Search results for: hard fraud
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1232

Search results for: hard fraud

1232 Practical Limitations of the Fraud Triangle Framework in Fraud Prevention

Authors: Alexander Glebovskiy

Abstract:

Practitioners charged with fraud prevention and investigation strongly rely on the Fraud Triangle framework developed by Joseph T. Wells in 1997 while analyzing the causes of fraud at business organizations. The Fraud Triangle model explains fraud by elements such as pressure, opportunity, and rationalization. This view is not fully suitable for effective fraud prevention as the Fraud Triangle model provides limited insight into the causation of fraud. Fraud is a multifaceted phenomenon, the contextual factors of which may not fit into any framework. Employee criminal behavior in business organizations is influenced by environmental, individual, and organizational aspects. Therefore, further criminogenic factors and processes facilitating fraud in organizational settings need to be considered in the root-cause analysis: organizational culture, leadership style, groupthink effect, isomorphic behavior, crime of obedience, displacement of responsibility, lack of critical thinking and unquestioning conformity and loyalty.

Keywords: criminogenesis, fraud triangle, fraud prevention, organizational culture

Procedia PDF Downloads 300
1231 An Assessment of the Extent and Impact of Motor Insurance Fraud Claims in Nigeria

Authors: Olatokunbo Shoyemi, Mario Brito, Ian Dawson

Abstract:

In recent times, the Nigerian motor insurers have experienced high volume of motor insurance claim pay-outs and insignificant contribution to the net premium income of the Nigerian insurance market, which has been a major concern for the shareholders/stakeholders. It has been argued that there are many factors that have brought about these concerns. However, anecdotal evidence (ongoing debates among industry practitioners) suggests prevalence of fraud due to poor practices in motor insurance business in Nigeria. This study is therefore aimed to carry out an assessment of fraud in motor insurance claims as perceived by experts in the Nigerian insurance market. This study adopted a descriptive research design, and the analysis was built on a survey among insurance experts in Nigeria using a designed questionnaire. A purposive and snowball sampling were used to select our sample (N = 120) - representing a selection of all professionally qualified insurance experts in Nigeria insurance industry. The study found that Nigerian insurance experts (i) largely agree that there is a problematic level of fraud in the Nigerian motor insurance industry; (ii) perceive soft fraud to be about 3 times more common than hard fraud in the Nigerian motor insurance industry, and (iii) strongly agree there are problematic impacts from fraud on the solvency of the Nigerian motor insurers. This paper has provided an empirical understanding of the existence, extent, and impact of fraud risks within the Nigerian insurance market based on expert knowledge and insights rather than, as has often been the case, a reliance on individual anecdotes.

Keywords: claims, net premium income, motor insurance, soft fraud, hard fraud

Procedia PDF Downloads 108
1230 Detecting Model Financial Statement Fraud by Auditor Industry Specialization with Fraud Triangle Analysis

Authors: Reskino Resky

Abstract:

This research purposes to create a model to detecting financial statement fraud. This research examines the variable of fraud triangle and auditor industry specialization with financial statement fraud. This research used sample of company which is listed in Indonesian Stock Exchange that have sanctions and cases by Financial Services Authority in 2011-2013. The number of company that were became in this research were 30 fraud company and 30 non-fraud company. The method of determining the sample is by using purposive sampling method with judgement sampling, while the data processing methods used by researcher are mann-whitney u and discriminants analysis. This research have two from five variable that can be process with discriminant analysis. The result shows the financial targets can be detect financial statement fraud, while financial stability can’t be detect financial statement fraud.

Keywords: fraud triangle analysis, financial targets, financial stability, auditor industry specialization, financial statement fraud

Procedia PDF Downloads 457
1229 Computer Fraud from the Perspective of Iran's Law and International Documents

Authors: Babak Pourghahramani

Abstract:

One of the modern crimes against property and ownership in the cyber-space is the computer fraud. Despite being modern, the aforementioned crime has its roots in the principles of religious jurisprudence. In some cases, this crime is compatible with the traditional regulations and that is when the computer is considered as a crime commitment device and also some computer frauds that take place in the context of electronic exchanges are considered as crime based on the E-commerce Law (approved in 2003) but the aforementioned regulations are flawed and until recent years there was no comprehensive law in this regard; yet after some years the Computer Crime Act was approved in 2009/26/5 and partly solved the problem of legal vacuum. The present study intends to investigate the computer fraud according to Iran's Computer Crime Act and by taking into consideration the international documents.

Keywords: fraud, cyber fraud, computer fraud, classic fraud, computer crime

Procedia PDF Downloads 332
1228 AI-Powered Models for Real-Time Fraud Detection in Financial Transactions to Improve Financial Security

Authors: Shanshan Zhu, Mohammad Nasim

Abstract:

Financial fraud continues to be a major threat to financial institutions across the world, causing colossal money losses and undermining public trust. Fraud prevention techniques, based on hard rules, have become ineffective due to evolving patterns of fraud in recent times. Against such a background, the present study probes into distinct methodologies that exploit emergent AI-driven techniques to further strengthen fraud detection. We would like to compare the performance of generative adversarial networks and graph neural networks with other popular techniques, like gradient boosting, random forests, and neural networks. To this end, we would recommend integrating all these state-of-the-art models into one robust, flexible, and smart system for real-time anomaly and fraud detection. To overcome the challenge, we designed synthetic data and then conducted pattern recognition and unsupervised and supervised learning analyses on the transaction data to identify which activities were fishy. With the use of actual financial statistics, we compare the performance of our model in accuracy, speed, and adaptability versus conventional models. The results of this study illustrate a strong signal and need to integrate state-of-the-art, AI-driven fraud detection solutions into frameworks that are highly relevant to the financial domain. It alerts one to the great urgency that banks and related financial institutions must rapidly implement these most advanced technologies to continue to have a high level of security.

Keywords: AI-driven fraud detection, financial security, machine learning, anomaly detection, real-time fraud detection

Procedia PDF Downloads 41
1227 Insider Fraud and its Risks to FinTechs

Authors: Claire Maillet

Abstract:

Insider fraud, including its various forms such as employee fraud or internal fraud, is a major financial crime threat whereby an employee defrauds (or attempts to defraud) their current, prospective or past employer. ‘Employee’ covers anyone employed by the company, including contractors, agency workers, directors and part time staff. Insider fraud is even more of a concern given the impacts of the Coronavirus pandemic and the cost-of-living crisis, which have generated multiple opportunities to commit insider fraud. Insider fraud is something that is not necessarily thought of as a significant financial crime; Without the face-to-face, ‘over the shoulder’ capabilities of staff being able to keep an eye on their employees, there is a heightened reliance on trust and transparency. With this, naturally, comes an increased risk of insider fraud. Given that the number of FinTechs is on the rise and there is a significant lack of empirically based solutions for reducing insider fraud, these are gaps in the research space that this thesis aims to fill. Finally, Kassem (2022) notes that “academic research plays a crucial role in raising awareness about fraud and researching effective methods for countering it”. Thus, this thesis may be used as an opportune tool to provide an extensive list of controls spanning detection, deterrence and prevention, that are recommended to be implemented to help combat the insider threat.

Keywords: insider fraud, internal fraud, pandemic, Covid-19

Procedia PDF Downloads 22
1226 An Investigation into Fraud Detection in Financial Reporting Using Sugeno Fuzzy Classification

Authors: Mohammad Sarchami, Mohsen Zeinalkhani

Abstract:

Always, financial reporting system faces some problems to win public ear. The increase in the number of fraud and representation, often combined with the bankruptcy of large companies, has raised concerns about the quality of financial statements. So, investors, legislators, managers, and auditors have focused on significant fraud detection or prevention in financial statements. This article aims to investigate the Sugeno fuzzy classification to consider fraud detection in financial reporting of accepted firms by Tehran stock exchange. The hypothesis is: Sugeno fuzzy classification may detect fraud in financial reporting by financial ratio. Hypothesis was tested using Matlab software. Accuracy average was 81/80 in Sugeno fuzzy classification; so the hypothesis was confirmed.

Keywords: fraud, financial reporting, Sugeno fuzzy classification, firm

Procedia PDF Downloads 248
1225 A Study of Management Principles Incorporating Corporate Governance and Advocating Ethics to Reduce Fraud at a South African Bank

Authors: Roshan Jelal, Charles Mbohwa

Abstract:

In today’s world, internal fraud remains one of the most challenging problems within companies worldwide and despite investment in controls and attention given to the problem, the instances of internal fraud has not abated. To the contrary it appears that internal fraud is on the rise especially in the wake of the economic downturn. Leadership within companies believes that the more sophisticated the controls employed the less likely it would be for employees to pilfer. This is a very antiquated view as investment in controls may not be enough to curtail internal fraud; however, ensuring that a company drives the correct culture and behaviour within the organisation is likely to yield desired results. This research aims to understand how creating a strong ethical culture and embedding the principle of good corporate governance impacts on levels of internal fraud with an organization (a South African Bank).

Keywords: internal fraud, corporate governance, ethics, reserve bank, the King Code

Procedia PDF Downloads 416
1224 An Exploration of Why Insider Fraud Is the Biggest Threat to Your Business

Authors: Claire Norman-Maillet

Abstract:

Insider fraud, otherwise known as occupational, employee, or internal fraud, is a financial crime threat. Perpetrated by defrauding (or attempting to defraud) one’s current, prospective, or past employer, an ‘employee’ covers anyone employed by the company, including board members and contractors. The Coronavirus pandemic has forced insider fraud into the spotlight, and it isn’t dimming. As the focus of most academics and practitioners has historically been on that of ‘external fraud’, insider fraud is often overlooked or not considered to be a real threat. However, since COVID-19 changed the working world, pushing most of us into remote or hybrid working, employers cannot easily keep an eye on what their staff are doing, which has led to reliance on trust and transparency. This, therefore, brings about an increased risk of insider fraud perpetration. The objective of this paper is to explore why insider fraud is, therefore, now the biggest threat to a business. To achieve the research objective, participating individuals within the financial crime sector (either as a practitioner or consultants) attended semi-structured interviews with the researcher. The principal recruitment strategy for these individuals was via the researcher’s LinkedIn network. The main findings in the research suggest that insider fraud has been ignored and rejected as a threat to a business, owing to a reluctance to admit that a colleague may perpetrate. A positive of the Coronavirus pandemic is that it has forced insider fraud into a more prominent position and giving it more importance on a business’ agenda and risk register. Despite insider fraud always having been a possibility (and therefore a risk) within any business, it is very rare that a business has given it the attention it requires until now, if at all. The research concludes that insider fraud needs to prioritised by all businesses, and even ahead of external fraud. The research also provides advice on how a business can add new or enhance existing controls to mitigate the risk.

Keywords: insider fraud, occupational fraud, COVID-19, COVID, coronavirus, pandemic, internal fraud, financial crime, economic crime

Procedia PDF Downloads 64
1223 A Study on How Insider Fraud Impacts FinTechs

Authors: Claire Norman-Maillet

Abstract:

Insider fraud is a major financial crime threat whereby an employee defrauds (or attempts to defraud) their current, prospective, or past employer. ‘Employee’ covers anyone employed by the company, including Board members and part-time staff. Insider fraud can take many forms, including an employee working alone or in collusion with others. Insider fraud has been on the rise since the Coronavirus pandemic and shows no signs of slowing. The objective of the research is to better understand how FinTechs are impacted by insider fraud and, therefore, how to stop it. This research will make an original contribution to the financial crime field, given the timing of this research being intertwined with the cost-of-living crisis in the UK and the global Coronavirus pandemic. This research focuses on insider fraud within FinTechs specifically, as they are arguably a modern phenomenon in the financial institutions space and have cutting-edge technology at their disposal. To achieve the research objective, the researcher held semi-structured interviews with over 20 individuals who deal with insider fraud perpetration in a practitioner, recruitment, or advisory capacity. The interviews were subsequently transcribed and analysed thematically. Main findings in the research suggest that FinTechs are arguably in the best position to combat insider fraud, given their focus on using recent technologies, as this can be used to combat the threat. However, insider fraud has been ignored owing to the denial of accepting the possibility that colleagues would defraud their employer, as well as the idea that external fraud is the most important threat. The research concludes that, whilst the technology is understandably prioritised by FinTechs for providing an agreeable customer experience, insider fraud needs to be given a platform upon which to be recognised as a significant threat to any company. Moreover, insider fraud needs to be given the same level of weighting and attention by Executive Committees and Boards as the customer experience.

Keywords: insider fraud, occupational fraud, COVID-19, COVID, Coronavirus, pandemic, internal fraud, financial crime, economic crime

Procedia PDF Downloads 59
1222 Harnessing Artificial Intelligence and Machine Learning for Advanced Fraud Detection and Prevention

Authors: Avinash Malladhi

Abstract:

Forensic accounting is a specialized field that involves the application of accounting principles, investigative skills, and legal knowledge to detect and prevent fraud. With the rise of big data and technological advancements, artificial intelligence (AI) and machine learning (ML) algorithms have emerged as powerful tools for forensic accountants to enhance their fraud detection capabilities. In this paper, we review and analyze various AI/ML algorithms that are commonly used in forensic accounting, including supervised and unsupervised learning, deep learning, natural language processing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Support Vector Machines (SVMs), Decision Trees, and Random Forests. We discuss their underlying principles, strengths, and limitations and provide empirical evidence from existing research studies demonstrating their effectiveness in detecting financial fraud. We also highlight potential ethical considerations and challenges associated with using AI/ML in forensic accounting. Furthermore, we highlight the benefits of these technologies in improving fraud detection and prevention in forensic accounting.

Keywords: AI, machine learning, forensic accounting & fraud detection, anti money laundering, Benford's law, fraud triangle theory

Procedia PDF Downloads 93
1221 A Comprehensive Survey on Machine Learning Techniques and User Authentication Approaches for Credit Card Fraud Detection

Authors: Niloofar Yousefi, Marie Alaghband, Ivan Garibay

Abstract:

With the increase of credit card usage, the volume of credit card misuse also has significantly increased, which may cause appreciable financial losses for both credit card holders and financial organizations issuing credit cards. As a result, financial organizations are working hard on developing and deploying credit card fraud detection methods, in order to adapt to ever-evolving, increasingly sophisticated defrauding strategies and identifying illicit transactions as quickly as possible to protect themselves and their customers. Compounding on the complex nature of such adverse strategies, credit card fraudulent activities are rare events compared to the number of legitimate transactions. Hence, the challenge to develop fraud detection that are accurate and efficient is substantially intensified and, as a consequence, credit card fraud detection has lately become a very active area of research. In this work, we provide a survey of current techniques most relevant to the problem of credit card fraud detection. We carry out our survey in two main parts. In the first part, we focus on studies utilizing classical machine learning models, which mostly employ traditional transnational features to make fraud predictions. These models typically rely on some static physical characteristics, such as what the user knows (knowledge-based method), or what he/she has access to (object-based method). In the second part of our survey, we review more advanced techniques of user authentication, which use behavioral biometrics to identify an individual based on his/her unique behavior while he/she is interacting with his/her electronic devices. These approaches rely on how people behave (instead of what they do), which cannot be easily forged. By providing an overview of current approaches and the results reported in the literature, this survey aims to drive the future research agenda for the community in order to develop more accurate, reliable and scalable models of credit card fraud detection.

Keywords: Credit Card Fraud Detection, User Authentication, Behavioral Biometrics, Machine Learning, Literature Survey

Procedia PDF Downloads 121
1220 Sonic Therapeutic Intervention for Preventing Financial Fraud: A Phenomenological Study

Authors: Vasudev Das

Abstract:

In a global survey of more than 5,000 participants in 99 territories, PwC found a loss of $42 billion through fraud in the last 24 months. The specific problem is that private and public organizational leaders often do not understand the importance of sonic therapeutic intervention in preventing financial fraud. The study aimed to explore sonic therapeutic intervention practitioners' lived experiences regarding the value of sonic therapeutic intervention in preventing financial fraud. The data collection methods were semi-structured interviews of purposeful samples and documentary reviews, which were analyzed thematically. Four themes emerged from the analysis of interview transcription data: Sonic therapeutic intervention enabled self-control, pro-spiritual values, consequentiality mindset, and post-conventional consciousness. The itemized four themes helped non-engagement in financial fraud. Implications for positive social change include enhanced financial fraud management, more significant financial leadership, and result-oriented decision-taking in the financial market. Also, the study results can improve the increased de-escalation of anxiety/stress associated with defrauding.

Keywords: consciousness, consequentiality, rehabilitation, reintegration

Procedia PDF Downloads 159
1219 The Value of Online News: Addressing the Problem of Online Investment Fraud Crimes in Thailand

Authors: Thapthep Paprach, Benya Lertsuwan

Abstract:

Investment fraud is not a new criminal, but there are still more victims during the Internet of Things era. This kind of criminal has been classified as a national and transnational financial crime problem all over the world. In Thailand, the country has also been attacked by this kind of crime. This research concerns whether the mass media that is supposed to cover news about online investment scams realized and warned Thais about this crime. Thus, this study explores the value of news about investment fraud in terms of frequency. The methodology uses web crawling from the top 5 news agency websites that have the most access. We pull out all information reporting about investment fraud. The findings revealed that the ‘Khaosod’ news agency was the first rank in reporting on investment crime. On the other hand, ‘Matichon’ was the least reported. Thairat news agencies frequently reported such criminals from midnight to very early in the morning, while other news agencies reported during the daytime. The results between the frequency of news reporting about investment fraud and the monthly number of victim reports are not correlated. Although the most cases reported to Thai police were in February 2023, but the most news reported was in January 2023. In conclusion, there might be a negative correlation between the amount of investment fraud news reported and the number of victims.

Keywords: investment fraud, news value, online news report, Ponzi schemes, Romance scam

Procedia PDF Downloads 76
1218 The Application of Fuzzy Set Theory to Mobile Internet Advertisement Fraud Detection

Authors: Jinming Ma, Tianbing Xia, Janusz Getta

Abstract:

This paper presents the application of fuzzy set theory to implement of mobile advertisement anti-fraud systems. Mobile anti-fraud is a method aiming to identify mobile advertisement fraudsters. One of the main problems of mobile anti-fraud is the lack of evidence to prove a user to be a fraudster. In this paper, we implement an application by using fuzzy set theory to demonstrate how to detect cheaters. The advantage of our method is that the hardship in detecting fraudsters in small data samples has been avoided. We achieved this by giving each user a suspicious degree showing how likely the user is cheating and decide whether a group of users (like all users of a certain APP) together to be fraudsters according to the average suspicious degree. This makes the process more accurate as the data of a single user is too small to be predictable.

Keywords: mobile internet, advertisement, anti-fraud, fuzzy set theory

Procedia PDF Downloads 181
1217 The Role of Information and Communication Technology in Curbing Electoral Malpractices in Nigeria

Authors: Fred Fudah Moveh, Muhammad Abba Jallo

Abstract:

Electoral fraud remains a persistent threat to democracy in Nigeria, undermining public trust and stalling political development. This study explores the role of Information and Communication Technology (ICT) in curbing electoral fraud, focusing on its application in recent Nigerian elections. The paper identifies the main forms of electoral fraud, evaluates the effectiveness of ICT-based interventions like the Permanent Voter Card (PVC) and the Bi-modal Voter Accreditation System (BVAS), and discusses challenges such as poor infrastructure, voter intimidation, and legal inadequacies. Data was collected through structured questionnaires and interviews and analyzed using SPSS software. Results reveal that while ICT has mitigated some forms of fraud, systemic issues continue to hinder its full potential. The study concludes with recommendations for enhancing the application of ICT in Nigeria’s electoral process.

Keywords: ICT, electoral fraud, election process, Nigeria, political instability

Procedia PDF Downloads 25
1216 Surprise Fraudsters Before They Surprise You: A South African Telecommunications Case Study

Authors: Ansoné Human, Nantes Kirsten, Tanja Verster, Willem D. Schutte

Abstract:

Every year the telecommunications industry suffers huge losses due to fraud. Mobile fraud, or generally, telecommunications fraud is the utilisation of telecommunication products or services to acquire money illegally from or failing to pay a telecommunication company. A South African telecommunication operator developed two internal fraud scorecards to mitigate future risks of application fraud events. The scorecards aim to predict the likelihood of an application being fraudulent and surprise fraudsters before they surprise the telecommunication operator by identifying fraud at the time of application. The scorecards are utilised in the vetting process to evaluate the applicant in terms of the fraud risk the applicant would present to the telecommunication operator. Telecommunication providers can utilise these scorecards to profile customers, as well as isolate fraudulent and/or high-risk applicants. We provide the complete methodology utilised in the development of the scorecards. Furthermore, a Determination and Discrimination (DD) ratio is provided in the methodology to select the most influential variables from a group of related variables. Throughout the development of these scorecards, the following was revealed regarding fraudulent cases and fraudster behaviour within the telecommunications industry: Fraudsters typically target high-value handsets. Furthermore, debit order dates scheduled for the end of the month have the highest fraud probability. The fraudsters target specific stores. Applicants who acquire an expensive package and receive a medium-income, as well as applicants who obtain an expensive package and receive a high income, have higher fraud percentages. If one month prior to application, the status of an account is already in arrears (two months or more), the applicant has a high probability of fraud. The applicants with the highest average spend on calls have a higher probability of fraud. If the amount collected changes from month to month, the likelihood of fraud is higher. Lastly, young and middle-aged applicants have an increased probability of being targeted by fraudsters than other ages.

Keywords: application fraud scorecard, predictive modeling, regression, telecommunications

Procedia PDF Downloads 120
1215 Advanced Machine Learning Algorithm for Credit Card Fraud Detection

Authors: Manpreet Kaur

Abstract:

When legitimate credit card users are mistakenly labelled as fraudulent in numerous financial delated applications, there are numerous ethical problems. The innovative machine learning approach we have suggested in this research outperforms the current models and shows how to model a data set for credit card fraud detection while minimizing false positives. As a result, we advise using random forests as the best machine learning method for predicting and identifying credit card transaction fraud. The majority of victims of these fraudulent transactions were discovered to be credit card users over the age of 60, with a higher percentage of fraudulent transactions taking place between the specific hours.

Keywords: automated fraud detection, isolation forest method, local outlier factor, ML algorithm, credit card

Procedia PDF Downloads 113
1214 Customer Experiences and Perspectives on Mobile Money Service Fraud: A Case Study of the University of Education, Winneba

Authors: Mavis Ofosuah Asante, Abena Abokoma Asemanyi, Belinda Osei-mensah, Stephen Osei Akyiaw

Abstract:

The study examined mobile money service fraud experiences and perspectives on control practices at University of Education, Winneba. The objectives of the study included to examine the forms of MoMo fraud strategies experienced by customers of MoMo on UEW Campus, to examine and classify the main perpetrators of the MoMo fraud among UEW students as well as the framework for fraud detection put together by the Telco’s and consumers on UEW Campus. The study adopted the case study research design. The purposive sampling technique was used to select the UEW Campus. Using the convenience sampling technique, five respondents were sampled for the study. The outcome of the in-depth interviews conducted revealed Mobile money fraud was committed in various forms, such as anonymous calls and text messages from scammers, fraudsters calling to deceive subscribers that they are to deliver goods from abroad or from a close relative under false pretexts. Finally, fraudsters sending false cash-out messages to merchants for authorization of which the physical cash is issued by the merchant to the fraudster without the equivalent e-cash. Mobile money fraud has been perpetuated in diverse forms such as mobile money network systems fraud, false promotion fraud, and reversal of erroneous transactions, fortuitous scams, and mobile money agents' fraud. Finally, the frameworks that have been used to detect mobile money fraud include the display of national identifies cards for the transaction, digital identification systems, the use of firewall to protect mobile money accounts, effective information technology architecture for mobile money services, reporting of mobile money fraud to telecoms and the sanctioning of mobile money fraudsters. The study suggested there should be public education and awareness creation on the activities of mobile money fraudsters in Ghana by telecommunication companies in conjunction with the National Communications Authority and the Bank of Ghana. The study, therefore, concluded that the menace of mobile money fraud threatens the integrity of the mobile money financial services.

Keywords: mobile money, fraud, telecommunication, merchant

Procedia PDF Downloads 78
1213 A Comparative Study on Occupational Fraud and Prosecution

Authors: Michelle Odudu

Abstract:

Ghana and Nigeria are known for their high levels of Occupational Fraud in public offices. The governments of both countries have emphasised their commitment to reducing the losses caused to the state by pledging their allegiance to the counter-fraud agencies to help tackle Occupational Fraud. Yet it seems that the prosecution of such cases is ineffective as high-profile fraudsters can operate with immunity and their cases remain unprosecuted. This research project was based on in-depth examinations of 50 occupational fraud cases involving high-profile individuals in both countries. In doing so, it established the characteristics of those who were prosecuted; the extent to which prosecutions were effectively managed; the barriers to effective prosecutions; and the similarities or differences between the occurrences in both countries. The aim of the project is to examine the practice of and barriers to prosecution of large-scale occupational fraud of those in senior public positions in Ghana and Nigeria. The study drew on the experiences of stakeholders such as defence and prosecution barristers, academics, and fraud analysts via semi-structured interviews and questionnaires. 13 interviews were conducted in Ghana and in Nigeria, where respondents were recruited using a snowball approach. Questionnaires were physically distributed: 20 of the staff at EOCO and 10 to NGO staff in Ghana; 6 and 5 came back, respectively. The empirical data collected suggests that there is no lack of will on the agencies’ part to at least commence proceedings. However, various impediments hamper a successful completion of prosecution. Challenges were more evident in Nigeria, where agencies are less effective at retrieving stolen assets and changing social norms. This is further compounded by several cultural and political factors, which create limitations leaving many cases ‘still pending’.

Keywords: comparative, prosecution, punishment, international, whitecollar, fraud

Procedia PDF Downloads 131
1212 Impact of Internal Control on Fraud Detection and Prevention: A Survey of Selected Organisations in Nigeria

Authors: Amos Olusola Akinola

Abstract:

The aim of this study is to evaluate the internal control system on fraud prevention in Nigerian business organizations. A survey research was undertaken in five organizations from the banking and manufacturing sectors in Nigeria using the simple random sampling technique and primary data was obtained with the aid structured questionnaire drawn on five likert’s scale. Four Hypotheses were formulated and tested using the T-test Statistics, Correlation and Regression Analysis at 95% confidence interval. It was discovered that internal control has a significant positive relationship with fraud prevention and that a weak internal control system permits fraudulent activities among staff. Based on the findings, it was recommended that organizations should continually and methodically review and evaluate the components of its internal control system whether activities are working as planned or not and that every organization should have pre-determined guidelines for conducting its operations and ensures compliance with these set guidelines while proactive steps should be taken to establish the independence of the internal audit by making the audit reportable to the governing council of an organization and not the chief executive officer.

Keywords: internal control, internal system, internal audit, fraud prevention, fraud detection

Procedia PDF Downloads 384
1211 Efficient Credit Card Fraud Detection Based on Multiple ML Algorithms

Authors: Neha Ahirwar

Abstract:

In the contemporary digital era, the rise of credit card fraud poses a significant threat to both financial institutions and consumers. As fraudulent activities become more sophisticated, there is an escalating demand for robust and effective fraud detection mechanisms. Advanced machine learning algorithms have become crucial tools in addressing this challenge. This paper conducts a thorough examination of the design and evaluation of a credit card fraud detection system, utilizing four prominent machine learning algorithms: random forest, logistic regression, decision tree, and XGBoost. The surge in digital transactions has opened avenues for fraudsters to exploit vulnerabilities within payment systems. Consequently, there is an urgent need for proactive and adaptable fraud detection systems. This study addresses this imperative by exploring the efficacy of machine learning algorithms in identifying fraudulent credit card transactions. The selection of random forest, logistic regression, decision tree, and XGBoost for scrutiny in this study is based on their documented effectiveness in diverse domains, particularly in credit card fraud detection. These algorithms are renowned for their capability to model intricate patterns and provide accurate predictions. Each algorithm is implemented and evaluated for its performance in a controlled environment, utilizing a diverse dataset comprising both genuine and fraudulent credit card transactions.

Keywords: efficient credit card fraud detection, random forest, logistic regression, XGBoost, decision tree

Procedia PDF Downloads 66
1210 Cyberfraud Schemes: Modus Operandi, Tools and Techniques and the Role of European Legislation as a Defense Strategy

Authors: Papathanasiou Anastasios, Liontos George, Liagkou Vasiliki, Glavas Euripides

Abstract:

The purpose of this paper is to describe the growing problem of various cyber fraud schemes that exist on the internet and are currently among the most prevalent. The main focus of this paper is to provide a detailed description of the modus operandi, tools, and techniques utilized in four basic typologies of cyber frauds: Business Email Compromise (BEC) attacks, investment fraud, romance scams, and online sales fraud. The paper aims to shed light on the methods employed by cybercriminals in perpetrating these types of fraud, as well as the strategies they use to deceive and victimize individuals and businesses on the internet. Furthermore, this study outlines defense strategies intended to tackle the issue head-on, with a particular emphasis on the crucial role played by European Legislation. European legislation has proactively adapted to the evolving landscape of cyber fraud, striving to enhance cybersecurity awareness, bolster user education, and implement advanced technical controls to mitigate associated risks. The paper evaluates the advantages and innovations brought about by the European Legislation while also acknowledging potential flaws that cybercriminals might exploit. As a result, recommendations for refining the legislation are offered in this study in order to better address this pressing issue.

Keywords: business email compromise, cybercrime, European legislation, investment fraud, NIS, online sales fraud, romance scams

Procedia PDF Downloads 98
1209 Financial Fraud Prediction for Russian Non-Public Firms Using Relational Data

Authors: Natalia Feruleva

Abstract:

The goal of this paper is to develop the fraud risk assessment model basing on both relational and financial data and test the impact of the relationships between Russian non-public companies on the likelihood of financial fraud commitment. Relationships mean various linkages between companies such as parent-subsidiary relationship and person-related relationships. These linkages may provide additional opportunities for committing fraud. Person-related relationships appear when firms share a director, or the director owns another firm. The number of companies belongs to CEO and managed by CEO, the number of subsidiaries was calculated to measure the relationships. Moreover, the dummy variable describing the existence of parent company was also included in model. Control variables such as financial leverage and return on assets were also implemented because they describe the motivating factors of fraud. To check the hypotheses about the influence of the chosen parameters on the likelihood of financial fraud, information about person-related relationships between companies, existence of parent company and subsidiaries, profitability and the level of debt was collected. The resulting sample consists of 160 Russian non-public firms. The sample includes 80 fraudsters and 80 non-fraudsters operating in 2006-2017. The dependent variable is dichotomous, and it takes the value 1 if the firm is engaged in financial crime, otherwise 0. Employing probit model, it was revealed that the number of companies which belong to CEO of the firm or managed by CEO has significant impact on the likelihood of financial fraud. The results obtained indicate that the more companies are affiliated with the CEO, the higher the likelihood that the company will be involved in financial crime. The forecast accuracy of the model is about is 80%. Thus, the model basing on both relational and financial data gives high level of forecast accuracy.

Keywords: financial fraud, fraud prediction, non-public companies, regression analysis, relational data

Procedia PDF Downloads 119
1208 A Review of How COVID-19 Has Created an Insider Fraud Pandemic and How to Stop It

Authors: Claire Norman-Maillet

Abstract:

Insider fraud, including its various synonyms such as occupational, employee or internal fraud, is a major financial crime threat whereby an employee defrauds (or attempts to defraud) their current, prospective, or past employer. ‘Employee’ covers anyone employed by the company, including contractors, directors, and part time staff; they may be a solo bad actor or working in collusion with others, whether internal or external. Insider fraud is even more of a concern given the impacts of the Coronavirus pandemic, which has generated multiple opportunities to commit insider fraud. Insider fraud is something that is not necessarily thought of as a significant financial crime threat; the focus of most academics and practitioners has historically been on that of ‘external fraud’ against businesses or entities where an individual or group has no professional ties. Without the face-to-face, ‘over the shoulder’ capabilities of staff being able to keep an eye on their employees, there is a heightened reliance on trust and transparency. With this, naturally, comes an increased risk of insider fraud perpetration. The objective of the research is to better understand how companies are impacted by insider fraud, and therefore how to stop it. This research will make both an original contribution and stimulate debate within the financial crime field. The financial crime landscape is never static – criminals are always creating new ways to perpetrate financial crime, and new legislation and regulations are implemented as attempts to strengthen controls, in addition to businesses doing what they can internally to detect and prevent it. By focusing on insider fraud specifically, the research will be more specific and will be of greater use to those in the field. To achieve the aims of the research, semi-structured interviews were conducted with 22 individuals who either work in financial services and deal with insider fraud or work within insider fraud perpetration in a recruitment or advisory capacity. This was to enable the sourcing of information from a wide range of individuals in a setting where they were able to elaborate on their answers. The principal recruitment strategy was engaging with the researcher’s network on LinkedIn. The interviews were then transcribed and analysed thematically. Main findings in the research suggest that insider fraud has been ignored owing to the denial of accepting the possibility that colleagues would defraud their employer. Whilst Coronavirus has led to a significant rise in insider fraud, this type of crime has been a major risk to businesses since their inception, however have never been given the financial or strategic backing required to be mitigated, until it's too late. Furthermore, Coronavirus should have led to companies tightening their access rights, controls and policies to mitigate the insider fraud risk. However, in most cases this has not happened. The research concludes that insider fraud needs to be given a platform upon which to be recognised as a threat to any company and given the same level of weighting and attention by Executive Committees and Boards as other types of economic crime.

Keywords: fraud, insider fraud, economic crime, coronavirus, Covid-19

Procedia PDF Downloads 68
1207 A General Framework for Measuring the Internal Fraud Risk of an Enterprise Resource Planning System

Authors: Imran Dayan, Ashiqul Khan

Abstract:

Internal corporate fraud, which is fraud carried out by internal stakeholders of a company, affects the well-being of the organisation just like its external counterpart. Even if such an act is carried out for the short-term benefit of a corporation, the act is ultimately harmful to the entity in the long run. Internal fraud is often carried out by relying upon aberrations from usual business processes. Business processes are the lifeblood of a company in modern managerial context. Such processes are developed and fine-tuned over time as a corporation grows through its life stages. Modern corporations have embraced technological innovations into their business processes, and Enterprise Resource Planning (ERP) systems being at the heart of such business processes is a testimony to that. Since ERP systems record a huge amount of data in their event logs, the logs are a treasure trove for anyone trying to detect any sort of fraudulent activities hidden within the day-to-day business operations and processes. This research utilises the ERP systems in place within corporations to assess the likelihood of prospective internal fraud through developing a framework for measuring the risks of fraud through Process Mining techniques and hence finds risky designs and loose ends within these business processes. This framework helps not only in identifying existing cases of fraud in the records of the event log, but also signals the overall riskiness of certain business processes, and hence draws attention for carrying out a redesign of such processes to reduce the chance of future internal fraud while improving internal control within the organisation. The research adds value by applying the concepts of Process Mining into the analysis of data from modern day applications of business process records, which is the ERP event logs, and develops a framework that should be useful to internal stakeholders for strengthening internal control as well as provide external auditors with a tool of use in case of suspicion. The research proves its usefulness through a few case studies conducted with respect to big corporations with complex business processes and an ERP in place.

Keywords: enterprise resource planning, fraud risk framework, internal corporate fraud, process mining

Procedia PDF Downloads 334
1206 Fraud Detection in Credit Cards with Machine Learning

Authors: Anjali Chouksey, Riya Nimje, Jahanvi Saraf

Abstract:

Online transactions have increased dramatically in this new ‘social-distancing’ era. With online transactions, Fraud in online payments has also increased significantly. Frauds are a significant problem in various industries like insurance companies, baking, etc. These frauds include leaking sensitive information related to the credit card, which can be easily misused. Due to the government also pushing online transactions, E-commerce is on a boom. But due to increasing frauds in online payments, these E-commerce industries are suffering a great loss of trust from their customers. These companies are finding credit card fraud to be a big problem. People have started using online payment options and thus are becoming easy targets of credit card fraud. In this research paper, we will be discussing machine learning algorithms. We have used a decision tree, XGBOOST, k-nearest neighbour, logistic-regression, random forest, and SVM on a dataset in which there are transactions done online mode using credit cards. We will test all these algorithms for detecting fraud cases using the confusion matrix, F1 score, and calculating the accuracy score for each model to identify which algorithm can be used in detecting frauds.

Keywords: machine learning, fraud detection, artificial intelligence, decision tree, k nearest neighbour, random forest, XGBOOST, logistic regression, support vector machine

Procedia PDF Downloads 148
1205 Empirical Analysis of Forensic Accounting Practices for Tackling Persistent Fraud and Financial Irregularities in the Nigerian Public Sector

Authors: Sani AbdulRahman Bala

Abstract:

This empirical study delves into the realm of forensic accounting practices within the Nigerian Public Sector, seeking to quantitatively analyze their efficacy in addressing the persistent challenges of fraud and financial irregularities. With a focus on empirical data, this research employs a robust methodology to assess the current state of fraud in the Nigerian Public Sector and evaluate the performance of existing forensic accounting measures. Through quantitative analyses, including statistical models and data-driven insights, the study aims to identify patterns, trends, and correlations associated with fraudulent activities. The research objectives include scrutinizing documented fraud cases, examining the effectiveness of established forensic accounting practices, and proposing data-driven strategies for enhancing fraud detection and prevention. Leveraging quantitative methodologies, the study seeks to measure the impact of technological advancements on forensic accounting accuracy and efficiency. Additionally, the research explores collaborative mechanisms among government agencies, regulatory bodies, and the private sector by quantifying the effects of information sharing on fraud prevention. The empirical findings from this study are expected to provide a nuanced understanding of the challenges and opportunities in combating fraud within the Nigerian Public Sector. The quantitative insights derived from real-world data will contribute to the refinement of forensic accounting strategies, ensuring their effectiveness in addressing the unique complexities of financial irregularities in the public sector. The study's outcomes aim to inform policymakers, practitioners, and stakeholders, fostering evidence-based decision-making and proactive measures for a more resilient and fraud-resistant financial governance system in Nigeria.

Keywords: fraud, financial irregularities, nigerian public sector, quantitative investigation

Procedia PDF Downloads 62
1204 Self-Organizing Maps for Credit Card Fraud Detection

Authors: ChunYi Peng, Wei Hsuan CHeng, Shyh Kuang Ueng

Abstract:

This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.

Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies

Procedia PDF Downloads 57
1203 Self-Organizing Maps for Credit Card Fraud Detection and Visualization

Authors: Peng Chun-Yi, Chen Wei-Hsuan, Ueng Shyh-Kuang

Abstract:

This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.

Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies

Procedia PDF Downloads 59