexation behavior with Sr(II) in micellar solution. We revealed that the stability constant of Sr(II)-BIC complex was 10 times higher than that in aqueous solution. In addition, its detection limit value was also improved up to 300 times by this system. However, the mechanisms of these phenomena have remained obscure. In this study, we investigated the structure of Sr(II)-BIC complex in aqueous micellar solution by combining use the extended X-ray absorption fine structure (EXAFS) and neutron reflectivity (NR) method to understand the unique properties of the fluorescence analysis system from the view point of structural chemistry. EXAFS and NR experiments were performed on BL-27B at KEK-PF and on BL17 SHARAKU at J-PARC MLF, respectively. The obtained EXAFS spectra and their fitting results indicated that Sr(II) and BIC formed a Sr(18-crown-6-ether)-like complex in aqueous micellar solution. The EXAFS results also indicated that the hydrophilic head group of surfactant molecule was directly coordinated with Sr(II). In addition, the NR results also indicated that Sr(II)-BIC complex would interact with the surface of micelle molecules. Therefore, we concluded that Sr(II), BIC, and surfactant molecule formed a ternary complexes in aqueous micellar solution, and at least, it is clear that the improvement of the stability constant in micellar solution is attributed to the result of the formation of Sr(BIC)(surfactant) complex.

Keywords: micell, fluorescent probe, neutron reflectivity, EXAFS

Procedia PDF Downloads 158
217 Successful Rehabilitation of Recalcitrant Knee Pain Due to Anterior Cruciate Ligament Injury Masked by Extensive Skin Graft: A Case Report

Authors: Geum Yeon Sim, Tyler Pigott, Julio Vasquez

Abstract:

A 38-year-old obese female with no apparent past medical history presented with left knee pain. Six months ago, she sustained a left knee dislocation in a motor vehicle accident that was managed with a skin graft over the left lower extremity without any reconstructive surgery. She developed persistent pain and stiffness in her left knee that worsened with walking and stair climbing. Examination revealed healed extensive skin graft over the left lower extremity, including the left knee. Palpation showed moderate tenderness along the superior border of the patella, exquisite tenderness over MCL, and mild tenderness on the tibial tuberosity. There was normal sensation, reflexes, and strength in her lower extremities. There was limited active and passive range of motion of her left knee during flexion. There was instability noted upon the valgus stress test of the left knee. Left knee magnetic resonance imaging showed high-grade (grade 2-3) injury of the proximal superficial fibers of the MCL and diffuse thickening and signal abnormality of the cruciate ligaments, as well as edema-like subchondral marrow signal change in the anterolateral aspect of the lateral femoral condyle weight-bearing surface. There was also notable extensive scarring and edema of the skin, subcutaneous soft tissues, and musculature surrounding the knee. The patient was managed with left knee immobilization for five months, which was complicated by limited knee flexion. Physical therapy consisting of quadriceps, hamstrings, gastrocnemius stretching and strengthening, range of motion exercises, scar/soft tissue mobilization, and gait training was given with marked improvement in pain and range of motion. The patient experienced a further reduction in pain as well as an improvement in function with home exercises consisting of continued strengthening and stretching.

Keywords: ligamentous injury, trauma, rehabilitation, knee pain

Procedia PDF Downloads 59
216 A Literature Review of Precision Agriculture: Applications of Diagnostic Diseases in Corn, Potato, and Rice Based on Artificial Intelligence

Authors: Carolina Zambrana, Grover Zurita

Abstract:

The food loss production that occurs in deficient agricultural production is one of the major problems worldwide. This puts the population's food security and the efficiency of farming investments at risk. It is to be expected that this food security will be achieved with the own and efficient production of each country. It will have an impact on the well-being of its population and, thus, also on food sovereignty. The production losses in quantity and quality occur due to the lack of efficient detection of diseases at an early stage. It is very difficult to solve the agriculture efficiency using traditional methods since it takes a long time to be carried out due to detection imprecision of the main diseases, especially when the production areas are extensive. Therefore, the main objective of this research study is to perform a systematic literature review, of the latest five years, of Precision Agriculture (PA) to be able to understand the state of the art of the set of new technologies, procedures, and optimization processes with Artificial Intelligence (AI). This study will focus on Corns, Potatoes, and Rice diagnostic diseases. The extensive literature review will be performed on Elsevier, Scopus, and IEEE databases. In addition, this research will focus on advanced digital imaging processing and the development of software and hardware for PA. The convolution neural network will be handling special attention due to its outstanding diagnostic results. Moreover, the studied data will be incorporated with artificial intelligence algorithms for the automatic diagnosis of crop quality. Finally, precision agriculture with technology applied to the agricultural sector allows the land to be exploited efficiently. This system requires sensors, drones, data acquisition cards, and global positioning systems. This research seeks to merge different areas of science, control engineering, electronics, digital image processing, and artificial intelligence for the development, in the near future, of a low-cost image measurement system that allows the optimization of crops with AI.

Keywords: precision agriculture, convolutional neural network, deep learning, artificial intelligence

Procedia PDF Downloads 52