Search results for: heat transfer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4721

Search results for: heat transfer

131 Defense Priming from Egg to Larvae in Litopenaeus vannamei with Non-Pathogenic and Pathogenic Bacteria Strains

Authors: Angelica Alvarez-Lee, Sergio Martinez-Diaz, Jose Luis Garcia-Corona, Humberto Lanz-Mendoza

Abstract:

World aquaculture is always looking for improvements to achieve productions with high yields avoiding the infection by pathogenic agents. The best way to achieve this is to know the biological model to create alternative treatments that could be applied in the hatcheries, which results in greater economic gains and improvements in human public health. In the last decade, immunomodulation in shrimp culture with probiotics, organic acids and different carbon sources has gained great interest, mainly in larval and juvenile stages. Immune priming is associated with a strong protective effect against a later pathogen challenge. This work provides another perspective about immunostimulation from spawning until hatching. The stimulation happens during development embryos and generates resistance to infection by pathogenic bacteria. Massive spawnings of white shrimp L. vannamei were obtained and placed in experimental units with 700 mL of sterile seawater at 30 °C, salinity of 28 ppm and continuous aeration at a density of 8 embryos.mL⁻¹. The immunostimulating effect of three death strains of non-pathogenic bacterial (Escherichia coli, Staphylococcus aureus and Bacillus subtilis) and a pathogenic strain for white shrimp (Vibrio parahaemolyticus) was evaluated. The strains killed by heat were adjusted to O.D. 0.5, at A 600 nm, and directly added to the seawater of each unit at a ratio of 1/100 (v/v). A control group of embryos without inoculum of dead bacteria was kept under the same physicochemical conditions as the rest of the treatments throughout the experiment and used as reference. The duration of the stimulus was 12 hours, then, the larvae that hatched were collected, counted and transferred to a new experimental unit (same physicochemical conditions but at a salinity of 28 ppm) to carry out a challenge of infection against the pathogen V. parahaemolyticus, adding directly to seawater an amount 1/100 (v/v) of the live strain adjusted to an OD 0.5; at A 600 nm. Subsequently, 24 hrs after infection, nauplii survival was evaluated. The results of this work shows that, after 24 hrs, the hatching rates of immunostimulated shrimp embryos with the dead strains of B. subtillis and V. parahaemolyticus are significantly higher compared to the rest of the treatments and the control. Furthermore, survival of L. vanammei after a challenge of infection of 24 hrs against the live strain of V. parahaemolyticus is greater (P < 0.05) in the larvae immunostimulated during the embryonic development with the dead strains B. subtillis and V. parahaemolyticus, followed by those that were treated with E. coli. In summary superficial antigens can stimulate the development cells to promote hatching and can have normal development in agreeing with the optical observations, plus exist a differential response effect between each treatment post-infection. This research provides evidence of the immunostimulant effect of death pathogenic and non-pathogenic bacterial strains in the rate of hatching and oversight of shrimp L. vannamei during embryonic and larval development. This research continues evaluating the effect of these death strains on the expression of genes related to the defense priming in larvae of L. vannamei that come from massive spawning in hatcheries before and after the infection challenge against V. parahaemolyticus.

Keywords: immunostimulation, L. vannamei, hatching, survival

Procedia PDF Downloads 116
130 Determination of Gross Alpha and Gross Beta Activity in Water Samples by iSolo Alpha/Beta Counting System

Authors: Thiwanka Weerakkody, Lakmali Handagiripathira, Poshitha Dabare, Thisari Guruge

Abstract:

The determination of gross alpha and beta activity in water is important in a wide array of environmental studies and these parameters are considered in international legislations on the quality of water. This technique is commonly applied as screening method in radioecology, environmental monitoring, industrial applications, etc. Measuring of Gross Alpha and Beta emitters by using iSolo alpha beta counting system is an adequate nuclear technique to assess radioactivity levels in natural and waste water samples due to its simplicity and low cost compared with the other methods. Twelve water samples (Six samples of commercially available bottled drinking water and six samples of industrial waste water) were measured by standard method EPA 900.0 consisting of the gas-less, firm wear based, single sample, manual iSolo alpha beta counter (Model: SOLO300G) with solid state silicon PIPS detector. Am-241 and Sr90/ Y90 calibration standards were used to calibrate the detector. The minimum detectable activities are 2.32mBq/L and 406mBq/L, for alpha and beta activity, respectively. Each of the 2L water samples was evaporated (at low heat) to a small volume and transferred into 50mm stainless steel counting planchet evenly (for homogenization) and heated by IR lamp and the constant weighted residue was obtained. Then the samples were counted for gross alpha and beta. Sample density on the planchet area was maintained below 5mg/cm. Large quantities of solid wastes sludges and waste water are generated every year due to various industries. This water can be reused for different applications. Therefore implementation of water treatment plants and measuring water quality parameters in industrial waste water discharge is very important before releasing them into the environment. This waste may contain different types of pollutants, including radioactive substances. All these measured waste water samples having gross alpha and beta activities, lower than the maximum tolerance limits for industrial waste water discharge of industrial waste in to inland surface water, that is 10-9µCi/mL and 10-8µCi/mL for gross alpha and beta respectively (National Environmental Act, No. 47 of 1980). This is according to extraordinary gazette of the democratic socialist republic of Sri Lanka in February 2008. The measured water samples were below the recommended radioactivity levels and do not pose any radiological hazard when releasing the environment. Drinking water is an essential requirement of life. All the drinking water samples were below the permissible levels of 0.5Bq/L for gross alpha activity and 1Bq/L for gross beta activity. The values have been proposed by World Health Organization in 2011; therefore the water is acceptable for consumption of humans without any further clarification with respect to their radioactivity. As these screening levels are very low, the individual dose criterion (IDC) would usually not be exceeded (0.1mSv y⁻¹). IDC is a criterion for evaluating health risks from long term exposure to radionuclides in drinking water. Recommended level of 0.1mSv/y expressed a very low level of health risk. This monitoring work will be continued further for environmental protection purposes.

Keywords: drinking water, gross alpha, gross beta, waste water

Procedia PDF Downloads 159
129 Simulation and Thermal Evaluation of Containers Using PCM in Different Weather Conditions of Chile: Energy Savings in Lightweight Constructions

Authors: Paula Marín, Mohammad Saffari, Alvaro de Gracia, Luisa F. Cabeza, Svetlana Ushak

Abstract:

Climate control represents an important issue when referring to energy consumption of buildings and associated expenses, both in installation or operation periods. The climate control of a building relies on several factors. Among them, localization, orientation, architectural elements, sources of energy used, are considered. In order to study the thermal behaviour of a building set up, the present study proposes the use of energy simulation program Energy Plus. In recent years, energy simulation programs have become important tools for evaluation of thermal/energy performance of buildings and facilities. Besides, the need to find new forms of passive conditioning in buildings for energy saving is a critical component. The use of phase change materials (PCMs) for heat storage applications has grown in importance due to its high efficiency. Therefore, the climatic conditions of Northern Chile: high solar radiation and extreme temperature fluctuations ranging from -10°C to 30°C (Calama city), low index of cloudy days during the year are appropriate to take advantage of solar energy and use passive systems in buildings. Also, the extensive mining activities in northern Chile encourage the use of large numbers of containers to harbour workers during shifts. These containers are constructed with lightweight construction systems, requiring heating during night and cooling during day, increasing the HVAC electricity consumption. The use of PCM can improve thermal comfort and reduce the energy consumption. The objective of this study was to evaluate the thermal and energy performance of containers of 2.5×2.5×2.5 m3, located in four cities of Chile: Antofagasta, Calama, Santiago, and Concepción. Lightweight envelopes, typically used in these building prototypes, were evaluated considering a container without PCM inclusion as the reference building and another container with PCM-enhanced envelopes as a test case, both of which have a door and a window in the same wall, orientated in two directions: North and South. To see the thermal response of these containers in different seasons, the simulations were performed considering a period of one year. The results show that higher energy savings for the four cities studied are obtained when the distribution of door and window in the container is in the north direction because of higher solar radiation incidence. The comparison of HVAC consumption and energy savings in % for north direction of door and window are summarised. Simulation results show that in the city of Antofagasta 47% of heating energy could be saved and in the cities of Calama and Concepción the biggest savings in terms of cooling could be achieved since PCM reduces almost all the cooling demand. Currently, based on simulation results, four containers have been constructed and sized with the same structural characteristics carried out in simulations, that are, containers with/without PCM, with door and window in one wall. Two of these containers will be placed in Antofagasta and two containers in a copper mine near to Calama, all of them will be monitored for a period of one year. The simulation results will be validated with experimental measurements and will be reported in the future.

Keywords: energy saving, lightweight construction, PCM, simulation

Procedia PDF Downloads 255
128 Drivetrain Comparison and Selection Approach for Armored Wheeled Hybrid Vehicles

Authors: Çağrı Bekir Baysal, Göktuğ Burak Çalık

Abstract:

Armored vehicles may have different traction layouts as a result of terrain capabilities and mobility needs. Two main categories of layouts can be separated as wheeled and tracked. Tracked vehicles have superior off-road capabilities but what they gain on terrain performance they lose on mobility front. Wheeled vehicles on the other hand do not have as good terrain capabilities as tracked vehicles but they have superior mobility capabilities such as top speed, range and agility with respect to tracked vehicles. Conventional armored vehicles employ a diesel ICE as main power source. In these vehicles ICE is mechanically connected to the powertrain. This determines the ICE rpm as a result of speed and torque requested by the driver. ICE efficiency changes drastically with torque and speed required and conventional vehicles suffer in terms of fuel consumption because of this. Hybrid electric vehicles employ at least one electric motor in order to improve fuel efficiency. There are different types of hybrid vehicles but main types are Series Hybrid, Parallel Hybrid and Series-Parallel Hybrid. These vehicles introduce an electric motor for traction and also can have a generator electric motor for range extending purposes. Having an electric motor as the traction power source brings the flexibility of either using the ICE as an alternative traction source while it is in efficient range or completely separating the ICE from traction and using it solely considering efficiency. Hybrid configurations have additional advantages for armored vehicles in addition to fuel efficiency. Heat signature, silent operation and prolonged stationary missions can be possible with the help of the high-power battery pack that will be present in the vehicle for hybrid drivetrain. Because of the reasons explained, hybrid armored vehicles are becoming a target area for military and also for vehicle suppliers. In order to have a better idea and starting point when starting a hybrid armored vehicle design, hybrid drivetrain configuration has to be selected after performing a trade-off study. This study has to include vehicle mobility simulations, integration level, vehicle level and performance level criteria. In this study different hybrid traction configurations possible for an 8x8 vehicle is compared using above mentioned criteria set. In order to compare hybrid traction configurations ease of application, cost, weight advantage, reliability, maintainability, redundancy and performance criteria have been used. Performance criteria points have been defined with the help of vehicle simulations and tests. Results of these simulations and tests also help determining required tractive power for an armored vehicle including conditions like trench and obstacle crossing, gradient climb. With the method explained in this study, each configuration is assigned a point for each criterion. This way, correct configuration can be selected objectively for every application. Also, key aspects of armored vehicles, mine protection and ballistic protection will be considered for hybrid configurations. Results are expected to vary for different types of vehicles but it is observed that having longitudinal differential locking capability improves mobility and having high motor count increases complexity in general.

Keywords: armored vehicles, electric drivetrain, electric mobility, hybrid vehicles

Procedia PDF Downloads 58
127 Clinical Cases of Rare Types of 'Maturity Onset Diabetes of the Young' Diabetes

Authors: Alla Ovsyannikova, Oksana Rymar, Elena Shakhtshneider, Mikhail Voevoda

Abstract:

In Siberia endocrinologists increasingly noted young patients with the course of diabetes mellitus differing from 1 and 2 types. Therefore we did a molecular genetic study for this group of patients to verify the monogenic forms of diabetes mellitus in them and researched the characteristics of this pathology. When confirming the monogenic form of diabetes, we performed a correction therapy for many patients (transfer from insulin to tablets), prevented specific complications, examined relatives and diagnosed their diabetes at the preclinical stage, revealed phenotypic characteristics of the pathology which led to the high significance of this work. Materials and Methods: We observed 5 patients (4 families). We diagnosed MODY (Maturity Onset Diabetes of the Young) during the molecular genetic testing (direct automatic sequencing). All patients had a full clinical examination, blood samples for biochemical research, determination of C-peptide and TSH, antibodies to b-cells, microalbuminuria, abdominal ultrasound, heart and thyroid ultrasound, examination of ophthalmologist. Results: We diagnosed 3 rare types of MODY: two women had MODY8, one man – MODY6 and man and his mother - MODY12. Patients with types 8 and 12 had clinical features. Age of onset hyperglycemia ranged from 26 to 34 years. In a patient with MODY6 fasting hyperglycemia was detected during a routine examination. Clinical symptoms, complications were not diagnosed. The patient observes a diet. In the first patient MODY8 was detected during first pregnancy, she had itchy skin and mostly postprandial hyperglycemia. Upon examination we determined glycated hemoglobin 7.5%, retinopathy, non-proliferative stage, peripheral neuropathy. She uses a basic bolus insulin therapy. The second patient with MODY8 also had clinical manifestations of hyperglycemia (pruritus, thirst), postprandial hyperglycemia and diabetic nephropathy, a stage of microalbuminuria. The patient was diagnosed autoimmune thyroiditis. She used inhibitors of DPP-4. The patient with MODY12 had an aggressive course. In the detection of hyperglycemia he had complaints of visual impairment, intense headaches, leg cramps. The patient had a history of childhood convulsive seizures of non-epileptic genesis, without organic pathology, which themselves were stopped at the age of 12 years. When we diagnosed diabetes a patient was 28 years, he had hypertriglyceridemia, atherosclerotic plaque in the carotid artery, proliferative retinopathy (lacerocoagulation). Diabetes and early myocardial infarction were observed in three cases in family. We prescribe therapy with sulfonylureas and SGLT-2 inhibitors with a positive effect. At the patient's mother diabetes began at a later age (30 years) and a less aggressive course was observed. She also has hypertriglyceridemia and uses oral hypoglycemic drugs. Conclusions: 1) When young patients with hyperglycemia have extrapancreatic pathologies and diabetic complications with a short duration of diabetes we can assume they have one of type of MODY diabetes. 2) In patients with monogenic forms of diabetes mellitus, the clinical manifestations of hyperglycemia in each succeeding generation are revealed at an earlier age. Research had increased our knowledge of the monogenic forms of diabetes. The reported study was supported by RSCF, research project No. 14-15-00496-P.

Keywords: diabetes mellitus, MODY diabetes, monogenic forms, young patients

Procedia PDF Downloads 221
126 Study on Preparation and Storage of Jam Incorporating Carrots (Dacus Carrota), Banana (Musa Acuminata) and Lime (Citrus Aurantifola)

Authors: K. Premakumar, D. S. Rushani, H. N. Hettiarachchi

Abstract:

The production and consumption of preserved foods have gained much importance due to globalization, and they provide a health benefit apart from the basic nutritional functions. Therefore, a study was conducted to develop a jam incorporating carrot, banana, and lime. Considering the findings of several preliminary studies, five formulations of the jam were prepared by blending different percentages of carrot and banana including control (where the only carrot was added). The freshly prepared formulations were subjected to physicochemical and sensory analysis.Physico-Chemical parameters such as pH, TSS, titrable acidity, ascorbic acid content, total sugar and non-reducing sugar and organoleptic qualities such as colour, aroma, taste, spread ability and overall acceptability and microbial analysis (total plate count) were analyzed after formulations. Physico-Chemical Analysis of the freshly prepared Carrot –Banana Blend jam showed increasing trend in titrable acidity (from 0.8 to 0.96, as % of citric acid), TSS (from 70.05 to 67.5 0Brix), ascorbic acid content (from 0.83 to 11.465 mg/100ml), reducing sugar (from 15.64 to 20.553%) with increase in carrot pulp from 50 to 100%. pH, total sugar, and non-reducing sugar were also reduced when carrot concentration is increased. Five points hedonic scale was used to evaluate the organoleptic characters. According to Duncan's Multiple Range Test, the mean scores for all the assessed sensory characters varied significantly (p<0.05) in the freshly made carrot-banana blend jam formulations. Based on the physicochemical and sensory analysis, the most preferred carrot: banana combinations of 50:50, 100:0 and 80:20 (T1, T2, and T5) were selected for storage studies.The formulations were stored at 300 °C room temperature and 70-75% of RH for 12 weeks. The physicochemical characteristics were measured at two weeks interval during storage. The decreasing trends in pH and ascorbic acid and an increasing trend in TSS, titrable acidity, total sugar, reducing sugar and non-reducing sugar were noted with advancement of storage periods of 12 weeks. The results of the chemical analysis showed that there were significance differences (p<0.05) between the tested formulations. Sensory evaluation was done for carrot –banana blends jam after a period of 12 weeks through a panel of 16 semi-trained panelists. The sensory analysis showed that there were significant differences (p<0.05) for organoleptic characters between carrot-banana blend jam formulations. The highest overall acceptability was observed in formulation with 80% carrot and 20% banana pulp. Microbiological Analysis was carried out on the day of preparation, 1 month, 2 months and 3 months after preparation. No bacterial growth was observed in the freshly made carrot -banana blend jam. There were no counts of yeast and moulds and coliforms in all treatments after the heat treatments and during the storage period. Only the bacterial counts (Total Plate Counts) were observed after three months of storage below the critical level, and all formulations were microbiologically safe for consumption. Based on the results of physio-chemical characteristics, sensory attributes, and microbial test, the carrot –banana blend jam with 80% carrot and 20% banana (T2) was selected as best formulation and could be stored up to 12 weeks without any significant changes in the quality characteristics.

Keywords: formulations, physicochemical parameters, microbiological analysis, sensory evaluation

Procedia PDF Downloads 181
125 Development and application of Humidity-Responsive Controlled Release Active Packaging Based on Electrospinning Nanofibers and In Situ Growth Polymeric Film in Food preservation

Authors: Jin Yue

Abstract:

Fresh produces especially fruits, vegetables, meats and aquatic products have limited shelf life and are highly susceptible to deterioration. Essential oils (EOs) extracted from plants have excellent antioxidant and broad-spectrum antibacterial activities, and they can play as natural food preservatives. But EOs are volatile, water insoluble, pungent, and easily decomposing under light and heat. Many approaches have been developed to improve the solubility and stability of EOs such as polymeric film, coating, nanoparticles, nano-emulsions and nanofibers. Construction of active packaging film which can incorporate EOs with high loading efficiency and controlled release of EOs has received great attention. It is still difficult to achieve accurate release of antibacterial compounds at specific target locations in active packaging. In this research, a relative humidity-responsive packaging material was designed, employing the electrospinning technique to fabricate a nanofibrous film loaded with a 4-terpineol/β-cyclodextrin inclusion complexes (4-TA/β-CD ICs). Functioning as an innovative food packaging material, the film demonstrated commendable attributes including pleasing appearance, thermal stability, mechanical properties, and effective barrier properties. The incorporation of inclusion complexes greatly enhanced the antioxidant and antibacterial activity of the film, particularly against Shewanella putrefaciens, with an inhibitory efficiency of up to 65%. Crucially, the film realized controlled release of 4-TA under 98% high relative humidity conditions by inducing the plasticization of polymers caused by water molecules, swelling of polymer chains, and destruction of hydrogen bonds within the cyclodextrin inclusion complex. This film with a long-term antimicrobial effect successfully extended the shelf life of Litopenaeus vannamei shrimp to 7 days at 4 °C. To further improve the loading efficiency and long-acting release of EOs, we synthesized the γ-cyclodextrin-metal organic frameworks (γ-CD-MOFs), and then efficiently anchored γ-CD-MOFs on chitosan-cellulose (CS-CEL) composite film by in situ growth method for controlled releasing of carvacrol (CAR). We found that the growth efficiency of γ-CD-MOFs was the highest when the concentration of CEL dispersion was 5%. The anchoring of γ-CD-MOFs on CS-CEL film significantly improved the surface area of CS-CEL film from 1.0294 m2/g to 43.3458 m2/g. The molecular docking and 1H NMR spectra indicated that γ-CD-MOF has better complexing and stabilizing ability for CAR molecules than γ-CD. In addition, the release of CAR reached 99.71±0.22% on the 10th day, while under 22% RH, the release pattern of CAR was a plateau with 14.71 ± 4.46%. The inhibition rate of this film against E. coli, S. aureus and B. cinerea was more than 99%, and extended the shelf life of strawberries to 7 days. By incorporating the merits of natural biopolymers and MOFs, this active packaging offers great potential as a substitute for traditional packaging materials.

Keywords: active packaging, antibacterial activity, controlled release, essential oils, food quality control

Procedia PDF Downloads 26
124 Implementing a Comprehensive Emergency Care and Life Support Course in a Low- and Middle-Income Country Setting: A Survey of Learners in India

Authors: Vijayabhaskar Reddy Kandula, Peter Provost Taillac, Balasubramanya M. A., Ram Krishnan Nair, Gokul Toshnival, Vibhu Dhawan, Vijaya Karanam, Buffy Cramer

Abstract:

Introduction: The lack of Emergency Care Services (ECS) is a cause of extensive and serious public health problems in low- and middle-income countries (LMIC), Many LMIC countries have ambulance services that allow timely transfer of ill patients but due to poor care during the ‘Golden Hour’ many deaths occur which are otherwise preventable. Lack of adequate training as evidenced by a study in India is a major reason for poor care during the ‘Golden Hour’. Adapting developed country models which includes staffing specialty-trained doctors in emergency care, is neither feasible nor guarantees cost-effective ECS. Methods: Based on our assessment and felt needs by first-line doctors providing emergency care in 2014, Rajiv Gandhi Health Sciences University’s JeevaRaksha Trust in partnership with the University of Utah, USA, designed, piloted and successfully implemented a 4-day Comprehensive-Emergency Care and Life Support course (C-ECLS) for allopathic doctors. 1730 doctors completed the 4-day course between June 2014 and December- 2020. Subsequently, we conducted a survey to investigate the utilization rates and usefulness of the training. 1662 were contacted but only 309 completed the survey. The respondents had the following designations: Senior faculty (33%), junior faculty (25), Resident (16%), Private-Practitioners (8%), Medical-Officer (16%) and not-working (11%). 51% were generalists (51%) and the rest were specialists (>30 specialties). Results: 97% (271/280) felt they are better doctors because of C-ECLS. 79% (244/309) reported that training helped to save life- specialists more likely than generalists (91% v/s 68%. P<0.05). 64% agreed that they were confident of managing COVID-19 symptomatic patients better because of C-ECLS. 27% (77) were neutral; 9% (24) disagreed. 66% agreed that training helps to be confident in managing COVID-19 critically ill patients. 26% (72) were neutral; 8% (23) disagreed. Frequency of use of C-ECLS skills: Hemorrhage-control (70%), Airway (67%), circulation skills (62%), Safe-transport and communication (60%), managing critically ill patients (58%), cardiac arrest (51%), Trauma (49%), poisoning/animal bites/stings (44%), neonatal-resuscitation (39%), breathing (36%), post-partum-hemorrhage and eclampsia (35%). Among those who used the skills, the majority (ranging from (88%-94%) reported that they were able to apply the skill more effectively because of ECLS training. Conclusion: JeevaRaksha’s C-ECLS is the world’s first comprehensive training. It improves the confidence of front-line doctors and enables them to provide quality care during the ‘Golden Hour’ of emergency. It also prepares doctors to manage unknown emergencies (e.g., COVID-19). C-ECLS was piloted in Morocco, and Uzbekistan and implemented countrywide in Bhutan. C-ECLS is relevant to most settings and offers a replicable model across LMIC.

Keywords: comprehensive emergency care and life support, training, capacity building, low- and middle-income countries, developing countries

Procedia PDF Downloads 36
123 Advanced Bio-Fuels for Biorefineries: Incorporation of Waste Tires and Calcium-Based Catalysts to the Pyrolysis of Biomass

Authors: Alberto Veses, Olga Sanhauja, María Soledad Callén, Tomás García

Abstract:

The appropriate use of renewable sources emerges as a decisive point to minimize the environmental impact caused by fossil fuels use. Particularly, the use of lignocellulosic biomass becomes one of the best promising alternatives since it is the only carbon-containing renewable source that can produce bioproducts similar to fossil fuels and it does not compete with food market. Among all the processes that can valorize lignocellulosic biomass, pyrolysis is an attractive alternative because it is the only thermochemical process that can produce a liquid biofuel (bio-oil) in a simple way and solid and gas fractions that can be used as energy sources to support the process. However, in order to incorporate bio-oils in current infrastructures and further process in future biorefineries, their quality needs to be improved. Introducing different low-cost catalysts and/or incorporating different polymer residues to the process are some of the new, simple and low-cost strategies that allow the user to directly obtain advanced bio-oils to be used in future biorefineries in an economic way. In this manner, from previous thermogravimetric analyses, local agricultural wastes such as grape seeds (GS) were selected as lignocellulosic biomass while, waste tires (WT) were selected as polymer residue. On the other hand, CaO was selected as low-cost catalyst based on previous experiences by the group. To reach this aim, a specially-designed fixed bed reactor using N₂ as a carrier gas was used. This reactor has the peculiarity to incorporate a vertical mobile liner that allows the user to introduce the feedstock in the oven once the selected temperature (550 ºC) is reached, ensuring higher heating rates needed for the process. Obtaining a well-defined phase distribution in the resulting bio-oil is crucial to ensure the viability to the process. Thus, once experiments were carried out, not only a well-defined two layers was observed introducing several mixtures (reaching values up to 40 wt.% of WT) but also, an upgraded organic phase, which is the one considered to be processed in further biorefineries. Radical interactions between GS and WT released during the pyrolysis process and dehydration reactions enhanced by CaO can promote the formation of better-quality bio-oils. The latter was reflected in a reduction of water and oxygen content of bio-oil and hence, a substantial increase of its heating value and its stability. Moreover, not only sulphur content was reduced from solely WT pyrolysis but also potential and negative issues related to a strong acidic environment of conventional bio-oils were minimized due to its basic pH and lower total acid numbers. Therefore, acidic compounds obtained in the pyrolysis such as CO₂-like substances can react with the CaO and minimize acidic problems related to lignocellulosic bio-oils. Moreover, this CO₂ capture promotes H₂ production from water gas shift reaction favoring hydrogen-transfer reactions, improving the final quality of the bio-oil. These results show the great potential of grapes seeds to carry out the catalytic co-pyrolysis process with different plastic residues in order to produce a liquid bio-oil that can be considered as a high-quality renewable vector.

Keywords: advanced bio-oils, biorefinery, catalytic co-pyrolysis of biomass and waste tires, lignocellulosic biomass

Procedia PDF Downloads 213
122 Mechanical Properties of Poly(Propylene)-Based Graphene Nanocomposites

Authors: Luiza Melo De Lima, Tito Trindade, Jose M. Oliveira

Abstract:

The development of thermoplastic-based graphene nanocomposites has been of great interest not only to the scientific community but also to different industrial sectors. Due to the possible improvement of performance and weight reduction, thermoplastic nanocomposites are a great promise as a new class of materials. These nanocomposites are of relevance for the automotive industry, namely because the emission limits of CO2 emissions imposed by the European Commission (EC) regulations can be fulfilled without compromising the car’s performance but by reducing its weight. Thermoplastic polymers have some advantages over thermosetting polymers such as higher productivity, lower density, and recyclability. In the automotive industry, for example, poly(propylene) (PP) is a common thermoplastic polymer, which represents more than half of the polymeric raw material used in automotive parts. Graphene-based materials (GBM) are potential nanofillers that can improve the properties of polymer matrices at very low loading. In comparison to other composites, such as fiber-based composites, weight reduction can positively affect their processing and future applications. However, the properties and performance of GBM/polymer nanocomposites depend on the type of GBM and polymer matrix, the degree of dispersion, and especially the type of interactions between the fillers and the polymer matrix. In order to take advantage of the superior mechanical strength of GBM, strong interfacial strength between GBM and the polymer matrix is required for efficient stress transfer from GBM to the polymer. Thus, chemical compatibilizers and physicochemical modifications have been reported as important tools during the processing of these nanocomposites. In this study, PP-based nanocomposites were obtained by a simple melt blending technique, using a Brabender type mixer machine. Graphene nanoplatelets (GnPs) were applied as structural reinforcement. Two compatibilizers were used to improve the interaction between PP matrix and GnPs: PP graft maleic anhydride (PPgMA) and PPgMA modified with tertiary amine alcohol (PPgDM). The samples for tensile and Charpy impact tests were obtained by injection molding. The results suggested the GnPs presence can increase the mechanical strength of the polymer. However, it was verified that the GnPs presence can promote a decrease of impact resistance, turning the nanocomposites more fragile than neat PP. The compatibilizers’ incorporation increases the impact resistance, suggesting that the compatibilizers can enhance the adhesion between PP and GnPs. Compared to neat PP, Young’s modulus of non-compatibilized nanocomposite increase demonstrated that GnPs incorporation can promote a stiffness improvement of the polymer. This trend can be related to the several physical crosslinking points between the PP matrix and the GnPs. Furthermore, the decrease of strain at a yield of PP/GnPs, together with the enhancement of Young’s modulus, confirms that the GnPs incorporation led to an increase in stiffness but to a decrease in toughness. Moreover, the results demonstrated that incorporation of compatibilizers did not affect Young’s modulus and strain at yield results compared to non-compatibilized nanocomposite. The incorporation of these compatibilizers showed an improvement of nanocomposites’ mechanical properties compared both to those the non-compatibilized nanocomposite and to a PP sample used as reference.

Keywords: graphene nanoplatelets, mechanical properties, melt blending processing, poly(propylene)-based nanocomposites

Procedia PDF Downloads 160
121 Evaluation of Microstructure, Mechanical and Abrasive Wear Response of in situ TiC Particles Reinforced Zinc Aluminum Matrix Alloy Composites

Authors: Mohammad M. Khan, Pankaj Agarwal

Abstract:

The present investigation deals with the microstructures, mechanical and detailed wear characteristics of in situ TiC particles reinforced zinc aluminum-based metal matrix composites. The composites have been synthesized by liquid metallurgy route using vortex technique. The composite was found to be harder than the matrix alloy due to high hardness of the dispersoid particles therein. The former was also lower in ultimate tensile strength and ductility as compared to the matrix alloy. This could be explained to be due to the use of coarser size dispersoid and larger interparticle spacing. Reasonably uniform distribution of the dispersoid phase in the alloy matrix and good interfacial bonding between the dispersoid and matrix was observed. The composite exhibited predominantly brittle mode of fracture with microcracking in the dispersoid phase indicating effective easy transfer of load from matrix to the dispersoid particles. To study the wear behavior of the samples three different types of tests were performed namely: (i) sliding wear tests using a pin on disc machine under dry condition, (ii) high stress (two-body) abrasive wear tests using different combinations of abrasive media and specimen surfaces under the conditions of varying abrasive size, traversal distance and load, and (iii) low-stress (three-body) abrasion tests using a rubber wheel abrasion tester at various loads and traversal distances using different abrasive media. In sliding wear test, significantly lower wear rates were observed in the case of base alloy over that of the composites. This has been attributed to the poor room temperature strength as a result of increased microcracking tendency of the composite over the matrix alloy. Wear surfaces of the composite revealed the presence of fragmented dispersoid particles and microcracking whereas the wear surface of matrix alloy was observed to be smooth with shallow grooves. During high-stress abrasion, the presence of the reinforcement offered increased resistance to the destructive action of the abrasive particles. Microcracking tendency was also enhanced because of the reinforcement in the matrix. The negative effect of the microcracking tendency was predominant by the abrasion resistance of the dispersoid. As a result, the composite attained improved wear resistance than the matrix alloy. The wear rate increased with load and abrasive size due to a larger depth of cut made by the abrasive medium. The wear surfaces revealed fine grooves, and damaged reinforcement particles while subsurface regions revealed limited plastic deformation and microcracking and fracturing of the dispersoid phase. During low-stress abrasion, the composite experienced significantly less wear rate than the matrix alloy irrespective of the test conditions. This could be explained to be due to wear resistance offered by the hard dispersoid phase thereby protecting the softer matrix against the destructive action of the abrasive medium. Abraded surfaces of the composite showed protrusion of dispersoid phase. The subsurface regions of the composites exhibited decohesion of the dispersoid phase along with its microcracking and limited plastic deformation in the vicinity of the abraded surfaces.

Keywords: abrasive wear, liquid metallurgy, metal martix composite, SEM

Procedia PDF Downloads 123
120 Pt Decorated Functionalized Acetylene Black as Efficient Cathode Material for Li Air Battery and Fuel Cell Applications

Authors: Rajashekar Badam, Vedarajan Raman, Noriyoshi Matsumi

Abstract:

Efficiency of energy converting and storage systems like fuel cells and Li-Air battery principally depended on oxygen reduction reaction (ORR) which occurs at cathode. As the kinetics of the ORR is very slow, it becomes the rate determining step. Exploring carbon substrates for enhancing the dispersion and activity of the metal catalyst and commercially viable simple preparation method is a very crucial area of research in the field of energy materials. Hence, many researchers made large number of carbon-based ORR materials today. But, there are hardly few studies on the effect of interaction between Pt-carbon and carbon-electrolyte on activity. In this work, we have prepared functionalized carbon-based Pt catalyst (Pt-FAB) with enhanced interfacial properties that lead to efficient ORR catalysis. The present work deals with a single-pot method to exfoliate and functionalized acetylene black with enhanced interaction with Pt as well as electrolyte. Acetylene black was functionalized and exfoliated using a facile single pot acid treatment method. The resulted FAB was further decorated with Pt-nano particles (Pt-np). The TEM images of Pt-FAB with uniformly decorated Pt-np of ~3 nm. Further, XPS studies of Pt 4f peak revealed that Pt0 peak was shifted by 0.4 eV in Pt-FAB compared to binding energy of typical Pt⁰ found in Pt/C. The shift can be ascribed to the modulation of electronic state and strong electronic interaction of Pt with carbon. Modulated electronic structure of Pt and strong electronic interaction of Pt with FAB enhances the catalytic activity and durability respectively. To understand the electrode electrolyte interface, electrochemical impedance spectroscopy was carried out. These measurements revealed that the charge transfer resistance of electrode to electrolyte for Pt-FAB is 10 times smaller than that of conventional Pt/C. The interaction with electrolyte helps reduce the interface boundaries, which in turn affects the overall catalytic performance of the electrode. Cyclic voltammetric measurements in 0.1M HClO₄ aq. at a potential scan rate of 50 mVs-1 was employed to evaluate electrochemical surface area (ECSA) of Pt. ECSA of Pt-FAB was found to be as high as 67.2 m²g⁻¹. The three-electrode system showed very high ORR catalytic activity. Mass activity at 0.9 V vs. RHE showed 460 A/g which is much higher than the DOE target values for the year 2020. Further, it showed enhanced performance by showing 723 mW/cm² of highest power density and 1006 mA/cm² of current density at 0.6 V in fuel cell single cell type configuration and 1030 mAhg⁻¹ of rechargeable capacity in Li air battery application. The higher catalytic activity can be ascribed to the improved interaction of FAB with Pt and electrolyte. The aforementioned results evince that Pt-FAB will be a promising cathode material for efficient ORR with significant cyclability for its application in fuel cells and Li-Air batteries. In conclusion, a disordered material was prepared from AB and was systematically characterized. The extremely high ORR activity and ease of preparation make it competent for replacing commercially available ORR materials.

Keywords: functionalized acetylene black, oxygen reduction reaction, fuel cells, Functionalized battery

Procedia PDF Downloads 87
119 A Spatial Perspective on the Metallized Combustion Aspect of Rockets

Authors: Chitresh Prasad, Arvind Ramesh, Aditya Virkar, Karan Dholkaria, Vinayak Malhotra

Abstract:

Solid Propellant Rocket is a rocket that utilises a combination of a solid Oxidizer and a solid Fuel. Success in Solid Rocket Motor design and development depends significantly on knowledge of burning rate behaviour of the selected solid propellant under all motor operating conditions and design limit conditions. Most Solid Motor Rockets consist of the Main Engine, along with multiple Boosters that provide an additional thrust to the space-bound vehicle. Though widely used, they have been eclipsed by Liquid Propellant Rockets, because of their better performance characteristics. The addition of a catalyst such as Iron Oxide, on the other hand, can drastically enhance the performance of a Solid Rocket. This scientific investigation tries to emulate the working of a Solid Rocket using Sparklers and Energized Candles, with a central Energized Candle acting as the Main Engine and surrounding Sparklers acting as the Booster. The Energized Candle is made of Paraffin Wax, with Magnesium filings embedded in it’s wick. The Sparkler is made up of 45% Barium Nitrate, 35% Iron, 9% Aluminium, 10% Dextrin and the remaining composition consists of Boric Acid. The Magnesium in the Energized Candle, and the combination of Iron and Aluminium in the Sparkler, act as catalysts and enhance the burn rates of both materials. This combustion of Metallized Propellants has an influence over the regression rate of the subject candle. The experimental parameters explored here are Separation Distance, Systematically varying Configuration and Layout Symmetry. The major performance parameter under observation is the Regression Rate of the Energized Candle. The rate of regression is significantly affected by the orientation and configuration of the sparklers, which usually act as heat sources for the energized candle. The Overall Efficiency of any engine is factorised by the thermal and propulsive efficiencies. Numerous efforts have been made to improve one or the other. This investigation focuses on the Orientation of Rocket Motor Design to maximize their Overall Efficiency. The primary objective is to analyse the Flame Spread Rate variations of the energized candle, which resembles the solid rocket propellant used in the first stage of rocket operation thereby affecting the Specific Impulse values in a Rocket, which in turn have a deciding impact on their Time of Flight. Another objective of this research venture is to determine the effectiveness of the key controlling parameters explored. This investigation also emulates the exhaust gas interactions of the Solid Rocket through concurrent ignition of the Energized Candle and Sparklers, and their behaviour is analysed. Modern space programmes intend to explore the universe outside our solar system. To accomplish these goals, it is necessary to design a launch vehicle which is capable of providing incessant propulsion along with better efficiency for vast durations. The main motivation of this study is to enhance Rocket performance and their Overall Efficiency through better designing and optimization techniques, which will play a crucial role in this human conquest for knowledge.

Keywords: design modifications, improving overall efficiency, metallized combustion, regression rate variations

Procedia PDF Downloads 150
118 Numerical Model of Crude Glycerol Autothermal Reforming to Hydrogen-Rich Syngas

Authors: A. Odoom, A. Salama, H. Ibrahim

Abstract:

Hydrogen is a clean source of energy for power production and transportation. The main source of hydrogen in this research is biodiesel. Glycerol also called glycerine is a by-product of biodiesel production by transesterification of vegetable oils and methanol. This is a reliable and environmentally-friendly source of hydrogen production than fossil fuels. A typical composition of crude glycerol comprises of glycerol, water, organic and inorganic salts, soap, methanol and small amounts of glycerides. Crude glycerol has limited industrial application due to its low purity thus, the usage of crude glycerol can significantly enhance the sustainability and production of biodiesel. Reforming techniques is an approach for hydrogen production mainly Steam Reforming (SR), Autothermal Reforming (ATR) and Partial Oxidation Reforming (POR). SR produces high hydrogen conversions and yield but is highly endothermic whereas POR is exothermic. On the downside, PO yields lower hydrogen as well as large amount of side reactions. ATR which is a fusion of partial oxidation reforming and steam reforming is thermally neutral because net reactor heat duty is zero. It has relatively high hydrogen yield, selectivity as well as limits coke formation. The complex chemical processes that take place during the production phases makes it relatively difficult to construct a reliable and robust numerical model. Numerical model is a tool to mimic reality and provide insight into the influence of the parameters. In this work, we introduce a finite volume numerical study for an 'in-house' lab-scale experiment of ATR. Previous numerical studies on this process have considered either using Comsol or nodal finite difference analysis. Since Comsol is a commercial package which is not readily available everywhere and lab-scale experiment can be considered well mixed in the radial direction. One spatial dimension suffices to capture the essential feature of ATR, in this work, we consider developing our own numerical approach using MATLAB. A continuum fixed bed reactor is modelled using MATLAB with both pseudo homogeneous and heterogeneous models. The drawback of nodal finite difference formulation is that it is not locally conservative which means that materials and momenta can be generated inside the domain as an artifact of the discretization. Control volume, on the other hand, is locally conservative and suites very well problems where materials are generated and consumed inside the domain. In this work, species mass balance, Darcy’s equation and energy equations are solved using operator splitting technique. Therefore, diffusion-like terms are discretized implicitly while advection-like terms are discretized explicitly. An upwind scheme is adapted for the advection term to ensure accuracy and positivity. Comparisons with the experimental data show very good agreements which build confidence in our modeling approach. The models obtained were validated and optimized for better results.

Keywords: autothermal reforming, crude glycerol, hydrogen, numerical model

Procedia PDF Downloads 118
117 Nanoparticle Supported, Magnetically Separable Metalloporphyrin as an Efficient Retrievable Heterogeneous Nanocatalyst in Oxidation Reactions

Authors: Anahita Mortazavi Manesh, Mojtaba Bagherzadeh

Abstract:

Metalloporphyrins are well known to mimic the activity of monooxygenase enzymes. In this regard, metalloporphyrin complexes have been largely employed as valuable biomimetic catalysts, owing to the critical roles they play in oxygen transfer processes in catalytic oxidation reactions. Investigating in this area is based on different strategies to design selective, stable and high turnover catalytic systems. Immobilization of expensive metalloporphyrin catalysts onto supports appears to be a good way to improve their stability, selectivity and the catalytic performance because of the support environment and other advantages with respect to recovery, reuse. In other words, supporting metalloporphyrins provides a physical separation of active sites, thus minimizing catalyst self-destruction and dimerization of unhindered metalloporphyrins. Furthermore, heterogeneous catalytic oxidations have become an important target since their process are used in industry, helping to minimize the problems of industrial waste treatment. Hence, the immobilization of these biomimetic catalysts is much desired. An attractive approach is the preparation of the heterogeneous catalyst involves immobilization of complexes on silica coated magnetic nano-particles. Fe3O4@SiO2 magnetic nanoparticles have been studied extensively due to their superparamagnetism property, large surface area to volume ratio and easy functionalization. Using heterogenized homogeneous catalysts is an attractive option to facile separation of catalyst, simplified product work-up and continuity of catalytic system. Homogeneous catalysts immobilized on magnetic nanoparticles (MNPs) surface occupy a unique position due to combining the advantages of both homogeneous and heterogeneous catalysts. In addition, superparamagnetic nature of MNPs enable very simple separation of the immobilized catalysts from the reaction mixture using an external magnet. In the present work, an efficient heterogeneous catalyst was prepared by immobilizing manganese porphyrin on functionalized magnetic nanoparticles through the amino propyl linkage. The prepared catalyst was characterized by elemental analysis, FT-IR spectroscopy, X-ray powder diffraction, atomic absorption spectroscopy, UV-Vis spectroscopy, and scanning electron microscopy. Application of immobilized metalloporphyrin in the oxidation of various organic substrates was explored using Gas chromatographic (GC) analyses. The results showed that the supported Mn-porphyrin catalyst (Fe3O4@SiO2-NH2@MnPor) is an efficient and reusable catalyst in oxidation reactions. Our catalytic system exhibits high catalytic activity in terms of turnover number (TON) and reaction conditions. Leaching and recycling experiments revealed that nanocatalyst can be recovered several times without loss of activity and magnetic properties. The most important advantage of this heterogenized catalytic system is the simplicity of the catalyst separation in which the catalyst can be separated from the reaction mixture by applying a magnet. Furthermore, the separation and reuse of the magnetic Fe3O4 nanoparticles were very effective and economical.

Keywords: Fe3O4 nanoparticle, immobilized metalloporphyrin, magnetically separable nanocatalyst, oxidation reactions

Procedia PDF Downloads 274
116 Using Business Simulations and Game-Based Learning for Enterprise Resource Planning Implementation Training

Authors: Carin Chuang, Kuan-Chou Chen

Abstract:

An Enterprise Resource Planning (ERP) system is an integrated information system that supports the seamless integration of all the business processes of a company. Implementing an ERP system can increase efficiencies and decrease the costs while helping improve productivity. Many organizations including large, medium and small-sized companies have already adopted an ERP system for decades. Although ERP system can bring competitive advantages to organizations, the lack of proper training approach in ERP implementation is still a major concern. Organizations understand the importance of ERP training to adequately prepare managers and users. The low return on investment, however, for the ERP training makes the training difficult for knowledgeable workers to transfer what is learned in training to the jobs at workplace. Inadequate and inefficient ERP training limits the value realization and success of an ERP system. That is the need to call for a profound change and innovation for ERP training in both workplace at industry and the Information Systems (IS) education in academia. The innovated ERP training approach can improve the users’ knowledge in business processes and hands-on skills in mastering ERP system. It also can be instructed as educational material for IS students in universities. The purpose of the study is to examine the use of ERP simulation games via the ERPsim system to train the IS students in learning ERP implementation. The ERPsim is the business simulation game developed by ERPsim Lab at HEC Montréal, and the game is a real-life SAP (Systems Applications and Products) ERP system. The training uses the ERPsim system as the tool for the Internet-based simulation games and is designed as online student competitions during the class. The competitions involve student teams with the facilitation of instructor and put the students’ business skills to the test via intensive simulation games on a real-world SAP ERP system. The teams run the full business cycle of a manufacturing company while interacting with suppliers, vendors, and customers through sending and receiving orders, delivering products and completing the entire cash-to-cash cycle. To learn a range of business skills, student needs to adopt individual business role and make business decisions around the products and business processes. Based on the training experiences learned from rounds of business simulations, the findings show that learners have reduced risk in making mistakes that help learners build self-confidence in problem-solving. In addition, the learners’ reflections from their mistakes can speculate the root causes of the problems and further improve the efficiency of the training. ERP instructors teaching with the innovative approach report significant improvements in student evaluation, learner motivation, attendance, engagement as well as increased learner technology competency. The findings of the study can provide ERP instructors with guidelines to create an effective learning environment and can be transferred to a variety of other educational fields in which trainers are migrating towards a more active learning approach.

Keywords: business simulations, ERP implementation training, ERPsim, game-based learning, instructional strategy, training innovation

Procedia PDF Downloads 111
115 Deep Learning in Chest Computed Tomography to Differentiate COVID-19 from Influenza

Authors: Hongmei Wang, Ziyun Xiang, Ying liu, Li Yu, Dongsheng Yue

Abstract:

Intro: The COVID-19 (Corona Virus Disease 2019) has greatly changed the global economic, political and financial ecology. The mutation of the coronavirus in the UK in December 2020 has brought new panic to the world. Deep learning was performed on Chest Computed tomography (CT) of COVID-19 and Influenza and describes their characteristics. The predominant features of COVID-19 pneumonia was ground-glass opacification, followed by consolidation. Lesion density: most lesions appear as ground-glass shadows, and some lesions coexist with solid lesions. Lesion distribution: the focus is mainly on the dorsal side of the periphery of the lung, with the lower lobe of the lungs as the focus, and it is often close to the pleura. Other features it has are grid-like shadows in ground glass lesions, thickening signs of diseased vessels, air bronchi signs and halo signs. The severe disease involves whole bilateral lungs, showing white lung signs, air bronchograms can be seen, and there can be a small amount of pleural effusion in the bilateral chest cavity. At the same time, this year's flu season could be near its peak after surging throughout the United States for months. Chest CT for Influenza infection is characterized by focal ground glass shadows in the lungs, with or without patchy consolidation, and bronchiole air bronchograms are visible in the concentration. There are patchy ground-glass shadows, consolidation, air bronchus signs, mosaic lung perfusion, etc. The lesions are mostly fused, which is prominent near the hilar and two lungs. Grid-like shadows and small patchy ground-glass shadows are visible. Deep neural networks have great potential in image analysis and diagnosis that traditional machine learning algorithms do not. Method: Aiming at the two major infectious diseases COVID-19 and influenza, which are currently circulating in the world, the chest CT of patients with two infectious diseases is classified and diagnosed using deep learning algorithms. The residual network is proposed to solve the problem of network degradation when there are too many hidden layers in a deep neural network (DNN). The proposed deep residual system (ResNet) is a milestone in the history of the Convolutional neural network (CNN) images, which solves the problem of difficult training of deep CNN models. Many visual tasks can get excellent results through fine-tuning ResNet. The pre-trained convolutional neural network ResNet is introduced as a feature extractor, eliminating the need to design complex models and time-consuming training. Fastai is based on Pytorch, packaging best practices for in-depth learning strategies, and finding the best way to handle diagnoses issues. Based on the one-cycle approach of the Fastai algorithm, the classification diagnosis of lung CT for two infectious diseases is realized, and a higher recognition rate is obtained. Results: A deep learning model was developed to efficiently identify the differences between COVID-19 and influenza using chest CT.

Keywords: COVID-19, Fastai, influenza, transfer network

Procedia PDF Downloads 115
114 Stability of Porous SiC Based Materials under Relevant Conditions of Radiation and Temperature

Authors: Marta Malo, Carlota Soto, Carmen García-Rosales, Teresa Hernández

Abstract:

SiC based composites are candidates for possible use as structural and functional materials in the future fusion reactors, the main role is intended for the blanket modules. In the blanket, the neutrons produced in the fusion reaction slow down and their energy is transformed into heat in order to finally generate electrical power. In the blanket design named Dual Coolant Lead Lithium (DCLL), a PbLi alloy for power conversion and tritium breeding circulates inside hollow channels called Flow Channel Inserts (FCIs). These FCI must protect the steel structures against the highly corrosive PbLi liquid and the high temperatures, but also provide electrical insulation in order to minimize magnetohydrodynamic interactions of the flowing liquid metal with the high magnetic field present in a magnetically confined fusion environment. Due to their nominally high temperature and radiation stability as well as corrosion resistance, SiC is the main choice for the flow channel inserts. The significantly lower manufacturing cost presents porous SiC (dense coating is required in order to assure protection against corrosion and as a tritium barrier) as a firm alternative to SiC/SiC composites for this purpose. This application requires the materials to be exposed to high radiation levels and extreme temperatures, conditions for which previous studies have shown noticeable changes in both the microstructure and the electrical properties of different types of silicon carbide. Both initial properties and radiation/temperature induced damage strongly depend on the crystal structure, polytype, impurities/additives that are determined by the fabrication process, so the development of a suitable material requires full control of these variables. For this work, several SiC samples with different percentage of porosity and sintering additives have been manufactured by the so-called sacrificial template method at the Ceit-IK4 Technology Center (San Sebastián, Spain), and characterized at Ciemat (Madrid, Spain). Electrical conductivity was measured as a function of temperature before and after irradiation with 1.8 MeV electrons in the Ciemat HVEC Van de Graaff accelerator up to 140 MGy (~ 2·10 -5 dpa). Radiation-induced conductivity (RIC) was also examined during irradiation at 550 ºC for different dose rates (from 0.5 to 5 kGy/s). Although no significant RIC was found in general for any of the samples, electrical conductivity increase with irradiation dose was observed to occur for some compositions with a linear tendency. However, first results indicate enhanced radiation resistance for coated samples. Preliminary thermogravimetric tests of selected samples, together with posterior XRD analysis allowed interpret radiation-induced modification of the electrical conductivity in terms of changes in the SiC crystalline structure. Further analysis is needed in order to confirm this.

Keywords: DCLL blanket, electrical conductivity, flow channel insert, porous SiC, radiation damage, thermal stability

Procedia PDF Downloads 173
113 Resolving Urban Mobility Issues through Network Restructuring of Urban Mass Transport

Authors: Aditya Purohit, Neha Bansal

Abstract:

Unplanned urbanization and multidirectional sprawl of the cities have resulted in increased motorization and deteriorating transport conditions like traffic congestion, longer commuting, pollution, increased carbon footprint, and above all increased fatalities. In order to overcome these problems, various practices have been adopted including– promoting and implementing mass transport; traffic junction channelization; smart transport etc. However, these methods are found to be primarily focusing on vehicular mobility rather than people accessibility. With this research gap, this paper tries to resolve the mobility issues for Ahmedabad city in India, which being the economic capital Gujarat state has a huge commuter and visitor inflow. This research aims to resolve the traffic congestion and urban mobility issues focusing on Gujarat State Regional Transport Corporation (GSRTC) for the city of Ahmadabad by analyzing the existing operations and network structure of GSRTC followed by finding possibilities of integrating it with other modes of urban transport. The network restructuring (NR) methodology is used with appropriate variations, based on commuter demand and growth pattern of the city. To do these ‘scenarios’ based on priority issues (using 12 parameters) and their best possible solution, are established after route network analysis for 2700 population sample of 20 traffic junctions/nodes across the city. Approximately 5% sample (of passenger inflow) at each node is considered using random stratified sampling technique two scenarios are – Scenario 1: Resolving mobility issues by use of Special Purpose Vehicle (SPV) in joint venture to GSRTC and Private Operators for establishing feeder service, which shall provide a transfer service for passenger for movement from inner city area to identified peripheral terminals; and Scenario 2: Augmenting existing mass transport services such as BRTS and AMTS for using them as feeder service to the identified peripheral terminals. Each of these has now been analyzed for the best suitability/feasibility in network restructuring. A desire-line diagram is constructed using this analysis which indicated that on an average 62% of designated GSRTC routes are overlapping with mass transportation service routes of BRTS and AMTS in the city. This has resulted in duplication of bus services causing traffic congestion especially in the Central Bus Station (CBS). Terminating GSRTC services on the periphery of the city is found to be the best restructuring network proposal. This limits the GSRTC buses at city fringe area and prevents them from entering into the city core areas. These end-terminals of GSRTC are integrated with BRTS and AMTS services which help in segregating intra-state and inter-state bus services. The research concludes that absence of integrated multimodal transport network resulted in complexity of transport access to the commuters. As a further scope of research comparing and understanding of value of access time in total travel time and its implication on generalized cost on trip and how it varies city wise may be taken up.

Keywords: mass transportation, multi-modal integration, network restructuring, travel behavior, urban transport

Procedia PDF Downloads 176
112 Geophysical Methods and Machine Learning Algorithms for Stuck Pipe Prediction and Avoidance

Authors: Ammar Alali, Mahmoud Abughaban

Abstract:

Cost reduction and drilling optimization is the goal of many drilling operators. Historically, stuck pipe incidents were a major segment of non-productive time (NPT) associated costs. Traditionally, stuck pipe problems are part of the operations and solved post-sticking. However, the real key to savings and success is in predicting the stuck pipe incidents and avoiding the conditions leading to its occurrences. Previous attempts in stuck-pipe predictions have neglected the local geology of the problem. The proposed predictive tool utilizes geophysical data processing techniques and Machine Learning (ML) algorithms to predict drilling activities events in real-time using surface drilling data with minimum computational power. The method combines two types of analysis: (1) real-time prediction, and (2) cause analysis. Real-time prediction aggregates the input data, including historical drilling surface data, geological formation tops, and petrophysical data, from wells within the same field. The input data are then flattened per the geological formation and stacked per stuck-pipe incidents. The algorithm uses two physical methods (stacking and flattening) to filter any noise in the signature and create a robust pre-determined pilot that adheres to the local geology. Once the drilling operation starts, the Wellsite Information Transfer Standard Markup Language (WITSML) live surface data are fed into a matrix and aggregated in a similar frequency as the pre-determined signature. Then, the matrix is correlated with the pre-determined stuck-pipe signature for this field, in real-time. The correlation used is a machine learning Correlation-based Feature Selection (CFS) algorithm, which selects relevant features from the class and identifying redundant features. The correlation output is interpreted as a probability curve of stuck pipe incidents prediction in real-time. Once this probability passes a fixed-threshold defined by the user, the other component, cause analysis, alerts the user of the expected incident based on set pre-determined signatures. A set of recommendations will be provided to reduce the associated risk. The validation process involved feeding of historical drilling data as live-stream, mimicking actual drilling conditions, of an onshore oil field. Pre-determined signatures were created for three problematic geological formations in this field prior. Three wells were processed as case studies, and the stuck-pipe incidents were predicted successfully, with an accuracy of 76%. This accuracy of detection could have resulted in around 50% reduction in NPT, equivalent to 9% cost saving in comparison with offset wells. The prediction of stuck pipe problem requires a method to capture geological, geophysical and drilling data, and recognize the indicators of this issue at a field and geological formation level. This paper illustrates the efficiency and the robustness of the proposed cross-disciplinary approach in its ability to produce such signatures and predicting this NPT event.

Keywords: drilling optimization, hazard prediction, machine learning, stuck pipe

Procedia PDF Downloads 185
111 Financing the Welfare State in the United States: The Recent American Economic and Ideological Challenges

Authors: Rafat Fazeli, Reza Fazeli

Abstract:

This paper focuses on the study of the welfare state and social wage in the leading liberal economy of the United States. The welfare state acquired a broad acceptance as a major socioeconomic achievement of the liberal democracy in the Western industrialized countries during the postwar boom period. The modern and modified vision of capitalist democracy offered, on the one hand, the possibility of high growth rate and, on the other hand, the possibility of continued progression of a comprehensive system of social support for a wider population. The economic crises of the 1970s, provided the ground for a great shift in economic policy and ideology in several Western countries, most notably the United States and the United Kingdom (and to a lesser extent Canada under Prime Minister Brian Mulroney). In the 1980s, the free market oriented reforms undertaken under Reagan and Thatcher greatly affected the economic outlook not only of the United States and the United Kingdom, but of the whole Western world. The movement which was behind this shift in policy is often called neo-conservatism. The neoconservatives blamed the transfer programs for the decline in economic performance during the 1970s and argued that cuts in spending were required to go back to the golden age of full employment. The agenda for both Reagan and Thatcher administrations was rolling back the welfare state, and their budgets included a wide range of cuts for social programs. The question is how successful were Reagan and Thatcher’s efforts to achieve retrenchment? The paper involves an empirical study concerning the distributive role of the welfare state in the two countries. Other studies have often concentrated on the redistributive effect of fiscal policy on different income brackets. This study examines the net benefit/ burden position of the working population with respect to state expenditures and taxes in the postwar period. This measurement will enable us to find out whether the working population has received a net gain (or net social wage). This study will discuss how the expansion of social expenditures and the trend of the ‘net social wage’ can be linked to distinct forms of economic and social organizations. This study provides an empirical foundation for analyzing the growing significance of ‘social wage’ or the collectivization of consumption and the share of social or collective consumption in total consumption of the working population in the recent decades. The paper addresses three other major questions. The first question is whether the expansion of social expenditures has posed any drag on capital accumulation and economic growth. The findings of this study provide an analytical foundation to evaluate the neoconservative claim that the welfare state is itself the source of economic stagnation that leads to the crisis of the welfare state. The second question is whether the increasing ideological challenges from the right and the competitive pressures of globalization have led to retrenchment of the American welfare states in the recent decades. The third question is how social policies have performed in the presence of the rising inequalities in the recent decades.

Keywords: the welfare state, social wage, The United States, limits to growth

Procedia PDF Downloads 185
110 Inhabitants’ Adaptation to the Climate's Evolutions in Cities: a Survey of City Dwellers’ Climatic Experiences’ Construction

Authors: Geraldine Molina, Malou Allagnat

Abstract:

Entry through meteorological and climatic phenomena, technical knowledge and engineering sciences has long been favored by the research and local public action to analyze the urban climate, develop strategies to reduce its changes and adapt their spaces. However, in their daily practices and sensitive experiences, city dwellers are confronted with the climate and constantly deal with its fluctuations. In this way, these actors develop knowledge, skills and tactics to regulate their comfort and adapt to climatic variations. Therefore, the empirical observation and analysis of these living experiences represent major scientific and social challenges. This contribution proposes to question these relationships of the inhabitants to urban climate. It tackles the construction of inhabitants’ climatic experiences to answer a central question: how do city dwellers’ deal with the urban climate and adapt to its different variations? Indeed, the city raises the question of how populations adapt to different spatial and temporal climatic variations. Local impacts of global climate change are combined with the urban heat island phenomenon and other microclimatic effects, as well as seasonal, daytime and night-time fluctuations. To provide answers, the presentation will be focused on the results of a CNRS research project (Géraldine Molina), part of which is linked to the European project Nature For Cities (H2020, Marjorie Musy, Scientific Director). From a theoretical point of view, the contribution is based on a renewed definition of adaptation centered on the capacity of individuals and social groups, a recently opened entry from a theoretical point of view by social scientists. The research adopts a "radical interdisciplinary" approach to shed light on the links between social dynamics of climate (inhabitants’ perceptions, representations and practices) and physical processes that characterize urban climate. To do so, it relied on a methodological combination of different survey techniques borrowed from the social sciences (geography, anthropology, sociology) and linked to the work, methodologies and results of the engineering sciences. From 2016 to 2019, a survey was carried out in two districts of Lyon whose morphological, micro-climatic and social characteristics differ greatly, namely the 6th arrondissement and the Guillotière district. To explore the construction of climate experiences over the long term by putting it into perspective with the life trajectories of individuals, 70 semi-directive interviews were conducted with inhabitants. In order to also punctually survey the climate experiments as they unfold in a given time and moment, observation and measurement campaigns of physical phenomena and questionnaires have been conducted in public spaces by an interdisciplinary research team1. The contribution at the ICUC 2020 will mainly focus on the presentation of the presentation of the qualitative survey conducted thanks to the inhabitants’ interviews.

Keywords: sensitive experiences, ways of life, thermal comfort, radical interdisciplinarity

Procedia PDF Downloads 98
109 Comparative Study of Outcome of Patients with Wilms Tumor Treated with Upfront Chemotherapy and Upfront Surgery in Alexandria University Hospitals

Authors: Golson Mohamed, Yasmine Gamasy, Khaled EL-Khatib, Anas Al-Natour, Shady Fadel, Haytham Rashwan, Haytham Badawy, Nadia Farghaly

Abstract:

Introduction: Wilm's tumor is the most common malignant renal tumor in children. Much progress has been made in the management of patients with this malignancy over the last 3 decades. Today treatments are based on several trials and studies conducted by the International Society of Pediatric Oncology (SIOP) in Europe and National Wilm's Tumor Study Group (NWTS) in the USA. It is necessary for us to understand why do we follow either of the protocols, NWTS which follows the upfront surgery principle or the SIOP which follows the upfront chemotherapy principle in all stages of the disease. Objective: The aim of is to assess outcome in patients treated with preoperative chemotherapy and patients treated with upfront surgery to compare their effect on overall survival. Study design: to decide which protocol to follow, study was carried out on records for patients aged 1 day to 18 years old suffering from Wilm's tumor who were admitted to Alexandria University Hospital, pediatric oncology, pediatric urology and pediatric surgery departments, with a retrospective survey records from 2010 to 2015, Design and editing of the transfer sheet with a (PRISMA flow study) Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Data were fed to the computer and analyzed using IBM SPSS software package version 20.0. (11) Qualitative data were described using number and percent. Quantitative data were described using Range (minimum and maximum), mean, standard deviation and median. Comparison between different groups regarding categorical variables was tested using Chi-square test. When more than 20% of the cells have expected count less than 5, correction for chi-square was conducted using Fisher’s Exact test or Monte Carlo correction. The distributions of quantitative variables were tested for normality using Kolmogorov-Smirnov test, Shapiro-Wilk test, and D'Agstino test, if it reveals normal data distribution, parametric tests were applied. If the data were abnormally distributed, non-parametric tests were used. For normally distributed data, a comparison between two independent populations was done using independent t-test. For abnormally distributed data, comparison between two independent populations was done using Mann-Whitney test. Significance of the obtained results was judged at the 5% level. Results: A significantly statistical difference was observed for survival between the two studied groups favoring the upfront chemotherapy(86.4%)as compared to the upfront surgery group (59.3%) where P=0.009. As regard complication, 20 cases (74.1%) out of 27 were complicated in the group of patients treated with upfront surgery. Meanwhile, 30 cases (68.2%) out of 44 had complications in patients treated with upfront chemotherapy. Also, the incidence of intraoperative complication (rupture) was less in upfront chemotherapy group as compared to upfront surgery group. Conclusion: Upfront chemotherapy has superiority over upfront surgery.As the patient who started with upfront chemotherapy shown, higher survival rate, less percent in complication, less percent needed for radiotherapy, and less rate in recurrence.

Keywords: Wilm's tumor, renal tumor, chemotherapy, surgery

Procedia PDF Downloads 295
108 Effect of Spermidine on Physicochemical Properties of Protein Based Films

Authors: Mohammed Sabbah, Prospero Di Pierro, Raffaele Porta

Abstract:

Protein-based edible films and coatings have attracted an increasing interest in recent years since they might be used to protect pharmaceuticals or improve the shelf life of different food products. Among them, several plant proteins represent an abundant, inexpensive and renewable raw source. These natural biopolymers are used as film forming agents, being able to form intermolecular linkages by various interactions. However, without the addition of a plasticizing agent, many biomaterials are brittle and, consequently, very difficult to be manipulated. Plasticizers are generally small and non-volatile organic additives used to increase film extensibility and reduce its crystallinity, brittleness and water vapor permeability. Plasticizers normally act by decreasing the intermolecular forces along the polymer chains, thus reducing the relative number of polymer-polymer contacts, producing a decrease in cohesion and tensile strength and thereby increasing film flexibility allowing its deformation without rupture. The most commonly studied plasticizers are polyols, like glycerol (GLY) and some mono or oligosaccharides. In particular, GLY not only increases film extensibility but also migrates inside the film network often causing the loss of desirable mechanical properties of the material. Therefore, replacing GLY with a different plasticizer might help to improve film characteristics allowing potential industrial applications. To improve film properties, it seemed of interest to test as plasticizers some cationic small molecules like polyamines (PAs). Putrescine, spermidine (SPD), and spermine are PAs widely distributed in nature and of particular interest for their biological activities that may have some beneficial health effects. Since PAs contains amino instead of hydroxyl functional groups, they are able to trigger ionic interactions with negatively charged proteins. Bitter vetch (Vicia ervilia; BV) is an ancient grain legume crop, originated in the Mediterranean region, which can be found today in many countries around the world. This annual Vicia genus shows several favorable features, being their seeds a cheap and abundant protein source. The main objectives of this study were to investigate the effect of different concentrations of SPD on the mechanical and permeability properties of films prepared with native or heat denatured BV proteins in the presence of different concentrations of SPD and/or GLY. Therefore, a BV seed protein concentrate (BVPC), containing about 77% proteins, was used to prepare film forming solutions (FFSs), whereas GLY and SPD were added as film plasticizers, either singly or in combination, at various concentrations. Since a primary plasticizer is generally defined as a molecule that when added to a material makes it softer, more flexible and easier to be processed, our findings lead to consider SPD as a possible primary plasticizer of protein-based films. In fact, the addition of millimolar concentrations of SPD to BVPC FFS allowed obtaining handleable biomaterials with improved properties. Moreover, SPD can be also considered as a secondary plasticizer, namely an 'extender', because of its ability even to enhance the plasticizing performance of GLY. In conclusion, our studies indicate that innovative edible protein-based films and coatings can be obtained by using PAs as new plasticizers.

Keywords: edible films, glycerol, plasticizers, polyamines, spermidine

Procedia PDF Downloads 172
107 Analysis of Fish Preservation Methods for Traditional Fishermen Boat

Authors: Kusno Kamil, Andi Asni, Sungkono

Abstract:

According to a report of the World Food and Agriculture Agency (FAO): the post-harvest fish losses in Indonesia reaches 30 percent from 170 trillion rupiahs of marine fisheries reserves, then the potential loss reaches 51 trillion rupiahs (end of 2016 data). This condition is caused by traditionally vulnerable fish catches damaged due to disruption of the cold chain of preservation. The physical and chemical changes in fish flesh increase rapidly, especially if exposed to the scorching heat in the middle of the sea, exacerbated by the low awareness of catch hygiene; many unclean catches which contain blood are often treated without special attention and mixed with freshly caught fish, thereby increasing the potential for faster fish spoilage. This background encourages research on traditional fisherman catch preservation methods that aim to find the best and most affordable methods and/or combinations of fish preservation methods so that they can help fishermen increase their fishing duration without worrying that their catch will be damaged, thereby reducing their economic value when returning to the beach to sell their catches. This goal is expected to be achieved through experimental methods of treatment of fresh fish catches in containers with the addition of anti-bacterial copper, liquid smoke solution, and the use of vacuum containers. The other three treatments combined the three previous treatment variables with an electrically powered cooler (temperature 0~4 ᵒC). As a control specimen, the untreated fresh fish (placed in the open air and in the refrigerator) were also prepared for comparison for 1, 3, and 6 days. To test the level of freshness of fish for each treatment, physical observations were used, which were complemented by tests for bacterial content in a trusted laboratory. The content of copper (Cu) in fish meat (which is suspected of having a negative impact on consumers) was also part of the examination on the 6th day of experimentation. The results of physical observations on the test specimens (organoleptic method) showed that preservation assisted by the use of coolers was still better for all treatment variables. The specimens, without cooling, sequentially showed that the best preservation effectiveness was the addition of copper plates, the use of vacuum containers, and then liquid smoke immersion. Especially for liquid smoke, soaking for 6 days of preservation makes the fish meat soft and easy to crumble, even though it doesn't have a bad odor. The visual observation was then complemented by the results of testing the amount of growth (or retardation) of putrefactive bacteria in each treatment of test specimens within similar observation periods. Laboratory measurements report that the minimum amount of putrefactive bacteria achieved by preservation treatment combining cooler with liquid smoke (sample A+), then cooler only (D+), copper layer inside cooler (B+), vacuum container inside cooler (C+), respectively. Other treatments in open air produced a hundred times more putrefactive bacteria. In addition, treatment of the copper layer contaminated the preserved fresh fish more than a thousand times bigger compared to the initial amount, from 0.69 to 1241.68 µg/g.

Keywords: fish, preservation, traditional, fishermen, boat

Procedia PDF Downloads 48
106 Effects of the Exit from Budget Support on Good Governance: Findings from Four Sub-Saharan Countries

Authors: Magdalena Orth, Gunnar Gotz

Abstract:

Background: Domestic accountability, budget transparency and public financial management (PFM) are considered vital components of good governance in developing countries. The aid modality budget support (BS) promotes these governance functions in developing countries. BS engages in political decision-making and provides financial and technical support to poverty reduction strategies of the partner countries. Nevertheless, many donors have withdrawn their support from this modality due to cases of corruption, fraud or human rights violations. This exit from BS is leaving a finance and governance vacuum in the countries. The evaluation team analyzed the consequences of terminating the use of this modality and found particularly negative effects for good governance outcomes. Methodology: The evaluation uses a qualitative (theory-based) approach consisting of a comparative case study design, which is complemented by a process-tracing approach. For the case studies, the team conducted over 100 semi-structured interviews in Malawi, Uganda, Rwanda and Zambia and used four country-specific, tailor-made budget analysis. In combination with a previous DEval evaluation synthesis on the effects of BS, the team was able to create a before-and-after comparison that yields causal effects. Main Findings: In all four countries domestic accountability and budget transparency declined if other forms of pressure are not replacing BS´s mutual accountability mechanisms. In Malawi a fraud scandal created pressure from the society and from donors so that accountability was improved. In the other countries, these pressure mechanisms were absent so that domestic accountability declined. BS enables donors to actively participate in political processes of the partner country as donors transfer funds into the treasury of the partner country and conduct a high-level political dialogue. The results confirm that the exit from BS created a governance vacuum that, if not compensated through external/internal pressure, leads to a deterioration of good governance. For example, in the case of highly aid dependent Malawi did the possibility of a relaunch of BS provide sufficient incentives to push for governance reforms. Overall the results show that the three good governance areas are negatively affected by the exit from BS. This stands in contrast to positive effects found before the exit. The team concludes that the relationship is causal, because the before-and-after comparison coherently shows that the presence of BS correlates with positive effects and the absence with negative effects. Conclusion: These findings strongly suggest that BS is an effective modality to promote governance and its abolishment is likely to cause governance disruptions. Donors and partner governments should find ways to re-engage in closely coordinated policy-based aid modalities. In addition, a coordinated and carefully managed exit-strategy should be in place before an exit from similar modalities is considered. Particularly a continued framework of mutual accountability and a high-level political dialogue should be aspired to maintain pressure and oversight that is required to achieve good governance.

Keywords: budget support, domestic accountability, public financial management and budget transparency, Sub-Sahara Africa

Procedia PDF Downloads 114
105 Phospholipid Cationic and Zwitterionic Compounds as Potential Non-Toxic Antifouling Agents: A Study of Biofilm Formation Assessed by Micro-titer Assays with Marine Bacteria and Eco-toxicological Effect on Marine Microalgae

Authors: D. Malouch, M. Berchel, C. Dreanno, S. Stachowski-Haberkorn, P-A. Jaffres

Abstract:

Biofouling is a complex natural phenomenon that involves biological, physical and chemical properties related to the environment, the submerged surface and the living organisms involved. Bio-colonization of artificial structures can cause various economic and environmental impacts. The increase in costs associated with the over-consumption of fuel from biocolonized vessels has been widely studied. Measurement drifts from submerged sensors, as well as obstructions in heat exchangers, and deterioration of offshore structures are major difficulties that industries are dealing with. Therefore, surfaces that inhibit biocolonization are required in different areas (water treatment, marine paints, etc.) and many efforts have been devoted to produce efficient and eco-compatible antifouling agents. The different steps of surface fouling are widely described in literature. Studying the biofilm and its stages provides a better understanding of how to elaborate more efficient antifouling strategies. Several approaches are currently applied, such as the use of biocide anti-fouling paint (mainly with copper derivatives) and super-hydrophobic coatings. While these two processes are proving to be the most effective, they are not entirely satisfactory, especially in a context of a changing legislation. Nowadays, the challenge is to prevent biofouling with non-biocide compounds, offering a cost effective solution, but with no toxic effects on marine organisms. Since the micro-fouling phase plays an important role in the regulation of the following steps of biofilm formation, it is desired to reduce or delate biofouling of a given surface by inhibiting the micro-fouling at its early stages. In our recent works, we reported that some amphiphilic compounds exhibited bacteriostatic or bactericidal properties at a concentration that did not affect mammalian eukaryotic cells. These remarkable properties invited us to assess this type of bio-inspired phospholipids to prevent the colonization of surfaces by marine bacteria. Of note, other studies reported that amphiphilic compounds interacted with bacteria leading to a reduction of their development. An amphiphilic compound is a molecule consisting of a hydrophobic domain and a polar head (ionic or non-ionic). These compounds appear to have interesting antifouling properties: some ionic compounds have shown antimicrobial activity, and zwitterions can reduce nonspecific adsorption of proteins. Herein, we investigate the potential of amphiphilic compounds as inhibitors of bacterial growth and marine biofilm formation. The aim of this study is to compare the efficacy of four synthetic phospholipids that features a cationic charge or a zwitterionic polar-head group to prevent microfouling with marine bacteria. Toxicity of these compounds was also studied in order to identify the most promising compounds that inhibit biofilm development and show low cytotoxicity on two links representative of coastal marine food webs: phytoplankton and oyster larvae.

Keywords: amphiphilic phospholipids, biofilm, marine fouling, non-toxique assays

Procedia PDF Downloads 112
104 Piezotronic Effect on Electrical Characteristics of Zinc Oxide Varistors

Authors: Nadine Raidl, Benjamin Kaufmann, Michael Hofstätter, Peter Supancic

Abstract:

If polycrystalline ZnO is properly doped and sintered under very specific conditions, it shows unique electrical properties, which are indispensable for today’s electronic industries, where it is used as the number one overvoltage protection material. Under a critical voltage, the polycrystalline bulk exhibits high electrical resistance but becomes suddenly up to twelve magnitudes more conductive if this voltage limit is exceeded (i.e., varistor effect). It is known that these peerless properties have their origin in the grain boundaries of the material. Electric charge is accumulated in the boundaries, causing a depletion layer in their vicinity and forming potential barriers (so-called Double Schottky Barriers, or DSB) which are responsible for the highly non-linear conductivity. Since ZnO is a piezoelectric material, mechanical stresses induce polarisation charges that modify the DSB heights and as a result the global electrical characteristics (i.e., piezotronic effect). In this work, a finite element method was used to simulate emerging stresses on individual grains in the bulk. Besides, experimental efforts were made to testify a coherent model that could explain this influence. Electron back scattering diffraction was used to identify grain orientations. With the help of wet chemical etching, grain polarization was determined. Micro lock-in infrared thermography (MLIRT) was applied to detect current paths through the material, and a micro 4-point probes method system (M4PPS) was employed to investigate current-voltage characteristics between single grains. Bulk samples were tested under uniaxial pressure. It was found that the conductivity can increase by up to three orders of magnitude with increasing stress. Through in-situ MLIRT, it could be shown that this effect is caused by the activation of additional current paths in the material. Further, compressive tests were performed on miniaturized samples with grain paths containing solely one or two grain boundaries. The tests evinced both an increase of the conductivity, as observed for the bulk, as well as a decreased conductivity. This phenomenon has been predicted theoretically and can be explained by piezotronically induced surface charges that have an impact on the DSB at the grain boundaries. Depending on grain orientation and stress direction, DSB can be raised or lowered. Also, the experiments revealed that the conductivity within one single specimen can increase and decrease, depending on the current direction. This novel finding indicates the existence of asymmetric Double Schottky Barriers, which was furthermore proved by complementary methods. MLIRT studies showed that the intensity of heat generation within individual current paths is dependent on the direction of the stimulating current. M4PPS was used to study the relationship between the I-V characteristics of single grain boundaries and grain orientation and revealed asymmetric behavior for very specific orientation configurations. A new model for the Double Schottky Barrier, taking into account the natural asymmetry and explaining the experimental results, will be given.

Keywords: Asymmetric Double Schottky Barrier, piezotronic, varistor, zinc oxide

Procedia PDF Downloads 244
103 Embryonic Aneuploidy – Morphokinetic Behaviors as a Potential Diagnostic Biomarker

Authors: Banafsheh Nikmehr, Mohsen Bahrami, Yueqiang Song, Anuradha Koduru, Ayse K. Vuruskan, Hongkun Lu, Mallory Pitts, Tolga B. Mesen, Tamer M. Yalcinkaya

Abstract:

The number of people who receive in vitro fertilization (IVF) treatment has increased on a startling trajectory over the past two decades. Despite advances in this field, particularly the introduction of intracytoplasmic sperm injection (ICSI) and the preimplantation genetic screening (PGS), the IVF success remains low. A major factor contributing to IVF failure is embryonic aneuploidy (abnormal chromosome content), which often results in miscarriage and birth defects. Although PGS is often used as the standard diagnostic tool to identify aneuploid embryos, it is an invasive approach that could affect the embryo development, and yet inaccessible to many patients due its high costs. As such, there is a clear need for a non-invasive cost-effective approach to identify euploid embryos for single embryo transfer (SET). The reported differences between morphokinetic behaviors of aneuploid and euploid embryos has shown promise to address this need. However, current literature is inconclusive and further research is urgently needed to translate current findings into clinical diagnostics. In this ongoing study, we found significant differences between morphokinetic behaviors of euploid and aneuploid embryos that provides important insights and reaffirms the promise of such behaviors for developing non-invasive methodologies. Methodology—A total of 242 embryos (euploid: 149, aneuploid: 93) from 74 patients who underwent IVF treatment in Carolinas Fertility Clinics in Winston-Salem, NC, were analyzed. All embryos were incubated in an EmbryoScope incubator. The patients were randomly selected from January 2019 to June 2021 with most patients having both euploid and aneuploid embryos. All embryos reached the blastocyst stage and had known PGS outcomes. The ploidy assessment was done by a third-party testing laboratory on day 5-7 embryo biopsies. The morphokinetic variables of each embryo were measured by the EmbryoViewer software (Uniesense FertiliTech) on time-lapse images using 7 focal depths. We compared the time to: pronuclei fading (tPNf), division to 2,3,…,9 cells (t2, t3,…,t9), start of embryo compaction (tSC), Morula formation (tM), start of blastocyst formation (tSC), blastocyst formation (tB), and blastocyst expansion (tEB), as well as intervals between them (e.g., c23 = t3 – t2). We used a mixed regression method for our statistical analyses to account for the correlation between multiple embryos per patient. Major Findings— The average age of the patients was 35.04 yrs. The average patient age associated with euploid and aneuploid embryos was not different (P = 0.6454). We found a significant difference in c45 = t5-t4 (P = 0.0298). Our results indicated this interval on average lasts significantly longer for aneuploid embryos - c45(aneuploid) = 11.93hr vs c45(euploid) = 7.97hr. In a separate analysis limited to embryos from the same patients (patients = 47, total embryos=200, euploid=112, aneuploid=88), we obtained the same results (P = 0.0316). The statistical power for this analysis exceeded 87%. No other variable was different between the two groups. Conclusion— Our results demonstrate the importance of morphokinetic variables as potential biomarkers that could aid in non-invasively characterizing euploid and aneuploid embryos. We seek to study a larger population of embryos and incorporate the embryo quality in future studies.

Keywords: IVF, embryo, euploidy, aneuploidy, morphokinteic

Procedia PDF Downloads 62
102 Training Hearing Parents in SmiLE Therapy Supports the Maintenance and Generalisation of Deaf Children's Social Communication Skills

Authors: Martina Curtin, Rosalind Herman

Abstract:

Background: Deaf children can experience difficulties with understanding how social interaction works, particularly when communicating with unfamiliar hearing people. Deaf children often struggle with integrating into a mainstream, hearing environments. These negative experiences can lead to social isolation, depression and other mental health difficulties later in life. smiLE Therapy (Schamroth, 2015) is a video-based social communication intervention that aims to teach deaf children skills to confidently communicate with unfamiliar hearing people. Although two previous studies have reported improvements in communication skills immediately post intervention, evidence for maintenance of gains or generalisation of skills (i.e., the transfer of newly learnt skills to untrained situations) has not to date been demonstrated. Parental involvement has been shown to support deaf children’s therapy outcomes. Therefore, this study added parent training to the therapy children received to investigate the benefits to generalisation of children’s skills. Parents were also invited to present their perspective on the training they received. Aims: (1) To assess pupils’ progress from pre- to post-intervention in trained and untrained tasks, (2) to investigate if training parents improved their (a) understanding of their child’s needs and (b) their skills in supporting their child appropriately in smiLE Therapy tasks, (3) to assess if parent training had an impact on the pupil’s ability to (a) maintain their skills in trained tasks post-therapy, and (b) generalise their skills in untrained, community tasks. Methods: This was a mixed-methods, repeated measures study. 31 deaf pupils (aged between 7 and 14) received an hour of smiLE Therapy per week, for 6 weeks. Communication skills were assessed pre-, post- and 3-months post-intervention using the Communication Skills Checklist. Parents were then invited to attend two training sessions and asked to bring a video of their child communicating in a shop or café. These videos were used to assess whether, after parent training, the child was able to generalise their skills to a new situation. Finally, parents attended a focus group to discuss the effectiveness of the therapy, particularly the wider impact, i.e., more child participation within the hearing community. Results: All children significantly improved their scores following smiLE therapy and maintained these skills to high level. Children generalised a high percentage of their newly learnt skills to an untrained situation. Parents reported improved understanding of their child’s needs, their child’s potential and in how to support them in real-life situations. Parents observed that their children were more confident and independent when carrying out communication tasks with unfamiliar hearing people. Parents realised they needed to ‘let go’ and embrace their child’s independence and provide more opportunities for them to participate in their community. Conclusions: This study adds to the evidence base on smiLE Therapy; it is an effective intervention that develops deaf children’s ability to interact competently with unfamiliar, hearing, communication partners. It also provides preliminary evidence of the benefits of parent training in helping children to generalise their skills to other situations. These findings will be of value to therapists wishing to develop deaf children’s communication skills beyond the therapy setting.

Keywords: deaf children, generalisation, parent involvement, social communication

Procedia PDF Downloads 116