Search results for: groundwater observation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2227

Search results for: groundwater observation

2197 Ground Water Sustainable Management in Ethiopia, Africa

Authors: Ebissa Gadissa Kedir

Abstract:

This paper presents the potential groundwater assessment and sustainable management in the selected study area. It is the most preferred water source in all climatic zones for its convenient availability, drought dependability, excellent quality, and low development cost. The rural areas, which account for more than 85% of the country's population, are encountered a shortage of potable water supply which can be solved by proper groundwater utilization. For the present study area, the groundwater potential is assessed and analysed. Thus, the study area falls in four potential groundwater zones ranging from poor to high. However, the current groundwater management practices in the study area are poor. Despite the pervasive and devastating challenges, immediate and proper responses have not yet been given to the problem. Thus, such frustrating threats and challenges have initiated the researcher to work in the project area.

Keywords: GW potential, GW management, GW sustainability, South gonder, Ethiopia

Procedia PDF Downloads 27
2196 Assessment of Groundwater Chemistry and Quality Characteristics in an Alluvial Aquifer and a Single Plane Fractured-Rock Aquifer in Bloemfontein, South Africa

Authors: Modreck Gomo

Abstract:

The evolution of groundwater chemistry and its quality is largely controlled by hydrogeochemical processes and their understanding is therefore important for groundwater quality assessments and protection of the water resources. A study was conducted in Bloemfontein town of South Africa to assess and compare the groundwater chemistry and quality characteristics in an alluvial aquifer and single-plane fractured-rock aquifers. 9 groundwater samples were collected from monitoring boreholes drilled into the two aquifer systems during a once-off sampling exercise. Samples were collected through low-flow purging technique and analysed for major ions and trace elements. In order to describe the hydrochemical facies and identify dominant hydrogeochemical processes, the groundwater chemistry data are interpreted using stiff diagrams and principal component analysis (PCA), as complimentary tools. The fitness of the groundwater quality for domestic and irrigation uses is also assessed. Results show that the alluvial aquifer is characterised by a Na-HCO3 hydrochemical facie while fractured-rock aquifer has a Ca-HCO3 facie. The groundwater in both aquifers originally evolved from the dissolution of calcite rocks that are common on land surface environments. However the groundwater in the alluvial aquifer further goes through another evolution as driven by cation exchange process in which Na in the sediments exchanges with Ca2+ in the Ca-HCO3 hydrochemical type to result in the Na-HCO3 hydrochemical type. Despite the difference in the hydrogeochemical processes between the alluvial aquifer and single-plane fractured-rock aquifer, this did not influence the groundwater quality. The groundwater in the two aquifers is very hard as influenced by the elevated magnesium and calcium ions that evolve from dissolution of carbonate minerals which typically occurs in surface environments. Based on total dissolved levels (600-900 mg/L), groundwater quality of the two aquifer systems is classified to be of fair quality. The negative potential impacts of the groundwater quality for domestic uses are highlighted.

Keywords: alluvial aquifer, fractured-rock aquifer, groundwater quality, hydrogeochemical processes

Procedia PDF Downloads 164
2195 Optimization of Groundwater Utilization in Fish Aquaculture

Authors: M. Ahmed Eldesouky, S. Nasr, A. Beltagy

Abstract:

Groundwater is generally considered as the best source for aquaculture as it is well protected from contamination. The most common problem limiting the use of groundwater in Egypt is its high iron, manganese and ammonia content. This problem is often overcome by applying the treatment before use. Aeration in many cases is not enough to oxidize iron and manganese in complex forms with organics. Most of the treatment we use potassium permanganate as an oxidizer followed by a pressurized closed green sand filter. The aim of present study is to investigate the optimum characteristics of groundwater to give lowest iron, manganese and ammonia, maximum production and quality of fish in aquaculture in El-Max Research Station. The major design goal of the system was determined the optimum time for harvesting the treated water, pH, and Glauconite weight to use it for aquaculture process in the research site and achieve the Egyptian law (48/1982) and EPA level required for aquaculture. The water characteristics are [Fe = 0.116 mg/L, Mn = 1.36 mg/L,TN = 0.44 mg/L , TP = 0.07 mg/L , Ammonia = 0.386 mg/L] by using the glauconite filter we obtained high efficiency for removal for [(Fe, Mn and Ammonia] ,but in the Lab we obtained result for (Fe, 43-97), ( Mn,92-99 ), and ( Ammonia, 66-88 )]. We summarized the results to show the optimum time, pH, Glauconite weight, and the best model for design in the region.

Keywords: aquaculture, ammonia in groundwater, groundwater, iron and manganese in water, groundwater treatment

Procedia PDF Downloads 196
2194 Monitoring of Hydrological Parameters in the Alexandra Jukskei Catchment in South Africa

Authors: Vhuhwavho Gadisi, Rebecca Alowo, German Nkhonjera

Abstract:

It has been noted that technical programming for handling groundwater resources is not accessible. The lack of these systems hinders groundwater management processes necessary for decision-making through monitoring and evaluation regarding the Jukskei River of the Crocodile River (West) Basin in Johannesburg, South Africa. Several challenges have been identified in South Africa's Jukskei Catchment concerning groundwater management. Some of those challenges will include the following: Gaps in data records; there is a need for training and equipping of monitoring staff; formal accreditation of monitoring capacities and equipment; there is no access to regulation terms (e.g., meters). Taking into consideration necessities and human requirements as per typical densities in various regions of South Africa, there is a need to construct several groundwater level monitoring stations in a particular segment; the available raw data on groundwater level should be converted into consumable products for example, short reports on delicate areas (e.g., Dolomite compartments, wetlands, aquifers, and sole source) and considering the increasing civil unrest there has been vandalism and theft of groundwater monitoring infrastructure. GIS was employed at the catchment level to plot the relationship between those identified groundwater parameters in the catchment area and the identified borehole. GIS-based maps were designed for groundwater monitoring to be pretested on one borehole in the Jukskei catchment. This data will be used to establish changes in the borehole compared to changes in the catchment area according to identified parameters.

Keywords: GIS, monitoring, Jukskei, catchment

Procedia PDF Downloads 62
2193 Groundwater Flow Assessment Based on Numerical Simulation at Omdurman Area, Khartoum State, Sudan

Authors: Adil Balla Elkrail

Abstract:

Visual MODFLOW computer codes were selected to simulate head distribution, calculate the groundwater budgets of the area, and evaluate the effect of external stresses on the groundwater head and to demonstrate how the groundwater model can be used as a comparative technique in order to optimize utilization of the groundwater resource. A conceptual model of the study area, aquifer parameters, boundary, and initial conditions were used to simulate the flow model. The trial-and-error technique was used to calibrate the model. The most important criteria used to check the calibrated model were Root Mean Square error (RMS), Mean Absolute error (AM), Normalized Root Mean Square error (NRMS) and mass balance. The maps of the simulated heads elaborated acceptable model calibration compared to observed heads map. A time length of eight years and the observed heads of the year 2004 were used for model prediction. The predictive simulation showed that the continuation of pumping will cause relatively high changes in head distribution and components of groundwater budget whereas, the low deficit computed (7122 m3/d) between inflows and outflows cannot create a significant drawdown of the potentiometric level. Hence, the area under consideration may represent a high permeability and productive zone and strongly recommended for further groundwater development.

Keywords: aquifers, model simulation, groundwater, calibrations, trail-and- error, prediction

Procedia PDF Downloads 208
2192 Modeling the Effects of Leachate-Impacted Groundwater on the Water Quality of a Large Tidal River

Authors: Emery Coppola Jr., Marwan Sadat, Il Kim, Diane Trube, Richard Kurisko

Abstract:

Contamination sites like landfills often pose significant risks to receptors like surface water bodies. Surface water bodies are often a source of recreation, including fishing and swimming, which not only enhances their value but also serves as a direct exposure pathway to humans, increasing their need for protection from water quality degradation. In this paper, a case study presents the potential effects of leachate-impacted groundwater from a large closed sanitary landfill on the surface water quality of the nearby Raritan River, situated in New Jersey. The study, performed over a two year period, included in-depth field evaluation of both the groundwater and surface water systems, and was supplemented by computer modeling. The analysis required delineation of a representative average daily groundwater discharge from the Landfill shoreline into the large, highly tidal Raritan River, with a corresponding estimate of daily mass loading of potential contaminants of concern. The average daily groundwater discharge into the river was estimated from a high-resolution water level study and a 24-hour constant-rate aquifer pumping test. The significant tidal effects induced on groundwater levels during the aquifer pumping test were filtered out using an advanced algorithm, from which aquifer parameter values were estimated using conventional curve match techniques. The estimated hydraulic conductivity values obtained from individual observation wells closely agree with tidally-derived values for the same wells. Numerous models were developed and used to simulate groundwater contaminant transport and surface water quality impacts. MODFLOW with MT3DMS was used to simulate the transport of potential contaminants of concern from the down-gradient edge of the Landfill to the Raritan River shoreline. A surface water dispersion model based upon a bathymetric and flow study of the river was used to simulate the contaminant concentrations over space within the river. The modeling results helped demonstrate that because of natural attenuation, the Landfill does not have a measurable impact on the river, which was confirmed by an extensive surface water quality study.

Keywords: groundwater flow and contaminant transport modeling, groundwater/surface water interaction, landfill leachate, surface water quality modeling

Procedia PDF Downloads 231
2191 Hydrogeochemistry Preliminary Study of Groundwater Conservation in Buton Island, Southeast Sulawesi, Indonesia

Authors: M. S. M. Prahastomi, Riki Sunaryo, Lorasa Ximanes

Abstract:

The research takes place in EP Area, in the Northern part of Buton, Southeast Sulawesi Province, Indonesia. It is one example of karst areas that have good water resources potential. The landscape is in the form of valleys and hills which is good enough for recharge zone and discharge zones of groundwater. However, the geological characteristics of karst dissolution and a complex geological structure are quite influential to the groundwater flow system in the region. The Discharge of groundwater to the surface can be caused by a fracture in the rock, Underground River due to dissolution, and the contact between permeable rocks with impermeable rocks. In the concept of hydrogeology, groundwater is one of the components of the hydrological cycle which is closely linked to the availability of water under the surface, precipitation, infiltration, percolation, evapotranspiration, and surface runoff. Conceptually, the condition of recharge and discharge areas can be identified through a research distribution springs in a region. The understanding of the condition and the nature of the potential catchment area of groundwater flow, mainly from the catchment area to the discharge area, is urgently needed. This research aimed to assess the general geological conditions of the study area, which is expected to provide an overview of groundwater flow events that used by the public as well as industry. Behavioral characteristics of groundwater become an integral part in the search for potential groundwater in the study area. As for the research methods used hydrogeology mapping and laboratory works.

Keywords: Buton Island, groundwater conservation, hydrogeochemistry preliminary, karst

Procedia PDF Downloads 302
2190 The Impact of Election Observation on Electoral Reforms in Nigeria

Authors: Abubakar Sulaiman

Abstract:

The paper examines how election observation influences electoral reforms in Nigeria. Over the years, election observation continues to play critical role in the electoral process specifically in Nigeria and Africa at large. Election observation keeps an eye on the electoral process and all the stakeholders during elections, to ensure that the process is fair to all contestants. While literature abound on this role of election observation on electoral process in Nigeria, scanty scholarly efforts have been made to appraise how election observation influences electoral reforms in Nigeria. Also, while election observation may play a role in ensuring that the electoral process is credible, specifically, its role in prvoking and eliciting various electoral reforms in the country has not been explored. The paper adopts the explanatory research design using secondary data and document analysis. Preliminary findings show that election observation has influenced electoral reforms in Nigeria in no small measure. The paper concludes that election observation is critical for result oriented electoral reforms in Nigeria, albeit, such reforms have to be implemented to the latter.

Keywords: electoral reforms, election observation, electoral process, developing country

Procedia PDF Downloads 126
2189 Optimizing Groundwater Pumping for a Complex Groundwater/Surface Water System

Authors: Emery A. Coppola Jr., Suna Cinar, Ferenc Szidarovszky

Abstract:

Over-pumping of groundwater resources is a serious problem world-wide. In addition to depleting this valuable resource, hydraulically connected sensitive ecological resources like wetlands and surface water bodies are often impacted and even destroyed by over-pumping. Effectively managing groundwater in a way that satisfy human demand while preserving natural resources is a daunting challenge that will only worsen with growing human populations and climate change. As presented in this paper, a numerical flow model developed for a hypothetical but realistic groundwater/surface water system was combined with formal optimization. Response coefficients were used in an optimization management model to maximize groundwater pumping in a complex, multi-layered aquifer system while protecting against groundwater over-draft, streamflow depletion, and wetland impacts. Pumping optimization was performed for different constraint sets that reflect different resource protection preferences, yielding significantly different optimal pumping solutions. A sensitivity analysis on the optimal solutions was performed on select response coefficients to identify differences between wet and dry periods. Stochastic optimization was also performed, where uncertainty associated with changing irrigation demand due to changing weather conditions are accounted for. One of the strengths of this optimization approach is that it can efficiently and accurately identify superior management strategies that minimize risk and adverse environmental impacts associated with groundwater pumping under different hydrologic conditions.

Keywords: numerical groundwater flow modeling, water management optimization, groundwater overdraft, streamflow depletion

Procedia PDF Downloads 202
2188 Effect of Climate Change on Groundwater Recharge in a Sub-Humid Sub-Tropical Region of Eastern India

Authors: Suraj Jena, Rabindra Kumar Panda

Abstract:

The study region of the reported study was in Eastern India, having a sub-humid sub-tropical climate and sandy loam soil. The rainfall in this region has wide temporal and spatial variation. Due to lack of adequate surface water to meet the irrigation and household demands, groundwater is being over exploited in that region leading to continuous depletion of groundwater level. Therefore, there is an obvious urgency in reversing the depleting groundwater level through induced recharge, which becomes more critical under the climate change scenarios. The major goal of the reported study was to investigate the effects of climate change on groundwater recharge and subsequent adaptation strategies. Groundwater recharge was modelled using HELP3, a quasi-two-dimensional, deterministic, water-routing model along with global climate models (GCMs) and three global warming scenarios, to examine the changes in groundwater recharge rates for a 2030 climate under a variety of soil and vegetation covers. The relationship between the changing mean annual recharge and mean annual rainfall was evaluated for every combination of soil and vegetation using sensitivity analysis. The relationship was found to be statistically significant (p<0.05) with a coefficient of determination of 0.81. Vegetation dynamics and water-use affected by the increase in potential evapotranspiration for large climate variability scenario led to significant decrease in recharge from 49–658 mm to 18–179 mm respectively. Therefore, appropriate conjunctive use, irrigation schedule and enhanced recharge practices under the climate variability and land use/land cover change scenarios impacting the groundwater recharge needs to be understood properly for groundwater sustainability.

Keywords: Groundwater recharge, climate variability, Land use/cover, GCM

Procedia PDF Downloads 248
2187 Spatio-temporal Distribution of the Groundwater Quality in the El Milia Plain, Kebir Rhumel Basin, Algeria

Authors: Lazhar Belkhiri, Ammar Tiri, Lotfi Mouni

Abstract:

In this research, we analyzed the groundwater quality index in the El Milia plain, Kebir Rhumel Basin, Algeria. Thirty-three groundwater samples were collected from wells in the El Milia plain during April 2015. In this study, pH and electrical conductivity (EC) were conducted at each sampling well. Eight hydrochemical parameters such as calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), chlorid (Cl), sulfate (SO4), bicarbonate (HCO3), and Nnitrate (NO3) were analysed. The entropy water quality index (EWQI) method was employed to evaluate the groundwater quality in the study area. Moran’s I and the ordinary kriging (OK) interpolation technique were used to examine the spatial distribution pattern of the hydrochemical parameters in the groundwater. It was found that the hydrochemical parameters Ca, Cl, and HCO3 showed strong spatial autocorrelation in the El Milia plain, indicating a spatial dependence and clustering of these parameters in the groundwater. The groundwater quality was evaluated using the entropy water quality index (EWQI). The results showed that approximately 86% of the total groundwater samples in the study area fall within the moderate groundwater quality category. The spatial map of the EWQI values indicated an increasing trend from the south-west to the northeast, following the direction of groundwater flow. The highest EWQI values were observed near El Milia city in the center of the plain. This spatial pattern suggests variations in groundwater quality across the study area, with potentially higher risks near the city center. Therefore, the results obtained in this research provide very useful information to decision-makers.

Keywords: entropy water quality index (EWQI), moran’s i, ordinary kriging interpolation, el milia plain

Procedia PDF Downloads 20
2186 Identifying Controlling Factors for the Evolution of Shallow Groundwater Chemistry of Ellala Catchment, Northern Ethiopia

Authors: Grmay Kassa Brhane, Hailemariam Siyum Mekonen

Abstract:

This study was designed to identify the hydrogeochemical and anthropogenic processes controlling the evaluation of groundwater chemistry in the Ellala catchment which covers about 296.5 km2 areal extent. The chemical analysis revealed that the major ions in the groundwater are Ca2+, Mg2+, Na+, and K+ (cations) and HCO3-, PO43-, Cl-, NO3-, and SO42-(anions). Most of the groundwater samples (68.42%) revealed that the groundwater in the catchment is non-alkaline. In addition to the contribution of aquifer material, the solid materials and liquid wastes discharged from different sources can be the main sources of pH and EC in the groundwater. It is observed that the EC of the groundwater is fairly correlated with the DTS. This indicates that high mineralized water is more conductor than water with low concentration. The degree of salinity of the groundwater increases along the groundwater flow path from East to West; then, areas surrounding Mekelle City are highly saline due to the liquid and solid wastes discharged from the city and the industries. The groundwater facies in the catchment are predominated with calcium, magnesium, and bicarbonate which are labeled as Ca-Mg-HCO3 and Mg-Ca-HCO3. The main geochemical process controlling the evolution of the groundwater chemistry in the catchment is rock-water interaction, particularly carbonate dissolution. Due to the clay layer in the aquifer, the reverse is ion exchange. Non-significant silicate weathering and halite dissolution also contribute to the evolution of groundwater chemistry in the catchment. The groundwater in the catchment is dominated by the meteoritic origin although it needs further groundwater chemistry study with isotope dating analysis. The groundwater is under-saturated with calcite, dolomite, and aragonite minerals; hence, the more these minerals encounter the groundwater, the more the minerals dissolve. The main source of calcium and magnesium in groundwater is the dissolution of carbonate minerals (calcite and dolomite) since carbonate rocks are the dominant aquifer materials in the catchment. In addition to this, the weathering of dolerite rock is a possible source of magnesium ions. The relatively higher concentration of sodium over chloride indicates that the source of sodium-ion is reverse ion exchange and/or weathering of sodium-bearing materials, such as shale and dolerite rather than halite dissolution. High concentration of phosphate, nitrate, and chloride in the groundwater is the main anthropogenic source that needs treatment, quality control, and management in the catchment. From the Base Exchange Index Analysis, it is possible to understand that, in the catchment, the groundwater is dominated by the meteoritic origin, although it needs further groundwater chemistry study with isotope dating analysis.

Keywords: Ellala catchment, factor, chemistry, geochemical, groundwater

Procedia PDF Downloads 39
2185 Evaluation of Groundwater Quality and Its Suitability for Drinking and Agricultural Purposes Using Self-Organizing Maps

Authors: L. Belkhiri, L. Mouni, A. Tiri, T.S. Narany

Abstract:

In the present study, the self-organizing map (SOM) clustering technique was applied to identify homogeneous clusters of hydrochemical parameters in El Milia plain, Algeria, to assess the quality of groundwater for potable and agricultural purposes. The visualization of SOM-analysis indicated that 35 groundwater samples collected in the study area were classified into three clusters, which showed progressive increase in electrical conductivity from cluster one to cluster three. Samples belonging to cluster one are mostly located in the recharge zone showing hard fresh water type, however, water type gradually changed to hard-brackish type in the discharge zone, including clusters two and three. Ionic ratio studies indicated the role of carbonate rock dissolution in increases on groundwater hardness, especially in cluster one. However, evaporation and evapotranspiration are the main processes increasing salinity in cluster two and three.

Keywords: groundwater quality, self-organizing maps, drinking water, irrigation water

Procedia PDF Downloads 225
2184 Real-Time Monitoring Approaches of Groundwater Conductivity and Level to Pre-Alert the Seawater Intrusion in Sand Coast of Liaodong Bay of China

Authors: Yuguang Wang, Chuanjun Wang

Abstract:

At present, many coastal areas around the world suffer from seawater intrusion. Seawater intrusion is the superimposed result of two factors which are nature and human social economical activities in particular area. In recent years, due to excessive exploitation of groundwater, the seawater intrusion phenomenon aggravate in coastal zone of the Bohai and Huanghai seas in our country. Moreover, with sea-level rising, the original hydrodynamic equilibrium between saltwater and freshwater has been damaged to a certain extent, and it will further aggravate seawater intrusion in the land plains. In addition, overexploitation of groundwater declined groundwater level and increase saltwater intrusion in coastal areas. Therefore, in view of the sensitivity and vulnerability of the impact of sea-level rise in the future, the risk of sea-level rise in coastal zone should be considered, reasonable exploitation, utilization and management of coastal zone’s groundwater should be formulated. The response mechanism of sea-level rise should be studied to prevent and reduce the harm of seawater intrusion, which has important theoretical and realistic significances. In this paper, through the long-term monitoring of groundwater level and conductibility in the transition region of seawater intrusion for the sand coast area, realtimely master the situation of seawater intrusion. Combined with the seasonal exploitation station of groundwater and sea level variation, early alert the seawater intrusion to prevent and reduce the harm of seawater intrusion.

Keywords: groundwater level, sea level, seawater intrusion, sand coast

Procedia PDF Downloads 420
2183 Identification and Characterization of Groundwater Recharge Sites in Kuwait

Authors: Dalal Sadeqi

Abstract:

Groundwater is an important component of Kuwait’s water resources. Although limited in quantity and often poor in quality, the significance of this natural source of water cannot be overemphasized. Recharge of groundwater in Kuwait occurs during periodical storm events, especially in open desert areas. Runoff water dissolves accumulated surficial meteoric salts and subsequently leaches them into the groundwater following a period of evaporative enrichment at or near the soil surface. Geochemical processes governing groundwater recharge vary in time and space. Stable isotope (18O and 2H) and geochemical signatures are commonly used to gain some insight into recharge processes and groundwater salinization mechanisms, particularly in arid and semiarid regions. This article addresses the mechanism used in identifying and characterizing the main water shed areas in Kuwait using stable isotopes in an attempt to determine favorable groundwater recharge sites in the country. Stable isotopes of both rainwater and groundwater were targeted in different hydrogeological settings. Additionally, data and information obtained from subsurface logs in the study area were collected and analyzed to develop a better understanding of the lateral and vertical extent of the groundwater aquifers. Geographic Information System (GIS) and RockWorks 3D modelling software were used to map out the hydrogeomorphology of the study area and the subsurface lithology of the investigated aquifers. The collected data and information, including major ion chemistry, isotopes, subsurface characteristics, and hydrogeomorphology, were integrated in a GIS platform to identify and map out suitable natural recharge areas as part of an integrated water resources management scheme that addresses the challenges of the sustainability of the groundwater reserves in the country.

Keywords: scarcity, integrated, recharge, isotope

Procedia PDF Downloads 75
2182 Distribution of Current Emerging Contaminants in South Africa Surface and Groundwater

Authors: Jou-An Chen, Julio Castillo, Errol Duncan Cason, Gabre Kemp, Leana Esterhuizen, Angel Valverde Portal, Esta Van Heerden

Abstract:

Emerging contaminants (EC) such as pharmaceutical and personal care products have been accumulating for years in water bodies all over the world. However, very little is known about the occurrences, levels, and effects of ECs in South African water resources. This study provides an initial assessment of the distribution of eight ECs (Acetaminophen, Atrazine, Terbuthlyazine, Carbamazepine, Phenyton, Sulfmethoxazole, Nevirapine and Fluconozole) in fifteen water sources from the Free State and Easter Cape provinces of South Africa. Overall, the physiochemical conditions were different in surface and groundwater samples, with concentrations of several elements such as B, Ca, Mg, Na, NO3, and TDS been statistically higher in groundwater. In contrast, ECs levels, quantified at ng/mL using the LC/MS/ESI, were much lower in groundwater samples. The ECs with higher contamination levels were Carbamazepine, Sulfmethoxazole, Nevirapine, and Terbuthlyazine, while the most widespread were Sulfmethoxazole and Fluconozole, detected in all surface and groundwater samples. Fecal and E. coli tests indicated that surface water was more contaminated than groundwater. Microbial communities, assessed using NGS, were dominated by the phyla Proteobacteria and Bacteroidetes, in both surface and groundwater. Actinobacteria, Planctomycetes, and Cyanobacteria, were more dominant in surface water, while Verrucomicrobia were overrepresented in groundwater. In conclusion, ECs contamination is closely associated with human activities (human wastes). The microbial diversity identified can suggest possible biodegradation processes.

Keywords: emerging contaminants, EC, personal care products, pharmaceuticals, natural attenuation process

Procedia PDF Downloads 189
2181 Irrigation Water Quality Evaluation in Jiaokou Irrigation District, Guanzhong Basin

Authors: Qiying Zhang, Panpan Xu, Hui Qian

Abstract:

Groundwater is an important water resource in the world, especially in arid and semi-arid regions. In the present study, 141 groundwater samples were collected and analyzed for various physicochemical parameters to assess the irrigation water quality using six indicators (sodium percentage (Na%), sodium adsorption ratio (SAR), magnesium hazard (MH), residual sodium carbonate (RSC), permeability index (PI), and potential salinity (PS)). The results show that the patterns for the average cation and anion concentrations were in decreasing orders of Na > Mg2 > Ca2 > Kand SO42 > HCO3 > Cl > NO3 > CO32 > F, respectively. The values of Na%, MH, and PS show that most of the groundwater samples are not suitable for irrigation. The same conclusion is drawn from the USSL and Wilcox diagrams. PS values indicate that Cland SO42have a great influence on irrigation water in Jiaokou Irrigation District. RSC and PI values indicate that more than half of groundwater samples are suitable for irrigation. The finding is beneficial for the policymakers for future water management schemes to achieve a sustainable development goal.

Keywords: groundwater chemistry, Guanzhong Basin, irrigation water quality evaluation, Jiaokou Irrigation District

Procedia PDF Downloads 169
2180 On the Application and Comparison of Two Geostatistics Methods in the Parameterisation Step to Calibrate Groundwater Model: Grid-Based Pilot Point and Head-Zonation Based Pilot Point Methods

Authors: Dua K. S. Y. Klaas, Monzur A. Imteaz, Ika Sudiayem, Elkan M. E. Klaas, Eldav C. M. Klaas

Abstract:

Properly selecting the most suitable and effective geostatistics method in the parameterization step of groundwater modeling is critical to attain a satisfactory model. In this paper, two geostatistics methods, i.e., Grid-Based Pilot Point (GB-PP) and Head-Zonation Based Pilot Point (HZB-PP) methods, were applied in an eogenetic karst catchment and compared using as model performances and computation time the criteria. Overall, the results show that appropriate selection of method is substantial in the parameterization of physically-based groundwater models, as it influences both the accuracy and simulation times. It was found that GB-PP method performed comparably superior to HZB-PP method. However, reflecting its model performances, HZB-PP method is promising for further application in groundwater modeling.

Keywords: groundwater model, geostatistics, pilot point, parameterization step

Procedia PDF Downloads 136
2179 Characterization of Aquifer Systems and Identification of Potential Groundwater Recharge Zones Using Geospatial Data and Arc GIS in Kagandi Water Supply System Well Field

Authors: Aijuka Nicholas

Abstract:

A research study was undertaken to characterize the aquifers and identify the potential groundwater recharge zones in the Kagandi district. Quantitative characterization of hydraulic conductivities of aquifers is of fundamental importance to the study of groundwater flow and contaminant transport in aquifers. A conditional approach is used to represent the spatial variability of hydraulic conductivity. Briefly, it involves using qualitative and quantitative geologic borehole-log data to generate a three-dimensional (3D) hydraulic conductivity distribution, which is then adjusted through calibration of a 3D groundwater flow model using pumping-test data and historic hydraulic data. The approach consists of several steps. The study area was divided into five sub-watersheds on the basis of artificial drainage divides. A digital terrain model (DTM) was developed using Arc GIS to determine the general drainage pattern of Kagandi watershed. Hydrologic characterization involved the determination of the various hydraulic properties of the aquifers. Potential groundwater recharge zones were identified by integrating various thematic maps pertaining to the digital elevation model, land use, and drainage pattern in Arc GIS and Sufer golden software. The study demonstrates the potential of GIS in delineating groundwater recharge zones and that the developed methodology will be applicable to other watersheds in Uganda.

Keywords: aquifers, Arc GIS, groundwater recharge, recharge zones

Procedia PDF Downloads 115
2178 Microgravity, Hydrological and Metrological Monitoring of Shallow Ground Water Aquifer in Al-Ain, UAE

Authors: Serin Darwish, Hakim Saibi, Amir Gabr

Abstract:

The United Arab Emirates (UAE) is situated within an arid zone where the climate is arid and the recharge of the groundwater is very low. Groundwater is the primary source of water in the United Arab Emirates. However, rapid expansion, population growth, agriculture, and industrial activities have negatively affected these limited water resources. The shortage of water resources has become a serious concern due to the over-pumping of groundwater to meet demand. In addition to the deficit of groundwater, the UAE has one of the highest per capita water consumption rates in the world. In this study, a combination of time-lapse measurements of microgravity and depth to groundwater level in selected wells in Al Ain city was used to estimate the variations in groundwater storage. Al-Ain is the second largest city in Abu Dhabi Emirates and the third largest city in the UAE. The groundwater in this region has been overexploited. Relative gravity measurements were acquired using the Scintrex CG-6 Autograv. This latest generation gravimeter from Scintrex Ltd provides fast, precise gravity measurements and automated corrections for temperature, tide, instrument tilt and rejection of data noise. The CG-6 gravimeter has a resolution of 0.1μGal. The purpose of this study is to measure the groundwater storage changes in the shallow aquifers based on the application of microgravity method. The gravity method is a nondestructive technique that allows collection of data at almost any location over the aquifer. Preliminary results indicate a possible relationship between microgravity and water levels, but more work needs to be done to confirm this. The results will help to develop the relationship between monthly microgravity changes with hydrological and hydrogeological changes of shallow phreatic. The study will be useful in water management considerations and additional future investigations.

Keywords: Al-Ain, arid region, groundwater, microgravity

Procedia PDF Downloads 115
2177 Impact Assessment of Phosphogypsum on the Groundwater of Sfax-Agareb Aquifer, in Southeast of Tunisia

Authors: Samira Melki, Moncef Gueddari

Abstract:

In Tunisia, solid wastes storage continue to be uncontrolled. It is eliminated by land raising without any protection measurement against water table and soil contamination. Several industries are located in Sfax area, especially those of the Tunisian Chemical Group (TCG) for the enrichment and transformation of phosphate. The activity of the TCG focuses primarily on the production of chemical fertilizers and phosphoric acid, by transforming natural phosphates. This production generates gaseous emissions, liquid discharges and huge amounts of phosphogypsum (PG) stored directly on the soil surface. Groundwater samples were collected from Tunisian Chemical Group (TCG) site, to assess the effects of phosphogypsum leatchate on groundwater quality. The measurements of various physicochemical parameters including heavy metals (Al, Fe, Zn and F) and stable isotopes of the water molecule (¹⁸O, ²H) were determined in groundwater samples and are reported. The moderately high concentrations of SO₄⁼, Ortho-P, NH₄⁺ Al and F⁻ in groundwater particularly near to the phosphogypsum storage site, likely indicate that groundwater quality is being significantly affected by leachate percolation. The effect of distance of the piezometers from the pollution source was also investigated. The isotopic data of water molecule, showed that the waters of the Sfax-Agreb aquifer amount to recent-evaporation induced rainfall.

Keywords: phosphogypsum leatchate, groundwater quality, pollution, stable isotopes, Sfax-Agareb, Tunisia

Procedia PDF Downloads 155
2176 Impact of Interface Soil Layer on Groundwater Aquifer Behaviour

Authors: Hayder H. Kareem, Shunqi Pan

Abstract:

The geological environment where the groundwater is collected represents the most important element that affects the behaviour of groundwater aquifer. As groundwater is a worldwide vital resource, it requires knowing the parameters that affect this source accurately so that the conceptualized mathematical models would be acceptable to the broadest ranges. Therefore, groundwater models have recently become an effective and efficient tool to investigate groundwater aquifer behaviours. Groundwater aquifer may contain aquitards, aquicludes, or interfaces within its geological formations. Aquitards and aquicludes have geological formations that forced the modellers to include those formations within the conceptualized groundwater models, while interfaces are commonly neglected from the conceptualization process because the modellers believe that the interface has no effect on aquifer behaviour. The current research highlights the impact of an interface existing in a real unconfined groundwater aquifer called Dibdibba, located in Al-Najaf City, Iraq where it has a river called the Euphrates River that passes through the eastern part of this city. Dibdibba groundwater aquifer consists of two types of soil layers separated by an interface soil layer. A groundwater model is built for Al-Najaf City to explore the impact of this interface. Calibration process is done using PEST 'Parameter ESTimation' approach and the best Dibdibba groundwater model is obtained. When the soil interface is conceptualized, results show that the groundwater tables are significantly affected by that interface through appearing dry areas of 56.24 km² and 6.16 km² in the upper and lower layers of the aquifer, respectively. The Euphrates River will also leak water into the groundwater aquifer of 7359 m³/day. While these results are changed when the soil interface is neglected where the dry area became 0.16 km², the Euphrates River leakage became 6334 m³/day. In addition, the conceptualized models (with and without interface) reveal different responses for the change in the recharge rates applied on the aquifer through the uncertainty analysis test. The aquifer of Dibdibba in Al-Najaf City shows a slight deficit in the amount of water supplied by the current pumping scheme and also notices that the Euphrates River suffers from stresses applied to the aquifer. Ultimately, this study shows a crucial need to represent the interface soil layer in model conceptualization to be the intended and future predicted behaviours more reliable for consideration purposes.

Keywords: Al-Najaf City, groundwater aquifer behaviour, groundwater modelling, interface soil layer, Visual MODFLOW

Procedia PDF Downloads 156
2175 Concerted Strategies for Sustainable Water Resource Management in Semi-Arid Rajasthan State of India

Authors: S. K. Maanju, K. Saha, Sonam Yadav

Abstract:

Rapid urbanization growth and multi-faceted regional level industrialization is posing serious threat to natural groundwater resource in State of Rajasthan which constitute major semi-arid part of India. The groundwater resources of the State are limited and cannot withstand the present rate of exploitation for quite a long time. Recharging of groundwater particularly in the western part, where annual precipitation does not exceed a few centimeters, is extremely slow and cannot replenish the exploited quantum. Hence, groundwater in most of the parts of this region has become an exhausting resource. In major parts water table is lowering down rapidly and continuously. The human beings of this semi-arid region are used to suffering from extreme climatic conditions of arid to semi-arid nature and acute shortage of water. The quality of groundwater too in many areas of this region is not up to the standards prescribed by the health organizations like WHO and BIS. This semi-arid region is one of the highly fluoride contaminated area of India as well as have excess, nitrates, sulphates, chlorides and total dissolved solids at various locations. Therefore, concerted efforts are needed towards sustainable development of groundwater in this State of India.

Keywords: Rajasthan, water, exploitation, sustainable, development and resource

Procedia PDF Downloads 313
2174 Vulnerability Assessment of Groundwater Quality Deterioration Using PMWIN Model

Authors: A. Shakoor, M. Arshad

Abstract:

The utilization of groundwater resources in irrigation has significantly increased during the last two decades due to constrained canal water supplies. More than 70% of the farmers in the Punjab, Pakistan, depend directly or indirectly on groundwater to meet their crop water demands and hence, an unchecked paradigm shift has resulted in aquifer depletion and deterioration. Therefore, a comprehensive research was carried at central Punjab-Pakistan, regarding spatiotemporal variation in groundwater level and quality. Processing MODFLOW for window (PMWIN) and MT3D (solute transport model) models were used for existing and future prediction of groundwater level and quality till 2030. The comprehensive data set of aquifer lithology, canal network, groundwater level, groundwater salinity, evapotranspiration, groundwater abstraction, recharge etc. were used in PMWIN model development. The model was thus, successfully calibrated and validated with respect to groundwater level for the periods of 2003 to 2007 and 2008 to 2012, respectively. The coefficient of determination (R2) and model efficiency (MEF) for calibration and validation period were calculated as 0.89 and 0.98, respectively, which argued a high level of correlation between the calculated and measured data. For solute transport model (MT3D), the values of advection and dispersion parameters were used. The model used for future scenario up to 2030, by assuming that there would be no uncertain change in climate and groundwater abstraction rate would increase gradually. The model predicted results revealed that the groundwater would decline from 0.0131 to 1.68m/year during 2013 to 2030 and the maximum decline would be on the lower side of the study area, where infrastructure of canal system is very less. This lowering of groundwater level might cause an increase in the tubewell installation and pumping cost. Similarly, the predicted total dissolved solids (TDS) of the groundwater would increase from 6.88 to 69.88mg/L/year during 2013 to 2030 and the maximum increase would be on lower side. It was found that in 2030, the good quality would reduce by 21.4%, while marginal and hazardous quality water increased by 19.28 and 2%, respectively. It was found from the simulated results that the salinity of the study area had increased due to the intrusion of salts. The deterioration of groundwater quality would cause soil salinity and ultimately the reduction in crop productivity. It was concluded from the predicted results of groundwater model that the groundwater deteriorated with the depth of water table i.e. TDS increased with declining groundwater level. It is recommended that agronomic and engineering practices i.e. land leveling, rainwater harvesting, skimming well, ASR (Aquifer Storage and Recovery Wells) etc. should be integrated to meliorate management of groundwater for higher crop production in salt affected soils.

Keywords: groundwater quality, groundwater management, PMWIN, MT3D model

Procedia PDF Downloads 344
2173 Application of Multivariate Statistics and Hydro-Chemical Approach for Groundwater Quality Assessment: A Study on Birbhum District, West Bengal, India

Authors: N. C. Ghosh, Niladri Das, Prolay Mondal, Ranajit Ghosh

Abstract:

Groundwater quality deterioration due to human activities has become a prime factor of modern life. The major concern of the study is to access spatial variation of groundwater quality and to identify the sources of groundwater chemicals and its impact on human health of the concerned area. Multivariate statistical techniques, cluster, principal component analysis, and hydrochemical fancies are been applied to measure groundwater quality data on 14 parameters from 107 sites distributed randomly throughout the Birbhum district. Five factors have been extracted using Varimax rotation with Kaiser Normalization. The first factor explains 27.61% of the total variance where high positive loading have been concentrated in TH, Ca, Mg, Cl and F (Fluoride). In the studied region, due to the presence of basaltic Rajmahal trap fluoride contamination is highly concentrated and that has an adverse impact on human health such as fluorosis. The second factor explains 24.41% of the total variance which includes Na, HCO₃, EC, and SO₄. The last factor or the fifth factor explains 8.85% of the total variance, and it includes pH which maintains the acidic and alkaline character of the groundwater. Hierarchical cluster analysis (HCA) grouped the 107 sampling station into two clusters. One cluster having high pollution and another cluster having less pollution. Moreover hydromorphological facies viz. Wilcox diagram, Doneen’s chart, and USSL diagram reveal the quality of the groundwater like the suitability of the groundwater for irrigation or water used for drinking purpose like permeability index of the groundwater, quality assessment of groundwater for irrigation. Gibb’s diagram depicts that the major portion of the groundwater of this region is rock dominated origin, as the western part of the region characterized by the Jharkhand plateau fringe comprises basalt, gneiss, granite rocks.

Keywords: correlation, factor analysis, hydrological facies, hydrochemistry

Procedia PDF Downloads 181
2172 Urbanization on Green Cover and Groundwater Relationships in Delhi, India

Authors: Kiranmay Sarma

Abstract:

Recent decades have witnessed rapid increase in urbanization, for which, rural-urban migration is stated to be the principal reason. Urban growth throughout the world has already outstripped the capacities of most of the cities to provide basic amenities to the citizens, including clean drinking water and consequently, they are struggling to get fresh and clean water to meet water demands. Delhi, the capital of India, is one of the rapid fast growing metropolitan cities of the country. As a result, there has been large influx of population during the last few decades and pressure exerted to the limited available water resources, mainly on groundwater. Considering this important aspect, the present research has been designed to study the effects of urbanization on the green cover and groundwater and their relationships of Delhi. For the purpose, four different land uses of the study area have been considered, viz., protected forest area, trees outside forest, maintained park and settlement area. Samples for groundwater and vegetation were collected seasonally in post-monsoon (October), winter (February) and summer (June) at each study site for two years during 2012 and 2014. The results were integrated into GIS platform. The spatial distribution of groundwater showed that the concentration of most of the ions is decreasing from northern to southern parts of Delhi, thus groundwater shows an improving trend from north to south. The depth was found to be improving from south to north Delhi, i.e., opposite to the water quality. The study concludes the groundwater properties in Delhi vary spatially with depending on the types of land cover.

Keywords: groundwater, urbanization, GIS, green cover, Delhi

Procedia PDF Downloads 257
2171 Seismic Activity and Groundwater Behavior at Kalabsha Area, Aswan, Egypt

Authors: S. M. Moustafa, A. Ezzat, Y. S. Taha, G. H. Hassib, S. Hamada

Abstract:

After the occurrence of 14, Nov, 1981 earthquake (M = 5.3), on Kalabska fault, south of Egypt, seismic stations distributed in and around the Kalabsha area, in order to monitoring, recording and studying the seismic activity in the area. In addition of that, from 1989 a number of piezometer wells drilled in the same area, distribed on at the both side of the active faults area and in different water bearing formations, in order to measuring the groundwater parameters (level, temperature, ph, and conductivity) to monitoring the relationship between those parameters and the seismic activity at Kalabsha area. The behavior of groundwater due to seismic activity over the world studied by several scientists i.e. H. Wakita (1979) on Izu-Oshima earthquake (M= 7.0) at Japan, M. E. Contadakis & G.asteriadis (1972), and Evans (1966), they found an anomalies on groundwater measurements prior, co, and post the occurrence of bigger earthquakes, referring to the probability of precursory evidence of impending earthquakes. In Kalabsha area south of Egypt, this study has been done using recorded seismic data, and the measurements of underground water parameters. same phenomena of anomalies founded on groundwater measurements pre, co. and post the occurrence of earthquakes with magnitude bigger than 3, and no systematic regularity exists for epicenter distance, duration of anomalies or time lag between anomalies appear and occurrence of events. Also the results found present strong relation between the groundwater in the upper unconfined aquifer Nubian Sandstone formation, and Kalabsha seismic activity, otherwise no relation between the seismic activities in the area with the deep groundwater in the lower confined aquifer Sandstone.

Keywords: seismicity, groundwater, Aswan, Egypt

Procedia PDF Downloads 349
2170 Groundwater Pollution Models for Hebron/Palestine

Authors: Hassan Jebreen

Abstract:

These models of a conservative pollutant in groundwater do not include representation of processes in soils and in the unsaturated zone, or biogeochemical processes in groundwater, These demonstration models can be used as the basis for more detailed simulations of the impacts of pollution sources at a local scale, but such studies should address processes related to specific pollutant species, and should consider local hydrogeology in more detail, particularly in relation to possible impacts on shallow systems which are likely to respond more quickly to changes in pollutant inputs. The results have demonstrated the interaction between groundwater flow fields and pollution sources in abstraction areas, and help to emphasise that wadi development is one of the key elements of water resources planning. The quality of groundwater in the Hebron area indicates a gradual increase in chloride and nitrate with time. Since the aquifers in Hebron districts are highly vulnerable due to their karstic nature, continued disposal of untreated domestic and industrial wastewater into the wadi will lead to unacceptably poor water quality in drinking water, which may ultimately require expensive treatment if significant health problems are to be avoided. Improvements are required in wastewater treatment at the municipal and domestic levels, the latter requiring increased public awareness of the issues, as well as improved understanding of the hydrogeological behaviour of the aquifers.

Keywords: groundwater, models, pollutants, wadis, hebron

Procedia PDF Downloads 404
2169 Unknown Groundwater Pollution Source Characterization in Contaminated Mine Sites Using Optimal Monitoring Network Design

Authors: H. K. Esfahani, B. Datta

Abstract:

Groundwater is one of the most important natural resources in many parts of the world; however it is widely polluted due to human activities. Currently, effective and reliable groundwater management and remediation strategies are obtained using characterization of groundwater pollution sources, where the measured data in monitoring locations are utilized to estimate the unknown pollutant source location and magnitude. However, accurately identifying characteristics of contaminant sources is a challenging task due to uncertainties in terms of predicting source flux injection, hydro-geological and geo-chemical parameters, and the concentration field measurement. Reactive transport of chemical species in contaminated groundwater systems, especially with multiple species, is a complex and highly non-linear geochemical process. Although sufficient concentration measurement data is essential to accurately identify sources characteristics, available data are often sparse and limited in quantity. Therefore, this inverse problem-solving method for characterizing unknown groundwater pollution sources is often considered ill-posed, complex and non- unique. Different methods have been utilized to identify pollution sources; however, the linked simulation-optimization approach is one effective method to obtain acceptable results under uncertainties in complex real life scenarios. With this approach, the numerical flow and contaminant transport simulation models are externally linked to an optimization algorithm, with the objective of minimizing the difference between measured concentration and estimated pollutant concentration at observation locations. Concentration measurement data are very important to accurately estimate pollution source properties; therefore, optimal design of the monitoring network is essential to gather adequate measured data at desired times and locations. Due to budget and physical restrictions, an efficient and effective approach for groundwater pollutant source characterization is to design an optimal monitoring network, especially when only inadequate and arbitrary concentration measurement data are initially available. In this approach, preliminary concentration observation data are utilized for preliminary source location, magnitude and duration of source activity identification, and these results are utilized for monitoring network design. Further, feedback information from the monitoring network is used as inputs for sequential monitoring network design, to improve the identification of unknown source characteristics. To design an effective monitoring network of observation wells, optimization and interpolation techniques are used. A simulation model should be utilized to accurately describe the aquifer properties in terms of hydro-geochemical parameters and boundary conditions. However, the simulation of the transport processes becomes complex when the pollutants are chemically reactive. Three dimensional transient flow and reactive contaminant transport process is considered. The proposed methodology uses HYDROGEOCHEM 5.0 (HGCH) as the simulation model for flow and transport processes with chemically multiple reactive species. Adaptive Simulated Annealing (ASA) is used as optimization algorithm in linked simulation-optimization methodology to identify the unknown source characteristics. Therefore, the aim of the present study is to develop a methodology to optimally design an effective monitoring network for pollution source characterization with reactive species in polluted aquifers. The performance of the developed methodology will be evaluated for an illustrative polluted aquifer sites, for example an abandoned mine site in Queensland, Australia.

Keywords: monitoring network design, source characterization, chemical reactive transport process, contaminated mine site

Procedia PDF Downloads 208
2168 The Utilization of Rain Water to Ground Water with Tube in the Area of Tourism in Yogyakarta

Authors: Kurniawan Agung Pambudi, Alfian Deo Pradipta

Abstract:

Yogyakarta is the famous tourism city in Indonesia. The Tugu Jogja is a tourism center located in Jetis. To support the tourism activities required facilities such as tourist hotel and guest house. The existence of tourism also has an impact on the environment. The surface of the land is covered by cement and a local company dealing in ceramics, then an infiltration process is not running. The existence of the building in layers resulting in the amount of water resource in Jetis decreases. The purpose of this research is to know the impact of the construction of the building in layers in Jetis. To obtain the data done by observation, measurements and taking the land profile, along with the interview to people in Jetis. The results of the study showed that the number of water sources in Jetis, Yogyakarta start decreases as a result of the construction of the building on stilts as a result, the height of the surface of the groundwater decreases and digging a pit must be in to get the source of the waters. Based on the results of research it can be concluded that the height of the surface of the groundwater decreases. To resolve the issue required a method to rainwater can seep into the ground for maximum. The rain that fell upon the precarious houses or other buildings is channeled toward the ground through the tubes with the depth of 1-2 meters. Rainwater will be absorbed into the land and increase the amount of ground water.

Keywords: rain water, tube, water resource, groundwater

Procedia PDF Downloads 191