Search results for: generalized linear model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19207

Search results for: generalized linear model

19207 Generalized Extreme Value Regression with Binary Dependent Variable: An Application for Predicting Meteorological Drought Probabilities

Authors: Retius Chifurira

Abstract:

Logistic regression model is the most used regression model to predict meteorological drought probabilities. When the dependent variable is extreme, the logistic model fails to adequately capture drought probabilities. In order to adequately predict drought probabilities, we use the generalized linear model (GLM) with the quantile function of the generalized extreme value distribution (GEVD) as the link function. The method maximum likelihood estimation is used to estimate the parameters of the generalized extreme value (GEV) regression model. We compare the performance of the logistic and the GEV regression models in predicting drought probabilities for Zimbabwe. The performance of the regression models are assessed using the goodness-of-fit tests, namely; relative root mean square error (RRMSE) and relative mean absolute error (RMAE). Results show that the GEV regression model performs better than the logistic model, thereby providing a good alternative candidate for predicting drought probabilities. This paper provides the first application of GLM derived from extreme value theory to predict drought probabilities for a drought-prone country such as Zimbabwe.

Keywords: generalized extreme value distribution, general linear model, mean annual rainfall, meteorological drought probabilities

Procedia PDF Downloads 200
19206 Application of a Generalized Additive Model to Reveal the Relations between the Density of Zooplankton with Other Variables in the West Daya Bay, China

Authors: Weiwen Li, Hao Huang, Chengmao You, Jianji Liao, Lei Wang, Lina An

Abstract:

Zooplankton are a central issue in the ecology which makes a great contribution to maintaining the balance of an ecosystem. It is critical in promoting the material cycle and energy flow within the ecosystems. A generalized additive model (GAM) was applied to analyze the relationships between the density (individuals per m³) of zooplankton and other variables in West Daya Bay. All data used in this analysis (the survey month, survey station (longitude and latitude), the depth of the water column, the superficial concentration of chlorophyll a, the benthonic concentration of chlorophyll a, the number of zooplankton species and the number of zooplankton species) were collected through monthly scientific surveys during January to December 2016. GLM model (generalized linear model) was used to choose the significant variables’ impact on the density of zooplankton, and the GAM was employed to analyze the relationship between the density of zooplankton and the significant variables. The results showed that the density of zooplankton increased with an increase of the benthonic concentration of chlorophyll a, but decreased with a decrease in the depth of the water column. Both high numbers of zooplankton species and the overall total number of zooplankton individuals led to a higher density of zooplankton.

Keywords: density, generalized linear model, generalized additive model, the West Daya Bay, zooplankton

Procedia PDF Downloads 152
19205 Analysis of Risk Factors Affecting the Motor Insurance Pricing with Generalized Linear Models

Authors: Puttharapong Sakulwaropas, Uraiwan Jaroengeratikun

Abstract:

Casualty insurance business, the optimal premium pricing and adequate cost for an insurance company are important in risk management. Normally, the insurance pure premium can be determined by multiplying the claim frequency with the claim cost. The aim of this research was to study in the application of generalized linear models to select the risk factor for model of claim frequency and claim cost for estimating a pure premium. In this study, the data set was the claim of comprehensive motor insurance, which was provided by one of the insurance company in Thailand. The results of this study found that the risk factors significantly related to pure premium at the 0.05 level consisted of no claim bonus (NCB) and used of the car (Car code).

Keywords: generalized linear models, risk factor, pure premium, regression model

Procedia PDF Downloads 466
19204 Risk Factors for Defective Autoparts Products Using Bayesian Method in Poisson Generalized Linear Mixed Model

Authors: Pitsanu Tongkhow, Pichet Jiraprasertwong

Abstract:

This research investigates risk factors for defective products in autoparts factories. Under a Bayesian framework, a generalized linear mixed model (GLMM) in which the dependent variable, the number of defective products, has a Poisson distribution is adopted. Its performance is compared with the Poisson GLM under a Bayesian framework. The factors considered are production process, machines, and workers. The products coded RT50 are observed. The study found that the Poisson GLMM is more appropriate than the Poisson GLM. For the production Process factor, the highest risk of producing defective products is Process 1, for the Machine factor, the highest risk is Machine 5, and for the Worker factor, the highest risk is Worker 6.

Keywords: defective autoparts products, Bayesian framework, generalized linear mixed model (GLMM), risk factors

Procedia PDF Downloads 570
19203 Generalized Additive Model for Estimating Propensity Score

Authors: Tahmidul Islam

Abstract:

Propensity Score Matching (PSM) technique has been widely used for estimating causal effect of treatment in observational studies. One major step of implementing PSM is estimating the propensity score (PS). Logistic regression model with additive linear terms of covariates is most used technique in many studies. Logistics regression model is also used with cubic splines for retaining flexibility in the model. However, choosing the functional form of the logistic regression model has been a question since the effectiveness of PSM depends on how accurately the PS been estimated. In many situations, the linearity assumption of linear logistic regression may not hold and non-linear relation between the logit and the covariates may be appropriate. One can estimate PS using machine learning techniques such as random forest, neural network etc for more accuracy in non-linear situation. In this study, an attempt has been made to compare the efficacy of Generalized Additive Model (GAM) in various linear and non-linear settings and compare its performance with usual logistic regression. GAM is a non-parametric technique where functional form of the covariates can be unspecified and a flexible regression model can be fitted. In this study various simple and complex models have been considered for treatment under several situations (small/large sample, low/high number of treatment units) and examined which method leads to more covariate balance in the matched dataset. It is found that logistic regression model is impressively robust against inclusion quadratic and interaction terms and reduces mean difference in treatment and control set equally efficiently as GAM does. GAM provided no significantly better covariate balance than logistic regression in both simple and complex models. The analysis also suggests that larger proportion of controls than treatment units leads to better balance for both of the methods.

Keywords: accuracy, covariate balances, generalized additive model, logistic regression, non-linearity, propensity score matching

Procedia PDF Downloads 368
19202 A New Approach for Generalized First Derivative of Nonsmooth Functions Using Optimization

Authors: Mohammad Mehdi Mazarei, Ali Asghar Behroozpoor

Abstract:

In this paper, we define an optimization problem corresponding to smooth and nonsmooth functions which its optimal solution is the first derivative of these functions in a domain. For this purpose, a linear programming problem corresponding to optimization problem is obtained. The optimal solution of this linear programming problem is the approximate generalized first derivative. In fact, we approximate generalized first derivative of nonsmooth functions as tailor series. We show the efficiency of our approach by some smooth and nonsmooth functions in some examples.

Keywords: general derivative, linear programming, optimization problem, smooth and nonsmooth functions

Procedia PDF Downloads 557
19201 Convergence of Generalized Jacobi, Gauss-Seidel and Successive Overrelaxation Methods for Various Classes of Matrices

Authors: Manideepa Saha, Jahnavi Chakrabarty

Abstract:

Generalized Jacobi (GJ) and Generalized Gauss-Seidel (GGS) methods are most effective than conventional Jacobi and Gauss-Seidel methods for solving linear system of equations. It is known that GJ and GGS methods converge for strictly diagonally dominant (SDD) and for M-matrices. In this paper, we study the convergence of GJ and GGS converge for symmetric positive definite (SPD) matrices, L-matrices and H-matrices. We introduce a generalization of successive overrelaxation (SOR) method for solving linear systems and discuss its convergence for the classes of SDD matrices, SPD matrices, M-matrices, L-matrices and for H-matrices. Advantages of generalized SOR method are established through numerical experiments over GJ, GGS, and SOR methods.

Keywords: convergence, Gauss-Seidel, iterative method, Jacobi, SOR

Procedia PDF Downloads 189
19200 Weyl Type Theorem and the Fuglede Property

Authors: M. H. M. Rashid

Abstract:

Given H a Hilbert space and B(H) the algebra of bounded linear operator in H, let δAB denote the generalized derivation defined by A and B. The main objective of this article is to study Weyl type theorems for generalized derivation for (A,B) satisfying a couple of Fuglede.

Keywords: Fuglede Property, Weyl’s theorem, generalized derivation, Aluthge transform

Procedia PDF Downloads 128
19199 Generalized Central Paths for Convex Programming

Authors: Li-Zhi Liao

Abstract:

The central path has played the key role in the interior point method. However, the convergence of the central path may not be true even in some convex programming problems with linear constraints. In this paper, the generalized central paths are introduced for convex programming. One advantage of the generalized central paths is that the paths will always converge to some optimal solutions of the convex programming problem for any initial interior point. Some additional theoretical properties for the generalized central paths will be also reported.

Keywords: central path, convex programming, generalized central path, interior point method

Procedia PDF Downloads 327
19198 An Application of Sinc Function to Approximate Quadrature Integrals in Generalized Linear Mixed Models

Authors: Altaf H. Khan, Frank Stenger, Mohammed A. Hussein, Reaz A. Chaudhuri, Sameera Asif

Abstract:

This paper discusses a novel approach to approximate quadrature integrals that arise in the estimation of likelihood parameters for the generalized linear mixed models (GLMM) as well as Bayesian methodology also requires computation of multidimensional integrals with respect to the posterior distributions in which computation are not only tedious and cumbersome rather in some situations impossible to find solutions because of singularities, irregular domains, etc. An attempt has been made in this work to apply Sinc function based quadrature rules to approximate intractable integrals, as there are several advantages of using Sinc based methods, for example: order of convergence is exponential, works very well in the neighborhood of singularities, in general quite stable and provide high accurate and double precisions estimates. The Sinc function based approach seems to be utilized first time in statistical domain to our knowledge, and it's viability and future scopes have been discussed to apply in the estimation of parameters for GLMM models as well as some other statistical areas.

Keywords: generalized linear mixed model, likelihood parameters, qudarature, Sinc function

Procedia PDF Downloads 395
19197 On Fourier Type Integral Transform for a Class of Generalized Quotients

Authors: A. S. Issa, S. K. Q. AL-Omari

Abstract:

In this paper, we investigate certain spaces of generalized functions for the Fourier and Fourier type integral transforms. We discuss convolution theorems and establish certain spaces of distributions for the considered integrals. The new Fourier type integral is well-defined, linear, one-to-one and continuous with respect to certain types of convergences. Many properties and an inverse problem are also discussed in some details.

Keywords: Boehmian, Fourier integral, Fourier type integral, generalized quotient

Procedia PDF Downloads 365
19196 Forecasting Electricity Spot Price with Generalized Long Memory Modeling: Wavelet and Neural Network

Authors: Souhir Ben Amor, Heni Boubaker, Lotfi Belkacem

Abstract:

This aims of this paper is to forecast the electricity spot prices. First, we focus on modeling the conditional mean of the series so we adopt a generalized fractional -factor Gegenbauer process (k-factor GARMA). Secondly, the residual from the -factor GARMA model has used as a proxy for the conditional variance; these residuals were predicted using two different approaches. In the first approach, a local linear wavelet neural network model (LLWNN) has developed to predict the conditional variance using the Back Propagation learning algorithms. In the second approach, the Gegenbauer generalized autoregressive conditional heteroscedasticity process (G-GARCH) has adopted, and the parameters of the k-factor GARMA-G-GARCH model has estimated using the wavelet methodology based on the discrete wavelet packet transform (DWPT) approach. The empirical results have shown that the k-factor GARMA-G-GARCH model outperform the hybrid k-factor GARMA-LLWNN model, and find it is more appropriate for forecasts.

Keywords: electricity price, k-factor GARMA, LLWNN, G-GARCH, forecasting

Procedia PDF Downloads 231
19195 Reliability Prediction of Tires Using Linear Mixed-Effects Model

Authors: Myung Hwan Na, Ho- Chun Song, EunHee Hong

Abstract:

We widely use normal linear mixed-effects model to analysis data in repeated measurement. In case of detecting heteroscedasticity and the non-normality of the population distribution at the same time, normal linear mixed-effects model can give improper result of analysis. To achieve more robust estimation, we use heavy tailed linear mixed-effects model which gives more exact and reliable analysis conclusion than standard normal linear mixed-effects model.

Keywords: reliability, tires, field data, linear mixed-effects model

Procedia PDF Downloads 564
19194 Extension of Positive Linear Operator

Authors: Manal Azzidani

Abstract:

This research consideres the extension of special functions called Positive Linear Operators. the bounded linear operator which defined from normed space to Banach space will extend to the closure of the its domain, And extend identified linear functional on a vector subspace by Hana-Banach theorem which could be generalized to the positive linear operators.

Keywords: extension, positive operator, Riesz space, sublinear function

Procedia PDF Downloads 517
19193 Statistical Analysis of the Impact of Maritime Transport Gross Domestic Product (GDP) on Nigeria’s Economy

Authors: Kehinde Peter Oyeduntan, Kayode Oshinubi

Abstract:

Nigeria is referred as the ‘Giant of Africa’ due to high population, land mass and large economy. However, it still trails far behind many smaller economies in the continent in terms of maritime operations. As we have seen that the maritime industry is the spark plug for national growth, because it houses the most crucial infrastructure that generates wealth for a nation, it is worrisome that a nation with six seaports lag in maritime activities. In this research, we have studied how the Gross Domestic Product (GDP) of the maritime transport influences the Nigerian economy. To do this, we applied Simple Linear Regression (SLR), Support Vector Machine (SVM), Polynomial Regression Model (PRM), Generalized Additive Model (GAM) and Generalized Linear Mixed Model (GLMM) to model the relationship between the nation’s Total GDP (TGDP) and the Maritime Transport GDP (MGDP) using a time series data of 20 years. The result showed that the MGDP is statistically significant to the Nigerian economy. Amongst the statistical tool applied, the PRM of order 4 describes the relationship better when compared to other methods. The recommendations presented in this study will guide policy makers and help improve the economy of Nigeria in terms of its GDP.

Keywords: maritime transport, economy, GDP, regression, port

Procedia PDF Downloads 154
19192 A Generalized Model for Performance Analysis of Airborne Radar in Clutter Scenario

Authors: Vinod Kumar Jaysaval, Prateek Agarwal

Abstract:

Performance prediction of airborne radar is a challenging and cumbersome task in clutter scenario for different types of targets. A generalized model requires to predict the performance of Radar for air targets as well as ground moving targets. In this paper, we propose a generalized model to bring out the performance of airborne radar for different Pulsed Repetition Frequency (PRF) as well as different type of targets. The model provides a platform to bring out different subsystem parameters for different applications and performance requirements under different types of clutter terrain.

Keywords: airborne radar, blind zone, clutter, probability of detection

Procedia PDF Downloads 470
19191 Detecting Earnings Management via Statistical and Neural Networks Techniques

Authors: Mohammad Namazi, Mohammad Sadeghzadeh Maharluie

Abstract:

Predicting earnings management is vital for the capital market participants, financial analysts and managers. The aim of this research is attempting to respond to this query: Is there a significant difference between the regression model and neural networks’ models in predicting earnings management, and which one leads to a superior prediction of it? In approaching this question, a Linear Regression (LR) model was compared with two neural networks including Multi-Layer Perceptron (MLP), and Generalized Regression Neural Network (GRNN). The population of this study includes 94 listed companies in Tehran Stock Exchange (TSE) market from 2003 to 2011. After the results of all models were acquired, ANOVA was exerted to test the hypotheses. In general, the summary of statistical results showed that the precision of GRNN did not exhibit a significant difference in comparison with MLP. In addition, the mean square error of the MLP and GRNN showed a significant difference with the multi variable LR model. These findings support the notion of nonlinear behavior of the earnings management. Therefore, it is more appropriate for capital market participants to analyze earnings management based upon neural networks techniques, and not to adopt linear regression models.

Keywords: earnings management, generalized linear regression, neural networks multi-layer perceptron, Tehran stock exchange

Procedia PDF Downloads 422
19190 Generalized Correlation Coefficient in Genome-Wide Association Analysis of Cognitive Ability in Twins

Authors: Afsaneh Mohammadnejad, Marianne Nygaard, Jan Baumbach, Shuxia Li, Weilong Li, Jesper Lund, Jacob v. B. Hjelmborg, Lene Christensen, Qihua Tan

Abstract:

Cognitive impairment in the elderly is a key issue affecting the quality of life. Despite a strong genetic background in cognition, only a limited number of single nucleotide polymorphisms (SNPs) have been found. These explain a small proportion of the genetic component of cognitive function, thus leaving a large proportion unaccounted for. We hypothesize that one reason for this missing heritability is the misspecified modeling in data analysis concerning phenotype distribution as well as the relationship between SNP dosage and the phenotype of interest. In an attempt to overcome these issues, we introduced a model-free method based on the generalized correlation coefficient (GCC) in a genome-wide association study (GWAS) of cognitive function in twin samples and compared its performance with two popular linear regression models. The GCC-based GWAS identified two genome-wide significant (P-value < 5e-8) SNPs; rs2904650 near ZDHHC2 on chromosome 8 and rs111256489 near CD6 on chromosome 11. The kinship model also detected two genome-wide significant SNPs, rs112169253 on chromosome 4 and rs17417920 on chromosome 7, whereas no genome-wide significant SNPs were found by the linear mixed model (LME). Compared to the linear models, more meaningful biological pathways like GABA receptor activation, ion channel transport, neuroactive ligand-receptor interaction, and the renin-angiotensin system were found to be enriched by SNPs from GCC. The GCC model outperformed the linear regression models by identifying more genome-wide significant genetic variants and more meaningful biological pathways related to cognitive function. Moreover, GCC-based GWAS was robust in handling genetically related twin samples, which is an important feature in handling genetic confounding in association studies.

Keywords: cognition, generalized correlation coefficient, GWAS, twins

Procedia PDF Downloads 124
19189 Evaluating Traffic Congestion Using the Bayesian Dirichlet Process Mixture of Generalized Linear Models

Authors: Ren Moses, Emmanuel Kidando, Eren Ozguven, Yassir Abdelrazig

Abstract:

This study applied traffic speed and occupancy to develop clustering models that identify different traffic conditions. Particularly, these models are based on the Dirichlet Process Mixture of Generalized Linear regression (DML) and change-point regression (CR). The model frameworks were implemented using 2015 historical traffic data aggregated at a 15-minute interval from an Interstate 295 freeway in Jacksonville, Florida. Using the deviance information criterion (DIC) to identify the appropriate number of mixture components, three traffic states were identified as free-flow, transitional, and congested condition. Results of the DML revealed that traffic occupancy is statistically significant in influencing the reduction of traffic speed in each of the identified states. Influence on the free-flow and the congested state was estimated to be higher than the transitional flow condition in both evening and morning peak periods. Estimation of the critical speed threshold using CR revealed that 47 mph and 48 mph are speed thresholds for congested and transitional traffic condition during the morning peak hours and evening peak hours, respectively. Free-flow speed thresholds for morning and evening peak hours were estimated at 64 mph and 66 mph, respectively. The proposed approaches will facilitate accurate detection and prediction of traffic congestion for developing effective countermeasures.

Keywords: traffic congestion, multistate speed distribution, traffic occupancy, Dirichlet process mixtures of generalized linear model, Bayesian change-point detection

Procedia PDF Downloads 294
19188 On the Fractional Integration of Generalized Mittag-Leffler Type Functions

Authors: Christian Lavault

Abstract:

In this paper, the generalized fractional integral operators of two generalized Mittag-Leffler type functions are investigated. The special cases of interest involve the generalized M-series and K-function, both introduced by Sharma. The two pairs of theorems established herein generalize recent results about left- and right-sided generalized fractional integration operators applied here to the M-series and the K-function. The note also results in important applications in physics and mathematical engineering.

Keywords: Fox–Wright Psi function, generalized hypergeometric function, generalized Riemann– Liouville and Erdélyi–Kober fractional integral operators, Saigo's generalized fractional calculus, Sharma's M-series and K-function

Procedia PDF Downloads 440
19187 Parameter Estimation via Metamodeling

Authors: Sergio Haram Sarmiento, Arcady Ponosov

Abstract:

Based on appropriate multivariate statistical methodology, we suggest a generic framework for efficient parameter estimation for ordinary differential equations and the corresponding nonlinear models. In this framework classical linear regression strategies is refined into a nonlinear regression by a locally linear modelling technique (known as metamodelling). The approach identifies those latent variables of the given model that accumulate most information about it among all approximations of the same dimension. The method is applied to several benchmark problems, in particular, to the so-called ”power-law systems”, being non-linear differential equations typically used in Biochemical System Theory.

Keywords: principal component analysis, generalized law of mass action, parameter estimation, metamodels

Procedia PDF Downloads 517
19186 Stochastic Matrices and Lp Norms for Ill-Conditioned Linear Systems

Authors: Riadh Zorgati, Thomas Triboulet

Abstract:

In quite diverse application areas such as astronomy, medical imaging, geophysics or nondestructive evaluation, many problems related to calibration, fitting or estimation of a large number of input parameters of a model from a small amount of output noisy data, can be cast as inverse problems. Due to noisy data corruption, insufficient data and model errors, most inverse problems are ill-posed in a Hadamard sense, i.e. existence, uniqueness and stability of the solution are not guaranteed. A wide class of inverse problems in physics relates to the Fredholm equation of the first kind. The ill-posedness of such inverse problem results, after discretization, in a very ill-conditioned linear system of equations, the condition number of the associated matrix can typically range from 109 to 1018. This condition number plays the role of an amplifier of uncertainties on data during inversion and then, renders the inverse problem difficult to handle numerically. Similar problems appear in other areas such as numerical optimization when using interior points algorithms for solving linear programs leads to face ill-conditioned systems of linear equations. Devising efficient solution approaches for such system of equations is therefore of great practical interest. Efficient iterative algorithms are proposed for solving a system of linear equations. The approach is based on a preconditioning of the initial matrix of the system with an approximation of a generalized inverse leading to a stochastic preconditioned matrix. This approach, valid for non-negative matrices, is first extended to hermitian, semi-definite positive matrices and then generalized to any complex rectangular matrices. The main results obtained are as follows: 1) We are able to build a generalized inverse of any complex rectangular matrix which satisfies the convergence condition requested in iterative algorithms for solving a system of linear equations. This completes the (short) list of generalized inverse having this property, after Kaczmarz and Cimmino matrices. Theoretical results on both the characterization of the type of generalized inverse obtained and the convergence are derived. 2) Thanks to its properties, this matrix can be efficiently used in different solving schemes as Richardson-Tanabe or preconditioned conjugate gradients. 3) By using Lp norms, we propose generalized Kaczmarz’s type matrices. We also show how Cimmino's matrix can be considered as a particular case consisting in choosing the Euclidian norm in an asymmetrical structure. 4) Regarding numerical results obtained on some pathological well-known test-cases (Hilbert, Nakasaka, …), some of the proposed algorithms are empirically shown to be more efficient on ill-conditioned problems and more robust to error propagation than the known classical techniques we have tested (Gauss, Moore-Penrose inverse, minimum residue, conjugate gradients, Kaczmarz, Cimmino). We end on a very early prospective application of our approach based on stochastic matrices aiming at computing some parameters (such as the extreme values, the mean, the variance, …) of the solution of a linear system prior to its resolution. Such an approach, if it were to be efficient, would be a source of information on the solution of a system of linear equations.

Keywords: conditioning, generalized inverse, linear system, norms, stochastic matrix

Procedia PDF Downloads 136
19185 Point Estimation for the Type II Generalized Logistic Distribution Based on Progressively Censored Data

Authors: Rana Rimawi, Ayman Baklizi

Abstract:

Skewed distributions are important models that are frequently used in applications. Generalized distributions form a class of skewed distributions and gain widespread use in applications because of their flexibility in data analysis. More specifically, the Generalized Logistic Distribution with its different types has received considerable attention recently. In this study, based on progressively type-II censored data, we will consider point estimation in type II Generalized Logistic Distribution (Type II GLD). We will develop several estimators for its unknown parameters, including maximum likelihood estimators (MLE), Bayes estimators and linear estimators (BLUE). The estimators will be compared using simulation based on the criteria of bias and Mean square error (MSE). An illustrative example of a real data set will be given.

Keywords: point estimation, type II generalized logistic distribution, progressive censoring, maximum likelihood estimation

Procedia PDF Downloads 198
19184 Investigation on Machine Tools Energy Consumptions

Authors: Shiva Abdoli, Daniel T.Semere

Abstract:

Several researches have been conducted to study consumption of energy in cutting process. Most of these researches are focusing to measure the consumption and propose consumption reduction methods. In this work, the relation between the cutting parameters and the consumption is investigated in order to establish a generalized energy consumption model that can be used for process and production planning in real production lines. Using the generalized model, the process planning will be carried out by taking into account the energy as a function of the selected process parameters. Similarly, the generalized model can be used in production planning to select the right operational parameters like batch sizes, routing, buffer size, etc. in a production line. The description and derivation of the model as well as a case study are given in this paper to illustrate the applicability and validity of the model.

Keywords: process parameters, cutting process, energy efficiency, Material Removal Rate (MRR)

Procedia PDF Downloads 499
19183 Adomian’s Decomposition Method to Generalized Magneto-Thermoelasticity

Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi

Abstract:

Due to many applications and problems in the fields of plasma physics, geophysics, and other many topics, the interaction between the strain field and the magnetic field has to be considered. Adomian introduced the decomposition method for solving linear and nonlinear functional equations. This method leads to accurate, computable, approximately convergent solutions of linear and nonlinear partial and ordinary differential equations even the equations with variable coefficients. This paper is dealing with a mathematical model of generalized thermoelasticity of a half-space conducting medium. A magnetic field with constant intensity acts normal to the bounding plane has been assumed. Adomian’s decomposition method has been used to solve the model when the bounding plane is taken to be traction free and thermally loaded by harmonic heating. The numerical results for the temperature increment, the stress, the strain, the displacement, the induced magnetic, and the electric fields have been represented in figures. The magnetic field, the relaxation time, and the angular thermal load have significant effects on all the studied fields.

Keywords: Adomian’s decomposition method, magneto-thermoelasticity, finite conductivity, iteration method, thermal load

Procedia PDF Downloads 150
19182 Generalized Chaplygin Gas and Varying Bulk Viscosity in Lyra Geometry

Authors: A. K. Sethi, R. N. Patra, B. Nayak

Abstract:

In this paper, we have considered Friedmann-Robertson-Walker (FRW) metric with generalized Chaplygin gas which has viscosity in the context of Lyra geometry. The viscosity is considered in two different ways (i.e. zero viscosity, non-constant r (rho)-dependent bulk viscosity) using constant deceleration parameter which concluded that, for a special case, the viscous generalized Chaplygin gas reduces to modified Chaplygin gas. The represented model indicates on the presence of Chaplygin gas in the Universe. Observational constraints are applied and discussed on the physical and geometrical nature of the Universe.

Keywords: bulk viscosity, lyra geometry, generalized chaplygin gas, cosmology

Procedia PDF Downloads 176
19181 Supervised-Component-Based Generalised Linear Regression with Multiple Explanatory Blocks: THEME-SCGLR

Authors: Bry X., Trottier C., Mortier F., Cornu G., Verron T.

Abstract:

We address component-based regularization of a Multivariate Generalized Linear Model (MGLM). A set of random responses Y is assumed to depend, through a GLM, on a set X of explanatory variables, as well as on a set T of additional covariates. X is partitioned into R conceptually homogeneous blocks X1, ... , XR , viewed as explanatory themes. Variables in each Xr are assumed many and redundant. Thus, Generalised Linear Regression (GLR) demands regularization with respect to each Xr. By contrast, variables in T are assumed selected so as to demand no regularization. Regularization is performed searching each Xr for an appropriate number of orthogonal components that both contribute to model Y and capture relevant structural information in Xr. We propose a very general criterion to measure structural relevance (SR) of a component in a block, and show how to take SR into account within a Fisher-scoring-type algorithm in order to estimate the model. We show how to deal with mixed-type explanatory variables. The method, named THEME-SCGLR, is tested on simulated data.

Keywords: Component-Model, Fisher Scoring Algorithm, GLM, PLS Regression, SCGLR, SEER, THEME

Procedia PDF Downloads 396
19180 Pressure Distribution, Load Capacity, and Thermal Effect with Generalized Maxwell Model in Journal Bearing Lubrication

Authors: M. Guemmadi, A. Ouibrahim

Abstract:

This numerical investigation aims to evaluate how a viscoelastic lubricant described by a generalized Maxwell model, affects the pressure distribution, the load capacity and thermal effect in a journal bearing lubrication. We use for the purpose the CFD package software completed by adapted user define functions (UDFs) to solve the coupled equations of momentum, of energy and of the viscoelastic model (generalized Maxwell model). Two parameters, viscosity and relaxation time are involved to show how viscoelasticity substantially affect the pressure distribution, the load capacity and the thermal transfer by comparison to Newtonian lubricant. These results were also compared with the available published results.

Keywords: journal bearing, lubrication, Maxwell model, viscoelastic fluids, computational modelling, load capacity

Procedia PDF Downloads 542
19179 A General Approach to Define Adjoint of Linear and Non-linear Operators

Authors: Mehdi Jafari Matehkolaee

Abstract:

In this paper, we have obtained the adjoint of an arbitrary operator (linear and nonlinear) in Hilbert space by introducing an n-dimensional Riemannian manifold. This general formalism covers every linear operator (non – differential) in Hilbert space. In fact, our approach shows that instead of using the adjoint definition of an operator directly, it can be obtained directly by relying on a suitable generalized space according to the action of the operator in question. For the case of nonlinear operators, we have to change the definition of the linear operator adjoint. But here, we have obtained an adjoint of these operators with respect to the definition of the derivative of the operator. As a matter of fact, we have shown one of the straight applications of the ''Frechet derivative'' in the algebra of the operators.

Keywords: adjoint operator, non-linear operator, differentiable operator, manifold

Procedia PDF Downloads 119
19178 A Survey on Quasi-Likelihood Estimation Approaches for Longitudinal Set-ups

Authors: Naushad Mamode Khan

Abstract:

The Com-Poisson (CMP) model is one of the most popular discrete generalized linear models (GLMS) that handles both equi-, over- and under-dispersed data. In longitudinal context, an integer-valued autoregressive (INAR(1)) process that incorporates covariate specification has been developed to model longitudinal CMP counts. However, the joint likelihood CMP function is difficult to specify and thus restricts the likelihood based estimating methodology. The joint generalized quasilikelihood approach (GQL-I) was instead considered but is rather computationally intensive and may not even estimate the regression effects due to a complex and frequently ill conditioned covariance structure. This paper proposes a new GQL approach for estimating the regression parameters (GQLIII) that are based on a single score vector representation. The performance of GQL-III is compared with GQL-I and separate marginal GQLs (GQL-II) through some simulation experiments and is proved to yield equally efficient estimates as GQL-I and is far more computationally stable.

Keywords: longitudinal, com-Poisson, ill-conditioned, INAR(1), GLMS, GQL

Procedia PDF Downloads 355