Search results for: high nitrogen supersaturation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20125

Search results for: high nitrogen supersaturation

19795 Adsorption and Corrosion Inhibition of New Synthesized Thiophene Schiff Base on Mild Steel in HCL Solution

Authors: H. Elmsellem, A. Aouniti, S. Radi, A. Chetouani, B. Hammouti

Abstract:

The synthesis of new organic molecules offers various molecular structures containing heteroatoms and substituents for corrosion protection in acid pickling of metals. The most synthesized compounds are the nitrogen heterocyclic compounds, which are known to be excellent complex or chelate forming substances with metals. The choice of the inhibitor is based on two considerations: first it could be synthesized conveniently from relatively cheap raw materials, secondly, it contains the electron cloud on the aromatic ring or, the electro negative atoms such as nitrogen and oxygen in the relatively long chain compounds. In the present study, (NE)‐2‐methyl‐N‐(thiophen‐2‐ylmethylidene) aniline(T) was synthesized and its inhibiting action on the corrosion of mild steel in 1 M hydrochloric acid was examined by different corrosion methods, such as weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The experimental results suggest that this compound is an efficient corrosion inhibitor and the inhibition efficiency increases with the increase in inhibitor concentration. Adsorption of this compound on mild steel surface obeys Langmuir’s isotherm. Correlation between quantum chemical calculations and inhibition efficiency of the investigated compound is discussed using the Density Functional Theory method (DFT).

Keywords: mild steel, Schiff base, inhibition, corrosion, HCl, quantum chemical

Procedia PDF Downloads 299
19794 MnO₂-Carbon Nanotubes Catalyst for Enhanced Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cell

Authors: Abidullah, Basharat Hussain, Jong Seok Kim

Abstract:

Polymer electrolyte membrane fuel cell (PEMFC) is an electrochemical cell, which undergoes an oxygen reduction reaction to produce electrical energy. Platinum (Pt) metal has been used as a catalyst since its inception, but expensiveness is the major obstacle in the commercialization of fuel cells. Herein a non-precious group metal (NPGM) is employed instead of Pt to reduce the cost of PEMFCs. Manganese dioxide impregnated carbon nanotubes (MnO₂-CNTs composite) is a catalyst having excellent electrochemical properties and offers a better alternative to the Platinum-based PEMFC. The catalyst is synthesized by impregnating the transition metal on large surface carbonaceous CNTs by hydrothermal synthesis techniques. To enhance the catalytic activity and increase the volumetric current density, the sample was pyrolyzed at 800ᵒC under a nitrogen atmosphere. During pyrolysis, the nitrogen was doped in the framework of CNTs. Then the material was treated with acid for removing the unreacted metals and adding oxygen functional group to the CNT framework. This process ameliorates the catalytic activity of the manganese-based catalyst. The catalyst has been characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and the catalyst activity has been examined by rotating disc electrode (RDE) experiment. The catalyst was strong enough to withstand an austere alkaline environment in experimental conditions and had a high electrocatalytic activity for oxygen reduction reaction (ORR). Linear Sweep Voltammetry (LSV) depicts an excellent current density of -4.0 mA/cm² and an overpotential of -0.3V vs. standard calomel electrode (SCE) in 0.1M KOH electrolyte. Rotating disk electrode (RDE) was conducted at 400, 800, 1200, and 1600 rpm. The catalyst exhibited a higher methanol tolerance and long term durability with respect to commercial Pt/C. The results for MnO₂-CNT show that the low-cost catalyst will supplant the expensive Pt/C catalyst in the fuel cell.

Keywords: carbon nanotubes, methanol fuel cell, oxygen reduction reaction, MnO₂-CNTs

Procedia PDF Downloads 102
19793 Morroniside Intervention Mechanism of Renal Lesions, a Combination Model of AGEs Exacerbation of STZ-Induced Diabetes Mellitus

Authors: Hui-Qin Xu, Xing Lv, Yu-Han Tao

Abstract:

The depth study aimed on the mechanism of morroniside in protecting diabetic nephropathy. The diabetic mice models with blood glucose above 15mmol/L were divided into model, aminoguanidine, metformin, captopril, morroniside low-dose, and morroniside high-dose groups. And normal group was set simultaneously. All groups were fed with high AGEs food except normal group. Each group was intragastric administration of the corresponding medicine except model and normal groups. After 12 weeks, all the indictors were measured. It showed that the morroniside could reduce blood glucose significantly, urinary protein, serum urea nitrogen, creatine, pathological changes, AGEs levels, renal cortex RAGE mRNA and RAGE protein expression levels; increase food consumption, water intake, urine volume, insulin secretion. As a conclusion, morroniside from cornus officinalis can protect renal in diabetic mice, its mechanism may be related to the proliferation of islet cells, rectify glycometabolism, reduce serum and kidney AGEs content, and descend renal RAGEmRNA and RAGE protein expression levels.

Keywords: cornus officinalis, diabetic nephropathy, morroniside, RAGE protein

Procedia PDF Downloads 427
19792 Ecosystem Restoration: Remediation of Crude Oil-Polluted Soil by Leuceana leucocephala (Lam.) de Wit

Authors: Ayodele Adelusi Oyedeji

Abstract:

The study was carried out under a controlled environment with the aim of examining remediation of crude oil polluted soil. The germination rate, heights and girths, number of leaves and nodulation was determined following standard procedures. Some physicochemical (organic matter, pH, nitrogen, phosphorous, potassium, calcium, magnesium and sodium) characteristics of soil used were determined using standard protocols. Results showed that at varying concentration of crude oil i.e 0 ml, 25 ml, 50 ml, 75 ml and 100 ml, Leuceana leucocephala had germination rate of 92%, 90%, 84%, 62% and 56% respectively, mean height of 73.70cm, 58.30cm, 49.50cm, 46.45cm and 41.80cm respectively after 16 weeks after planting (WAP), mean girth of 0.54mm, 0.34mm, 0.33mm, 0.21mm and 0.19mm respectively at 16 WAP, number of nodules 18, 10, 10, 6 and 2 respectively and number of leaves 24.00, 16.00, 13.00, 10.00 and 6.00 respectively. The organic matter, pH, nitrogen, phosphorous, potassium, calcium, magnesium, and sodium decreased with the increase in the concentration of crude oil. Furthermore, as the concentration of crude oil increased the germination rate, height, girth, and number of leaves and nodules decreased, suggesting the effect of crude oil on Leuceana leucocephala. The plant withstands the varying concentration of the crude oil means that it could be used for the remediation of crude oil contaminated soil in the Niger Delta region of Nigeria.

Keywords: ecosystem conservation, Leuceana leucocephala, phytoremediation, soil pollution

Procedia PDF Downloads 85
19791 Contrasting Patterns of Accumulation, Partitioning, and Reallocation Patterns of Dm and N Within the Maize Canopy Under Decreased N Availabilities

Authors: Panpan Fan, Bo Ming, Niels P. R. Anten, Jochem B. Evers, Yaoyao Li, Shaokun Li, Ruizhi Xie

Abstract:

The reallocation of dry matter (DM) and nitrogen (N) from vegetative tissues to the grain sinks are critical for grain yield. The objective of this study was to quantify the DM and N accumulation, partition, and reallocation at the single-leaf, different-organ, and individual-plant scales and clarify the responses to different levels of N availabilities. A two-year field experiment was conducted in Jinlin province, Northeast China, with three N fertilizer rates to create the different N availability levels: N0 (N deficiency), N1(low supply), and N2 (high supply). The results showed that grain N depends more on reallocations of vegetative organs compared with grain DM. Besides, vegetative organs reallocated more DM and N to grain under lower N availability, whereas more grain DM and grain N were derived from post-silking leaf photosynthesis and post-silking N uptake from the soil under high N availability. Furthermore, the reallocation amount and reallocation efficiency of leaf DM and leaf N content differed among leaf ranks and were regulated by N availability; specifically, the DM reallocation occurs mainly on senesced leaves, whereas the leaf N reallocation was in live leaves. These results provide a theoretical basis for deriving parameters in crop models for the simulation of the demand, uptake, partition, and reallocation processes of DM and N.

Keywords: dry matter, leaf N content, leaf rank, N availability, reallocation efficiency

Procedia PDF Downloads 94
19790 Plasma Systems Application in Treating Automobile Exhaust Gases for a Clean Environment (Case Study)

Authors: Tahsen Abdalwahab Ibraheem Albehege

Abstract:

Exhaust fuel purification is of great importance to prevent the emission of major pollutants into the atmosphere such as diesel particulates and nitrogen oxides and meet environmental regulations, so environmental impacts are a primary concern of Diesel Exhaust Gas (DEG) which contains hazardous substances harmful to the environment as well as human health.We can not plasma formed through directing electrical energy to create free electrons, which in turn can react with gaseous species, but we can by used to treat engine exhaust gases. . By NO that has been reportedly oxidized to HNO3 and then into ammonium nitrate, and then condensed and removed. In general, thermal plasmas are formed by heating a system to high temperatures 2,000 degrees C, however this can be inefficient and can require extensive thermal management.

Keywords: plasma system application, project physics, oxidizing environment, electromagnetically

Procedia PDF Downloads 76
19789 Application of Artificial Ground-Freezing to Construct a Passenger Interchange Tunnel for the Subway Line 14 in Paris, France

Authors: G. Lancellotta, G. Di Salvo, A. Rigazio, A. Davout, V. Pastore, G. Tonoli, A. Martin, P. Jullien, R. Jagow-Klaff, R. Wernecke

Abstract:

Artificial ground freezing (AGF) technique is a well-proven soil improvement approach used worldwide to construct shafts, tunnels and many other civil structures in difficult subsoil or ambient conditions. As part of the extension of Line 14 of the Paris subway, a passenger interchange tunnel between the new station at Porte de CI ichy and the new Tribunal the Grand Instance has been successfully constructed using this technique. The paper presents the successful application of AGF by Liquid Nitrogen and Brine implemented to provide structural stability and groundwater cut-off around the passenger interchange tunnel. The working conditions were considered to be rather challenging, due to the proximity of a hundred-year-old existing service tunnel of the Line 13, and subsoil conditions on site. Laboratory tests were carried out to determine the relevant soil parameters for hydro-thermal-mechanical aspects and to implement numerical analyses. Monitoring data were used in order to check and control the development and the efficiency of the freezing process as well as to back analyze the parameters assumed for the design, both during the freezing and thawing phases.

Keywords: artificial ground freezing, brine method, case history, liquid nitrogen

Procedia PDF Downloads 198
19788 Anaerobic Co-digestion of the Halophyte Salicornia Ramosissima and Pig Manure in Lab-Scale Batch and Semi-continuous Stirred Tank Reactors: Biomethane Production and Reactor Performance

Authors: Aadila Cayenne, Hinrich Uellendahl

Abstract:

Optimization of the anaerobic digestion (AD) process of halophytic plants is essential as the biomass contains a high salt content that can inhibit the AD process. Anaerobic co-digestion, together with manure, can resolve the inhibitory effects of saline biomass in order to dilute the salt concentration and establish favorable conditions for the microbial consortia of the AD process. The present laboratory study investigated the co-digestion of S. ramosissima (Sram), and pig manure (PM) in batch and semi-continuous stirred tank reactors (CSTR) under mesophilic (38oC) conditions. The 0.5L batch reactor experiments were in mono- and co-digestion of Sram: PM using different percent volatile solid (VS) based ratios (0:100, 15:85, 25:75, 35:65, 50:50, 100:0) with an inoculum to substate (I/R) ratio of 2. Two 5L CSTR systems (R1 and R2) were operated for 133 days with a feed of PM in a control reactor (R1) and with a co-digestion feed in an increasing Sram VS ratio of Sram: PM of 15:85, 25:75, 35:65 in reactor R2 at an organic loading rate (OLR) of 2 gVS/L/d and hydraulic retention time (HRT) of 20 days. After a start-up phase of 8 weeks for both reactors R1 and R2 with PM feed alone, the halophyte biomass Sram was added to the feed of R2 in an increasing ratio of 15 – 35 %VS Sram over an 11-week period. The process performance was monitored by pH, total solid (TS), VS, total nitrogen (TN), ammonium-nitrogen (NH4 – N), volatile fatty acids (VFA), and biomethane production. In the batch experiments, biomethane yields of 423, 418, 392, 365, 315, and 214 mL-CH4/gVS were achieved for mixtures of 0:100, 15:85, 25:75, 35:65, 50:50, 100:0 %VS Sram: PM, respectively. In the semi-continuous reactor processes, the average biomethane yields were 235, 387, and 365 mL-CH4/gVS for the phase of a co-digestion feed ratio in R2 of 15:85, 25:75, and 35:65 %VS Sram: PM, respectively. The methane yield of PM alone in R1 was in the corresponding phases on average 260, 388, and 446 mL-CH4/gVS. Accordingly, in the continuous AD process, the methane yield of the halophyte Sram was highest at 386 mL-CH4/gVS in the co-digestion ratio of 25:75%VS Sram: PM and significantly lower at 15:85 %VS Sram: PM (100 mL-CH4/gVS) and at 35:65 %VS Sram (214 mL-CH4/gVS). The co-digestion process showed no signs of inhibition at 2 – 4 g/L NH4 – N, 3.5 – 4.5 g/L TN, and total VFA of 0.45 – 2.6 g/L (based on Acetic, Propionic, Butyric and Valeric acid). This study demonstrates that a stable co-digestion process of S. ramosissima and pig manure can be achieved with a feed of 25%VS Sram at HRT of 20 d and OLR of 2 gVS/L/d.

Keywords: anaerobic co-digestion, biomethane production, halophytes, pig manure, salicornia ramosissima

Procedia PDF Downloads 114
19787 Microwave-Assisted Torrefaction of Teakwood Biomass Residues: The Effect of Power Level and Fluid Flows

Authors: Lukas Kano Mangalla, Raden Rinova Sisworo, Luther Pagiling

Abstract:

Torrefaction is an emerging thermo-chemical treatment process that aims to improve the quality of biomass fuels. This study focused on upgrading the waste teakwood through microwave torrefaction processes and investigating the key operating parameters to improve energy density for the quality of biochar production. The experiments were carried out in a 250 mL reactor placed in a microwave cavity on two different media, inert and non-inert. The microwave was operated at a frequency of 2.45GHz with power level variations of 540W, 720W, and 900W, respectively. During torrefaction processes, the nitrogen gas flows into the reactor at a rate of 0.125 mL/min, and the air flows naturally. The temperature inside the reactor was observed every 0.5 minutes for 20 minutes using a K-Type thermocouple. Changes in the mass and the properties of the torrefied products were analyzed to predict the correlation between calorific value, mass yield, and level power of the microwave. The results showed that with the increase in the operating power of microwave torrefaction, the calorific value and energy density of the product increased significantly, while mass and energy yield tended to decrease. Air can be a great potential media for substituting the expensive nitrogen to perform the microwave torrefaction for teakwood biomass.

Keywords: torrefaction, microwave heating, energy enhancement, mass and energy yield

Procedia PDF Downloads 70
19786 The Effect of Zeolite and Fertilizers on Yield and Qualitative Characteristics of Cabbage in the Southeast of Kazakhstan

Authors: Tursunay Vassilina, Aigerim Shibikeyeva, Adilet Sakhbek

Abstract:

Research has been carried out to study the influence of modified zeolite fertilizers on the quantitative and qualitative indicators of cabbage variety Nezhenka. The use of zeolite and mineral fertilizers had a positive effect on both the yield and quality indicators of the studied crop. The maximum increase in yield from fertilizers was 16.5 t/ha. Application of both zeolite and fertilizer increased the dry matter, sugar and vitamin C content of cabbage heads. It was established that the cabbage contains an amount of nitrates that is safe for human health. Among vegetable crops, cabbage has both food and feed value. One of the limiting factors in the sale of vegetable crops is the degradation of soil fertility due to depletion of nutrient reserves and erosion processes, and non-compliance with fertilizer application technologies. Natural zeolites are used as additives to mineral fertilizers for application in the field, which makes it possible to reduce their doses to minimal quantities. Zeolites improve the agrophysical and agrochemical properties of the soil and the quality of plant products. The research was carried out in a field experiment, carried out in 3 repetitions, on dark chestnut soil in 2023. The soil (pH = 7.2-7.3) of the experimental plot is dark chestnut, the humus content in the arable layer is 2.15%, gross nitrogen 0.098%, phosphorus, potassium 0.225 and 2.4%, respectively. The object of the study was the late cabbage variety Nezhenka. Scheme for applying fertilizers to cabbage: 1. Control (without fertilizers); 2. Zeolite 2t/ha; 3. N45P45K45; 4. N90P90K90; 5. Zeolite, 2 t/ha + N45P45K45; 6. Zeolite, 2 t/ha + N90P90K90. Yield accounting was carried out on a plot-by-plot basis manually. In plant samples, the following was determined: dry matter content by thermostatic method (at 105ºC); sugar content by Bertrand titration method, nitrate content by 1% diphenylamine solution, vitamin C by titrimetric method with acid solution. According to the results, it was established that the yield of cabbage was high – 42.2 t/ha in the treatment Zeolite, 2 t/ha + N90P90K90. When determining the biochemical composition of white cabbage, it was found that the dry matter content was 9.5% and increased with fertilized treatments. The total sugar content increased slightly with the use of zeolite (5.1%) and modified zeolite fertilizer (5.5%), the vitamin C content ranged from 17.5 to 18.16%, while in the control, it was 17.21%. The amount of nitrates in products also increased with increasing doses of nitrogen fertilizers and decreased with the use of zeolite and modified zeolite fertilizer but did not exceed the maximum permissible concentration. Based on the research conducted, it can be concluded that the application of zeolite and fertilizers leads to a significant increase in yield compared to the unfertilized treatment; contribute to the production of cabbage with good and high quality indicators.

Keywords: cabbage, dry matter, nitrates, total sugar, yield, vitamin C

Procedia PDF Downloads 45
19785 Removal of Nitrate and Phosphates from Waste Water Using Activated Bio-Carbon Produced from Agricultural Waste

Authors: Kgomotso Matobole, Natania De Wet, Tefo Mbambo, Hilary Rutto, Tumisang Seodigeng

Abstract:

Nitrogen and phosphorus are nutrients which are required in the ecosystem, however, at high levels, these nutrients contribute to the process of eutrophication in the receiving water bodies, which threatens aquatic organisms. Hence it is vital that they are removed before the water is discharged. This phenomenon increases the cost related to wastewater treatment. This raises the need for the development of processes that are cheaper. Activated biocarbon was used in batch and filtration system to remove nitrates and phosphates. The batch system has higher nutrients removal capabilities than the filtration system. For phosphate removal, 93 % removal is achieved at the adsorbent of 300 g while for nitrates, 84 % removal is achieved when 200 g of activated carbon is loaded.

Keywords: waste water treatment, phosphates, nitrates, activated carbon, agricultural waste

Procedia PDF Downloads 386
19784 Yields and Composition of the Gas, Liquid and Solid Fractions Obtained by Conventional Pyrolysis of Different Lignocellulosic Biomass Residues

Authors: María del Carmen Recio-Ruiz, Ramiro Ruiz-Rosas, Juana María Rosas, José Rodríguez-Mirasol, Tomás Cordero

Abstract:

Nowadays, fossil resources are main precursors for fuel production. Due to their contribution to the greenhouse effect and their future depletion, there is a constant search for environmentally friendly feedstock alternatives. Biomass residues constitute an interesting replacement for fossil resources because of their zero net CO₂ emissions. One of the main routes to convert biomass into energy and chemicals is pyrolysis. In this work, conventional pyrolysis of different biomass residues highly available such as almond shells, hemp hurds, olive stones, and Kraft lignin, was studied. In a typical experiment, the biomass was crushed and loaded into a fixed bed reactor under continuous nitrogen flow. The influence of temperature (400-800 ºC) and heating rate (10 and 20 ºC/min) on the pyrolysis yield and composition of the different fractions has been studied. In every case, the mass yields revealed that the solid fraction decreased with temperature, while liquid and gas fractions increased due to depolymerization and cracking reactions at high temperatures. The composition of every pyrolysis fraction was studied in detail. The results showed that the composition of the gas fraction was mainly CO, CO₂ when working at low temperatures, and mostly CH₄ and H₂at high temperatures. The solid fraction developed an incipient microporosity, with narrow micropore volume of 0.21 cm³/g. Regarding the liquid fraction, pyrolysis of almond shell, hemp hurds, and olive stones led mainly to a high content in aliphatic acids and furans, due to the high volatile matter content of these biomass (>74 %wt.), and phenols to a lesser degree, which were formed due to the degradation of lignin at higher temperatures. However, when Kraft lignin was used as bio-oil precursor, the presence of phenols was very prominent, and aliphatic compounds were also detected in a lesser extent.

Keywords: Bio-oil, biomass, conventional pyrolysis, lignocellulosic

Procedia PDF Downloads 113
19783 Investigation of the NO2 Formation in the Exhaust Duct of a Dual Fuel Test Engine

Authors: Ehsan Arabian, Thomas Sattelmayer

Abstract:

The formation of nitrogen dioxide NO2 in the exhaust duct of a MAN dual fuel test engine has been investigated numerically. The dual fuel engine concept with premixed lean methane combustion ignited through diesel pilot flames reveals high potential for the abatement of the NOx formation. The drawback of this combustion method, however, is the high NO2 formation due to the increasing concentration of unburned hydrocarbons. This promotes the conversion of NO to NO2, which is toxic and characterized through its yellow color. The results presented in this paper cover a wide range of engine operation points from full load to part load for different air to fuel ratios. The effects of temperature, pressure and concentrations of unburned methane and nitric oxide on NO2 formation in the exhaust duct has been investigated on the basis of a zero-dimensional well stirred reactor model implemented in Cantera, which calculates the steady state of a uniform composition for a certain residence time. It can be shown that the simulated conversion of NO to NO2 match the experimental results fairly well. The partial oxidation of methane followed by CO production can be predicted as well. It can also be concluded that the lower temperature limit for which no conversion takes place, depends mainly on the concentration of the unburned hydrocarbons in the exhaust.

Keywords: cantera, dual fuel engines, exhaust tract, numerical modeling of NO2 formation, well stirred reactor

Procedia PDF Downloads 199
19782 Liesegang Phenomena: Experimental and Simulation Studies

Authors: Vemula Amalakrishna, S. Pushpavanam

Abstract:

Change and motion characterize and persistently reshape the world around us, on scales from molecular to global. The subtle interplay between change (Reaction) and motion (Diffusion) gives rise to an astonishing intricate spatial or temporal pattern. These pattern formation in nature has been intellectually appealing for many scientists since antiquity. Periodic precipitation patterns, also known as Liesegang patterns (LP), are one of the stimulating examples of such self-assembling reaction-diffusion (RD) systems. LP formation has a great potential in micro and nanotechnology. So far, the research on LPs has been concentrated mostly on how these patterns are forming, retrieving information to build a universal mathematical model for them. Researchers have developed various theoretical models to comprehensively construct the geometrical diversity of LPs. To the best of our knowledge, simulation studies of LPs assume an arbitrary value of RD parameters to explain experimental observation qualitatively. In this work, existing models were studied to understand the mechanism behind this phenomenon and challenges pertaining to models were understood and explained. These models are not computationally effective due to the presence of discontinuous precipitation rate in RD equations. To overcome the computational challenges, smoothened Heaviside functions have been introduced, which downsizes the computational time as well. Experiments were performed using a conventional LP system (AgNO₃-K₂Cr₂O₇) to understand the effects of different gels and temperatures on formed LPs. The model is extended for real parameter values to compare the simulated results with experimental data for both 1-D (Cartesian test tubes) and 2-D(cylindrical and Petri dish).

Keywords: reaction-diffusion, spatio-temporal patterns, nucleation and growth, supersaturation

Procedia PDF Downloads 132
19781 Synergistic Studies of Multi-Flame Retarders Using Silica Nanoparticles, and Nitrogen and Phosphorus-Based Compounds for Polystyrene Using Response Surface Methodology

Authors: Florencio D. De Los Reyes, Magdaleno R. Vasquez Jr., Mark Daniel G. De Luna, Peerasak Paoprasert

Abstract:

The effect of adding silica nanoparticles (SiNPs) obtained from rice husk, and phosphorus and nitrogen based compounds namely 9,10-dihydro-9-oxa-10-phosphaphenantrene-10-oxide (DOPO) and melamine, respectively, on the flammability of polystyrene (PS) was studied using response surface methodology (RSM). The flammability of PS was reduced as the limiting oxygen index (LOI) values increased when the flame retardant additives were added. DOPO exhibited the best retarding property increasing the LOI value of PS by 42.4%. A quadratic model for LOI was obtained from the RSM results, with percent loading of SiNPs, DOPO, and melamine, as independent variables. The observed increase in the LOI value as the percent loading of the flame retardant additives is increased, was attributed both to the main effects and synergistic effects of the parameters, as the LOI response of SiNPs is greatly enhanced by the addition of DOPO and melamine, as shown by the response surface plots. This indicates the potential of producing a cheaper, effective, and non-toxic multi-flame retardant system for the polymeric system via different flame retarding mechanisms.

Keywords: flame retardancy, polystyrene, response surface methodology, rice husk, silica nanoparticle

Procedia PDF Downloads 256
19780 Cold Stunned Sea Turtle Diet Analysis In Cape Cod Bay from 2015-2020

Authors: Lucille McWilliams

Abstract:

As water temperatures drop in November, Kemp’s Ridley, Loggerhead, and Green sea turtles cold-stun in Cape Cod Bay. The foraging ecology of these sea turtles remains an understudied area of research. In this study, we aim to assess the diet of these turtles using a multi-tissue stable isotope analysis of cold-stunned kemp’s ridley, loggerhead, and green sea turtles stranded from 2015 to 2020. Stable isotope ratios of carbon and nitrogen were measured in blood, front and rear flipper, liver, muscle, skin, and scute tissue samples. We predict an elevated level of Nitrogen isotope ratios in kemp’s ridley and loggerhead turtles compared to green turtles due to the carnivorous loggerheads and kemp ridleys’ carnivorous diet and the greens herbivorous diet. We anticipate empty stomachs due to starvation while stranded, and a variety of foraging strategies, migration patterns, and trophic positions between these species. Data collected from this study will add to the knowledge of these turtles’ prey species and aid managers in the preservation of these species as a mitigation strategy for these turtles' extinction.

Keywords: sea turtles, kemp's ridleys, greens, loggerheads, cold-stunning, diet analysis, stable isotope analysis, environmental science, marine biology

Procedia PDF Downloads 103
19779 Enhancement of Pool Boiling Regimes by Sand Deposition

Authors: G. Mazor, I. Ladizhensky, A. Shapiro, D. Nemirovsky

Abstract:

A lot of researches was dedicated to the evaluation of the efficiency of the uniform constant and temporary coatings enhancing a heat transfer rate. Our goal is an investigation of the sand coatings distributed by both uniform and non-uniform forms. The sand of different sizes (0.2-0.4-0.6 mm) was attached to a copper ball (30 mm diameter) surface by means of PVA adhesive as a uniform layer. At the next stage, sand spots were distributed over the ball surface with an areal density that ranges between one spot per 1.18 cm² (for low-density spots) and one spot per 0.51 cm² (for high-density spots). The spot's diameter value varied from 3 to 6.5 mm and height from 0.5 to 1.5 mm. All coatings serve as a heat transfer enhancer during the quenching in liquid nitrogen. Highest heat flux densities, achieved during quenching, lie in the range 10.8-20.2 W/cm², depending on the sand layer structure. Application of the enhancing coating increases an amount of heat, evacuated by highly effective nucleate and transition boiling, by a factor of 4.5 as compared to the bare sample. The non-uniform sand coatings were increasing the heat transfer rate value under all pool boiling conditions: nucleate boiling, transfer boiling and the most severe film boiling. A combination of uniform sand coating together with high-density sand spots increased the average heat transfer rate by a factor of 3.

Keywords: heat transfer enhancement, nucleate boiling, film boiling, transfer boiling

Procedia PDF Downloads 107
19778 Optimization of Sequential Thermophilic Bio-Hydrogen/Methane Production from Mono-Ethylene Glycol via Anaerobic Digestion: Impact of Inoculum to Substrate Ratio and N/P Ratio

Authors: Ahmed Elreedy, Ahmed Tawfik

Abstract:

This investigation aims to assess the effect of inoculum to substrate ratio (ISR) and nitrogen to phosphorous balance on simultaneous biohydrogen and methane production from anaerobic decomposition of mono-ethylene glycol (MEG). Different ISRs were applied in the range between 2.65 and 13.23 gVSS/gCOD, whereas the tested N/P ratios were changed from 4.6 to 8.5; both under thermophilic conditions (55°C). The maximum obtained methane and hydrogen yields (MY and HY) of 151.86±10.8 and 22.27±1.1 mL/gCODinitial were recorded at ISRs of 5.29 and 3.78 gVSS/gCOD, respectively. Unlikely, the ammonification process, in terms of net ammonia produced, was found to be ISR and COD/N ratio dependent, reaching its peak value of 515.5±31.05 mgNH4-N/L at ISR and COD/N ratio of 13.23 gVSS/gCOD and 11.56. The optimum HY was enhanced by more than 1.45-fold with declining N/P ratio from 8.5 to 4.6; whereas, the MY was improved (1.6-fold), while increasing N/P ratio from 4.6 to 5.5 with no significant impact at N/P ratio of 8.5. The results obtained revealed that the methane production was strongly influenced by initial ammonia, compared to initial phosphate. Likewise, the generation of ammonia was markedly deteriorated from 535.25±41.5 to 238.33±17.6 mgNH4-N/L with increasing N/P ratio from 4.6 to 8.5. The kinetic study using Modified Gompertz equation was successfully fitted to the experimental outputs (R2 > 0.9761).

Keywords: mono-ethylene glycol, biohydrogen and methane, inoculum to substrate ratio, nitrogen to phosphorous balance, ammonification

Procedia PDF Downloads 357
19777 Assessment of Air Quality Status Using Pollution Indicators in Industrial Zone of Brega City

Authors: Tawfig Falani, Abdulalaziz Saleh

Abstract:

Air pollution has become a major environmental issue with definitive repercussions on human health. Global concerns have been raised about the health effects of deteriorating air quality due mainly to widespread industrialization and urbanization. To assess the quality of air in Brega, air quality indicators were calculated using the U.S. Environmental Protection Agency procedure. Air quality was monitored from 01/10/2019 to 28/02/2021 with a daily average measuring six pollutants of particulate matter <2.5µm (PM2.5), and <10µm (PM₁₀), sulfur dioxide (SO₂), nitrogen dioxide (NO₂), ozone (O₃), and carbon monoxide (CO). The result indicated that air pollution at general air quality monitoring sites for sulphur dioxide, carbon monoxide, PM₁₀ and PM2.5 and nitrogen dioxide are always within the permissible limit. Referring to a monthly average of Pollutants in the Brega Industrial area, all months were out of AQG limit for NO₂, and the same with O₃ except for two months. For PM2.5 and PM₁₀ 7, 5 out of 17 months were out of limits, respectively. Relative AQI for ozone is found in the range of moderate category of general air pollution, and the worst month was Nov. 2020, which was marked as Very Unhealthy category, then the next two months (Dec. 2020 and Jan. 2021 ) were Unhealthy categories. It's the first time that we have used the AQI in SOC, and not usually used in Libya to identify the quality of air pollution. So, I think it will be useful if AQI is used as guidance for specified air pollution. That dictate putting monitoring stations beside any industrial activity that has emissions of the six major air pollutants.

Keywords: air quality, air pollutants, air quality index (AQI), particulate matter

Procedia PDF Downloads 21
19776 Impact of External Temperature on the Speleothem Growth in the Moravian Karst

Authors: Frantisek Odvarka

Abstract:

Based on the data from the Moravian Karst, the influence of the calcite speleothem growth by selected meteorological factors was evaluated. External temperature was determined as one of the main factors influencing speleothem growth in Moravian Karst. This factor significantly influences the CO₂ concentration in soil/epikarst, and cave atmosphere in the Moravian Karst and significantly contributes to the changes in the CO₂ partial pressure differences between soil/epikarst and cave atmosphere in Moravian Karst, which determines the drip water supersaturation with respect to the calcite and quantity of precipitated calcite in the Moravian Karst cave environment. External air temperatures and cave air temperatures were measured using a COMET S3120 data logger, which can measure temperatures in the range from -30 to +80 °C with an accuracy of ± 0.4 °C. CO₂ concentrations in the cave and soils were measured with a FT A600 CO₂H Ahlborn probe (value range 0 ppmv to 10,000 ppmv, accuracy 1 ppmv), which was connected to the data logger ALMEMO 2290-4, V5 Ahlborn. The soil temperature was measured with a FHA646E1 Ahlborn probe (temperature range -20 to 70 °C, accuracy ± 0.4 °C) connected to an ALMEMO 2290-4 V5 Ahlborn data logger. The airflow velocities into and out of the cave were monitored by a FVA395 TH4 Thermo anemometer (speed range from 0.05 to 2 m s⁻¹, accuracy ± 0.04 m s⁻¹), which was connected to the ALMEMO 2590-4 V5 Ahlborn data logger for recording. The flow was measured in the lower and upper entrance of the Imperial Cave. The data were analyzed in MS Office Excel 2019 and PHREEQC.

Keywords: speleothem growth, carbon dioxide partial pressure, Moravian Karst, external temperature

Procedia PDF Downloads 119
19775 Spatial Emission of Ions Produced by the APF Plasma Focus Device

Authors: M. Habibi

Abstract:

The angular distribution of ion beam emission from the APF plasma focus device (15kV, 40μf, 115nH) filled with nitrogen gas has been examined through investigating the effect of ion beams on aluminum thin foils in different angular positions. The samples are studied in different distances from the anode end with different shots. The optimum pressure that would be obtained at the applied voltages of 12kV was 0.7 torr. The ions flux declined as the pressure inclined and the maximum ion density at 0.7 torr was about 10.26 × 1022 ions/steradian. The irradiated foils were analyzed with SEM method in order to study their surface and morphological changes. The results of the analysis showed melting and surface evaporation effects and generation of some cracks in the specimens. The result of ion patterns on the samples obtained in this study can be useful in determining ion spatial distributions on the top of anode.

Keywords: plasma focus, spatial distribution, high energy ions, ion angular distribution

Procedia PDF Downloads 426
19774 Co-Composting of Poultry Manure with Different Organic Amendments

Authors: M. E. Silva, I. Brás

Abstract:

To study the influence of different organic amendments on the quality of poultry manure compost, three pilot composting trials were carried out with different mixes: poultry manure/carcasse meal/ashes/grape pomace (Pile 1), poultry manure/ cellulosic sludge (Pile 2) and poultry manure (Pile 3). For all piles, wood chips were applied as bulking agent. The process was monitored, over time, by evaluating standard physical and chemical parameters, such as, pH, electric conductivity, moisture, organic matter and ash content, total carbon and total nitrogen content, carbon/nitrogen ratio (C/N) and content in mineral elements. Piles 1 and 2 reached a thermophilic phase, however having different trends. Pile 1 reached this phase earlier than Pile 2. For both, the pH showed a slight alkaline character and the electric conductivity was lower than 2 mS/cm. Also, the initial C/N value was 22 and reached values lower than 15 at the end of composting process. The total N content of the Pile 1 increased slightly during composting, in contrast with the others piles. At the end of composting process, the phosphorus content ranged between 54 and 236 mg/kg dry matter, for Pile 2 and 3, respectively. Generally, the Piles 1 and 3 exhibited similar heavy metals content. This study showed that organic amendments can be used as carbon source, given that the final composts presented parameters within the range of those recommended in the 2nd Draft of EU regulation proposal (DG Env.A.2 2001) for compost quality.

Keywords: co-composting, compost quality, organic ammendment, poultry manure

Procedia PDF Downloads 284
19773 Sustainable Approach to Fabricate Titanium Nitride Film on Steel Substrate by Using Automotive Plastics Waste

Authors: Songyan Yin, Ravindra Rajarao, Veena Sahajwalla

Abstract:

Automotive plastics waste (widely known as auto-fluff or ASR) is a complicated mixture of various plastics incorporated with a wide range of additives and fillers like titanium dioxide, magnesium oxide, and silicon dioxide. Automotive plastics waste is difficult to recycle and its landfilling poses the significant threat to the environment. In this study, a sustainable technology to fabricate protective nanoscale TiN thin film on a steel substrate surface by using automotive waste plastics as titanium and carbon resources is suggested. When heated automotive plastics waste with steel at elevated temperature in a nitrogen atmosphere, titanium dioxide contented in ASR undergo carbothermal reduction and nitridation reactions on the surface of the steel substrate forming a nanoscale thin film of titanium nitride on the steel surface. The synthesis of TiN film on steel substrate under this technology was confirmed by X-ray photoelectron spectrometer, high resolution X-ray diffraction, field emission scanning electron microscope, a high resolution transmission electron microscope fitted with energy dispersive X-ray spectroscopy, and inductively coupled plasma mass spectrometry techniques. This sustainably fabricated TiN film was verified of dense, well crystallized and could provide good oxidation resistance to the steel substrate. This sustainable fabrication technology is maneuverable, reproducible and of great economic and environmental benefit. It not only reduces the fabrication cost of TiN coating on steel surface, but also provides a sustainable environmental solution to recycling automotive plastics waste. Moreover, high value copper droplets and char residues were also extracted from this unique fabrication process.

Keywords: automotive plastics waste, carbonthermal reduction and nitirdation, sustainable, TiN film

Procedia PDF Downloads 367
19772 An Electrode Material for Ultracapacitors: Hydrothermal Synthesis of Neodymium Oxide/Manganese Oxide/Nitrogen Doped Reduced Graphene Oxide Ternary Nanocomposites

Authors: K. Saravanan, K. A.Rameshkumar, P. Maadeswaran

Abstract:

The depletion of fossil resources and the rise in global temperatures are two of the most important concerns we confront today. There are numerous renewable energy sources like solar power, tidal power, wind energy, radiant energy, hydroelectricity, geothermal energy, and biomass available to generate the needed energy demand. Engineers and scientists around the world are facing a massive barrier in the development of storage technologies for the energy developed from renewable energy sources. The development of electrochemical capacitors as a future energy storage technology is at the forefront of current research and development. This is due to the fact that the electrochemical capacitors have a significantly higher energy density, a faster charging-discharging rate, and a longer life span than capacitors, and they also have a higher power density than batteries, making them superior to both. In this research, electrochemical capacitors using the Nd2O3/Mn3O4/ N-rGO electrode material is chosen since the of hexagonal and tetragonal crystal structures of Nd2O3 and Mn3O4 and also has cycling stability of 68% over a long time at 50mVs-1 and a high coulombic efficiency of 99.64% at 5 Ag-1. This approach may also be used to create novel electrode materials with improved electrochemical and cyclic stability for high-performance supercapacitors.

Keywords: Nd2O3/Mn3O4/N-rGO, nanocomposites, hydrothermal method, electrode material, specific capacitance, use of supercapacitors

Procedia PDF Downloads 74
19771 Investigation into the Homoepitaxy of AlGaN/GaN Heterostructure via Molecular Beam Epitaxy

Authors: Jiajia Yao, Guanlin Wu, Fang Liu, Junshuai Xue, Yue Hao

Abstract:

As the production process of self-standing GaN substrates evolves, the commercialization of low dislocation density, large-scale, semi-insulating self-standing GaN substrates is gradually becoming a reality. This advancement has given rise to increased interest in GaN materials' homoepitaxial technology. However, at the homoepitaxial interface, there are considerable concentrations of impurity elements, including C, Si, and O, which generate parasitic leakage channels at the re-growth junction. This phenomenon results in leaked HEMTs that prove difficult to switch off, rendering them effectively non-functional. The emergence of leakage channels can also degrade the high-frequency properties and lower the power devices' breakdown voltage. In this study, the uniform epitaxy of AlGaN/GaN heterojunction with high electron mobility was accomplished through the surface treatment of the GaN substrates prior to growth and the design of the AlN isolation layer structure. By employing a procedure combining gallium atom in-situ cleaning and plasma nitridation, the C and O impurity concentrations at the homoepitaxial interface were diminished to the scale of 10¹⁷ cm-³. Additionally, the 1.5 nm nitrogen-rich AlN isolation layer successfully prevented the diffusion of Si impurities into the GaN channel layer. The result was an AlGaN/GaN heterojunction with an electron mobility of 1552 cm²/Vs and an electron density of 1.1 × 10¹³ cm-² at room temperature, obtained on a Fe-doped semi-insulating GaN substrate.

Keywords: MBE, AlGaN/GaN, homogenerous epitaxy, HEMT

Procedia PDF Downloads 35
19770 Evaluation of Different Fertilization Practices and Their Impacts on Soil Chemical and Microbial Properties in Two Agroecological Zones of Ghana

Authors: Ansong Richard Omari, Yosei Oikawa, Yoshiharu Fujii, Dorothea Sonoko Bellingrath-Kimura

Abstract:

Renewed interest in soil management aimed at improving the productive capacity of Sub Saharan Africa (SSA) soils has called for the need to analyse the long term effect of different fertilization systems on soil. This study was conducted in two agroecological zones (i.e., Guinea Savannah (GS) and Deciduous forest (DF)) of Ghana to evaluate the impacts of long term (> 5 years) fertilization schemes on soil chemical and microbial properties. Soil samples under four different fertilization schemes (inorganic, inorganic and organic, organic, and no fertilization) were collected from 20 farmers` field in both agroecological zones. Soil analyses were conducted using standard procedures. All average soil quality parameters except extractable C, potential mineralizable nitrogen and CEC were significantly higher in DF sites compared to GS. Inorganic fertilization proved superior in soil chemical and microbial biomass especially in GS zone. In GS, soil deterioration index (DI) revealed that soil quality deteriorated significantly (−26%) under only organic fertilization system whereas soil improvement was observed under inorganic and no fertilization sites. In DF, either inorganic or organic and inorganic fertilization showed significant positive effects on soil quality. The high soil chemical composition and enhanced microbial biomass in DF were associated with the high rate of inorganic fertilization.

Keywords: deterioration index, fertilization scheme, microbial biomass, tropical agroecological zone

Procedia PDF Downloads 380
19769 Catalyst Assisted Microwave Plasma for NOx Formation

Authors: Babak Sadeghi, Rony Snyders, Marie-Paule.Delplancke-Ogletree

Abstract:

Nitrogen fixation (NF) is one of the crucial industrial processes. Many attempts have been made in order to artificially fix nitrogen, and among them, the Haber-Bosch’s (H-B) process is widely used. However, it presents two major drawbacks: huge fossil feedstock consumption and noticeable greenhouse gases emission. It is, therefore, necessary to develop alternatives. Plasma technology, as an inherent “green” technology, is considered to have a great potential for reducing the environmental impacts and improving the energy efficiency of the NF process. In this work, we have studied the catalyst assisted microwave plasma for NF application. Heterogeneous catalysts of MoO₃, with various loads 0, 5, 10, 20, and 30 wt%, supported on γ-alumina were prepared by conventional wet impregnation. Crystallinity, surface area, pore size, and microstructure were obtained by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption isotherm, Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM). The XRD patterns of calcined alumina confirm the γ- phase. Characteristic picks of MoO₃ could not be observed for low loads (< 20 wt%), likely indicating a high dispersion of metal oxide over the support. The specific surface area along with pores size are decreasing with increasing calcination temperature and MoO₃ loading. The MoO₃ loading does not modify the microstructure. TEM and SEM results for loading inferior to 20 wt% are coherent with a monolayer of MoO₃ on the support as proposed elsewhere. For loading of 20 wt% and more, TEM and Electron diffraction (ED) show nanocrystalline ₃-D MoO₃ particles. The catalytic performances of these catalysts were investigated in the post-discharge of a microwave plasma for NOx formation from N₂/O₂ mixtures. The plasma is sustained by a surface wave launched in a quartz tube via a surfaguide supplied by a 2.45 GHz microwave generator in pulse mode. In-situ identification and quantification of the products were carried out by Fourier-transform infrared spectroscopy (FTIR) in the post-discharge region. FTIR analysis of the exhausted gas reveal NO and NO₂ bands in presence of catalyst while only NO band were assigned without catalyst. On the other hand, in presence of catalyst, a 10% increase of NOₓ formation and of 20% increase in energy efficiency are observed.

Keywords: γ-Al2O₃-MoO₃, µ-waveplasma, N2 fixation, Plasma-catalysis, Plasma diagnostic

Procedia PDF Downloads 152
19768 Impact of Ozone Produced by Vehicular Emission on Chronic Obstructive Pulmonary Disease

Authors: Mohd Kamil Vakil

Abstract:

Air Pollution is caused by the introduction of chemicals in the biosphere. Primary pollutants on reaction with the components of the earth produce Secondary Pollutants like Smog. Ozone is the main ingredient of Smog. The ground level ozone is created by the chemical reactions between Nitrogen Oxides (NOx) and Volatile Organic Compounds (VOCs) in the presence of Sunlight. This ozone can enter inside and call as indoor ozone. The automobile emissions in both moving and idling conditions contribute to the indoor ozone formation. During engine ignition and shutdown, motor vehicles emit the ozone forming pollutants like NOx and VOCs, and the phenomena are called Cold Start and Hot-Soak respectively. Subjects like Chronic Obstructive Pulmonary Disease (COPD) and asthma associated with chronic respiratory diseases are susceptible to the harmful effects of Indoor Ozone. The most common cause of COPD other than smoking is the long-term contract with harmful pollutants like ground-level ozone. It is estimated by WHO that COPD will become the third leading cause of all deaths worldwide by 2030. In this paper, the cold-start and hot-soak vehicle emissions are studied in the context of accumulation of oxides of nitrogen at the outer walls of the building which may cause COPD. The titanium oxide coated building material is further discussed as an absorber of NOx when applied to the walls and roof.

Keywords: indoor air quality, cold start emission, hot-soak, ozone

Procedia PDF Downloads 178
19767 Results of Three-Year Operation of 220kV Pilot Superconducting Fault Current Limiter in Moscow Power Grid

Authors: M. Moyzykh, I. Klichuk, L. Sabirov, D. Kolomentseva, E. Magommedov

Abstract:

Modern city electrical grids are forced to increase their density due to the increasing number of customers and requirements for reliability and resiliency. However, progress in this direction is often limited by the capabilities of existing network equipment. New energy sources or grid connections increase the level of short-circuit currents in the adjacent network, which can exceed the maximum rating of equipment–breaking capacity of circuit breakers, thermal and dynamic current withstand qualities of disconnectors, cables, and transformers. Superconducting fault current limiter (SFCL) is a modern solution designed to deal with the increasing fault current levels in power grids. The key feature of this device is its instant (less than 2 ms) limitation of the current level due to the nature of the superconductor. In 2019 Moscow utilities installed SuperOx SFCL in the city power grid to test the capabilities of this novel technology. The SFCL became the first SFCL in the Russian energy system and is currently the most powerful SFCL in the world. Modern SFCL uses second-generation high-temperature superconductor (2G HTS). Despite its name, HTS still requires low temperatures of liquid nitrogen for operation. As a result, Moscow SFCL is built with a cryogenic system to provide cooling to the superconductor. The cryogenic system consists of three cryostats that contain a superconductor part and are filled with liquid nitrogen (three phases), three cryocoolers, one water chiller, three cryopumps, and pressure builders. All these components are controlled by an automatic control system. SFCL has been continuously operating on the city grid for over three years. During that period of operation, numerous faults occurred, including cryocooler failure, chiller failure, pump failure, and others (like a cryogenic system power outage). All these faults were eliminated without an SFCL shut down due to the specially designed cryogenic system backups and quick responses of grid operator utilities and the SuperOx crew. The paper will describe in detail the results of SFCL operation and cryogenic system maintenance and what measures were taken to solve and prevent similar faults in the future.

Keywords: superconductivity, current limiter, SFCL, HTS, utilities, cryogenics

Procedia PDF Downloads 58
19766 Selective Fermentations of Monosaccharides by Osmotolerant Yeast Cultures

Authors: Elizabeth Loza-Valerdi, Victor Pardiñas-Rios, Arnulfo Pluma-Pluma, Andres Breton-Toral, Julio Cercado-Jaramillo

Abstract:

The purification processes for mixtures of isomeric monosaccharides using industrial chromatographic methods poses a serious technical challenge. Mixtures of 2 or 3 monosaccharides are difficult to separate by strictly physical or chemical techniques. Differential fermentation by microbial cultures is an increasingly interesting way of selective enrichment in a particular kind of monosaccharides when a mixture of them is present in the solution, and only one has economical value. Osmotolerant yeast cultures provide an interesting source of biocatalysts for the selective catabolism of monosaccharides in media containing high concentrations of total soluble sugars. A collection of 398 yeast strains has been obtained using endemic and unique sources of fruit juices, industrial syrups, honey, and other high sugar content substrates, either natural or man made, products and by-products from Mexico. The osmotolerance of the strains was assessed by plate assay both in glucose (20-40-60%w/w). Strains were classified according to their osmotolerance in low, medium or highly tolerant to high glucose concentrations. The purified cultures were tested by their ability to growth in a solid plate media or liquid media of Yeas Nitrogen Base (YNB), added with specific monosaccharides as sole carbon source (glucose, galactose, lactose and fructose). Selected strains were subsequently tested in fermentation experiments with mixtures of two monosaccharides (galactose/glucose and glucose/fructose). Their ability to grow and selectively catabolize one monosaccharide was evaluated. Growth, fermentation activity and products of metabolism were determined by plate counts, CO2 production, turbidity and chromatographic analysis by HPLC. Selective catabolism of one monosaccharide in liquid media containing two monosaccharides was confirmed for 8 strains. Ion Exchange chromatographic processes were used in production of high fructose or galactose syrup. Laboratory scale processes for the production of fructose or galactose enriched syrups is now feasible, with important applications in food (like high fructose syrup as edulcorant) and fermentation technology (for GOS production).

Keywords: osmotolerant yeasts, selective metabolism, fructose syrup, GOS

Procedia PDF Downloads 429