Search results for: fire testing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3408

Search results for: fire testing

3228 Effect of Packing Ratio on Fire Spread across Discrete Fuel Beds: An Experimental Analysis

Authors: Qianqian He, Naian Liu, Xiaodong Xie, Linhe Zhang, Yang Zhang, Weidong Yan

Abstract:

In the wild, the vegetation layer with exceptionally complex fuel composition and heterogeneous spatial distribution strongly affects the rate of fire spread (ROS) and fire intensity. Clarifying the influence of fuel bed structure on fire spread behavior is of great significance to wildland fire management and prediction. The packing ratio is one of the key physical parameters describing the property of the fuel bed. There is a threshold value of the packing ratio for ROS, but little is known about the controlling mechanism. In this study, to address this deficiency, a series of fire spread experiments were performed across a discrete fuel bed composed of some regularly arranged laser-cut cardboards, with constant wind speed and different packing ratios (0.0125-0.0375). The experiment aims to explore the relative importance of the internal and surface heat transfer with packing ratio. The dependence of the measured ROS on the packing ratio was almost consistent with the previous researches. The data of the radiative and total heat fluxes show that the internal heat transfer and surface heat transfer are both enhanced with increasing packing ratio (referred to as ‘Stage 1’). The trend agrees well with the variation of the flame length. The results extracted from the video show that the flame length markedly increases with increasing packing ratio in Stage 1. Combustion intensity is suggested to be increased, which, in turn, enhances the heat radiation. The heat flux data shows that the surface heat transfer appears to be more important than the internal heat transfer (fuel preheating inside the fuel bed) in Stage 1. On the contrary, the internal heat transfer dominates the fuel preheating mechanism when the packing ratio further increases (referred to as ‘Stage 2’) because the surface heat flux keeps almost stable with the packing ratio in Stage 2. As for the heat convection, the flow velocity was measured using Pitot tubes both inside and on the upper surface of the fuel bed during the fire spread. Based on the gas velocity distribution ahead of the flame front, it is found that the airflow inside the fuel bed is restricted in Stage 2, which can reduce the internal heat convection in theory. However, the analysis indicates not the influence of inside flow on convection and combustion, but the decreased internal radiation of per unit fuel is responsible for the decrease of ROS.

Keywords: discrete fuel bed, fire spread, packing ratio, wildfire

Procedia PDF Downloads 107
3227 A Systematic Map of the Research Trends in Wildfire Management in Mediterranean-Climate Regions

Authors: Renata Martins Pacheco, João Claro

Abstract:

Wildfires are becoming an increasing concern worldwide, causing substantial social, economic, and environmental disruptions. This situation is especially relevant in Mediterranean-climate regions, present in all the five continents of the world, in which fire is not only a natural component of the environment but also perhaps one of the most important evolutionary forces. The rise in wildfire occurrences and their associated impacts suggests the need for identifying knowledge gaps and enhancing the basis of scientific evidence on how managers and policymakers may act effectively to address them. Considering that the main goal of a systematic map is to collate and catalog a body of evidence to describe the state of knowledge for a specific topic, it is a suitable approach to be used for this purpose. In this context, the aim of this study is to systematically map the research trends in wildfire management practices in Mediterranean-climate regions. A total of 201 wildfire management studies were analyzed and systematically mapped in terms of their: Year of publication; Place of study; Scientific outlet; Research area (Web of Science) or Research field (Scopus); Wildfire phase; Central research topic; Main objective of the study; Research methods; and Main conclusions or contributions. The results indicate that there is an increasing number of studies being developed on the topic (most from the last 10 years), but more than half of them are conducted in few Mediterranean countries (60% of the analyzed studies were conducted in Spain, Portugal, Greece, Italy or France), and more than 50% are focused on pre-fire issues, such as prevention and fuel management. In contrast, only 12% of the studies focused on “Economic modeling” or “Human factors and issues,” which suggests that the triple bottom line of the sustainability argument (social, environmental, and economic) is not being fully addressed by fire management research. More than one-fourth of the studies had their objective related to testing new approaches in fire or forest management, suggesting that new knowledge is being produced on the field. Nevertheless, the results indicate that most studies (about 84%) employed quantitative research methods, and only 3% of the studies used research methods that tackled social issues or addressed expert and practitioner’s knowledge. Perhaps this lack of multidisciplinary studies is one of the factors hindering more progress from being made in terms of reducing wildfire occurrences and their impacts.

Keywords: wildfire, Mediterranean-climate regions, management, policy

Procedia PDF Downloads 95
3226 Numerical Simulation and Analysis of Axially Restrained Steel Cellular Beams in Fire

Authors: Asal Pournaghshband

Abstract:

This paper presents the development of a finite element model to study the large deflection behavior of restrained stainless steel cellular beams at elevated temperature. Cellular beams are widely used for efficient utilization of raw materials to facilitate long spans with faster construction resulting sustainable design solution that can enhance the performance and merit of any construction project. However, their load carrying capacity is less than the equivalent beams without opening due to developing shear-moment interaction at the openings. In structural frames due to elements continuity, such beams are restrained by their adjoining members which has a substantial effect on beams behavior in fire. Stainless steel has also become integral part of the build environment due to its excellent corrosion resistance, whole life-cycle costs, and sustainability. This paper reports the numerical investigations into the effect of structural continuity on the thermo-mechanical performance of restrained steel beams with circle and elongated circle shapes of web opening in fire. The numerical model is firstly validated using existing numerical results from the literature, and then employed to perform a parametric study. The structural continuity is evaluated through the application of different levels of axial restraints on the response of carbon steel and stainless steel cellular beam in fire. The transit temperature for stainless steel cellular beam is shown to be less affected by the level of axial stiffness than the equivalent carbon steel cellular beam. Overall, it was established that whereas stainless steel cellular beams show similar stages of behavior of carbon steel cellular beams in fire, they are capable of withstanding higher temperatures prior to the onset of catenary action in large deflection, despite the higher thermal expansion of stainless steel material.

Keywords: axial restraint, catenary action, cellular beam, fire, numerical modeling, stainless steel, transit temperature

Procedia PDF Downloads 32
3225 An Overview of the SIAFIM Connected Resources

Authors: Tiberiu Boros, Angela Ionita, Maria Visan

Abstract:

Wildfires are one of the frequent and uncontrollable phenomena that currently affect large areas of the world where the climate, geographic and social conditions make it impossible to prevent and control such events. In this paper we introduce the ground concepts that lie behind the SIAFIM (Satellite Image Analysis for Fire Monitoring) project in order to create a context and we introduce a set of newly created tools that are external to the project but inherently in interventions and complex decision making based on geospatial information and spatial data infrastructures.

Keywords: wildfire, forest fire, natural language processing, mobile applications, communication, GPS

Procedia PDF Downloads 552
3224 The Effect of Program Type on Mutation Testing: Comparative Study

Authors: B. Falah, N. E. Abakouy

Abstract:

Due to its high computational cost, mutation testing has been neglected by researchers. Recently, many cost and mutants’ reduction techniques have been developed, improved, and experimented, but few of them has relied the possibility of reducing the cost of mutation testing on the program type of the application under test. This paper is a comparative study between four operators’ selection techniques (mutants sampling, class level operators, method level operators, and all operators’ selection) based on the program code type of each application under test. It aims at finding an alternative approach to reveal the effect of code type on mutation testing score. The result of our experiment shows that the program code type can affect the mutation score and that the programs using polymorphism are best suited to be tested with mutation testing.

Keywords: equivalent mutant, killed mutant, mutation score, mutation testing, program code type, software testing

Procedia PDF Downloads 525
3223 Machine Learning Approach for Mutation Testing

Authors: Michael Stewart

Abstract:

Mutation testing is a type of software testing proposed in the 1970s where program statements are deliberately changed to introduce simple errors so that test cases can be validated to determine if they can detect the errors. Test cases are executed against the mutant code to determine if one fails, detects the error and ensures the program is correct. One major issue with this type of testing was it became intensive computationally to generate and test all possible mutations for complex programs. This paper used reinforcement learning and parallel processing within the context of mutation testing for the selection of mutation operators and test cases that reduced the computational cost of testing and improved test suite effectiveness. Experiments were conducted using sample programs to determine how well the reinforcement learning-based algorithm performed with one live mutation, multiple live mutations and no live mutations. The experiments, measured by mutation score, were used to update the algorithm and improved accuracy for predictions. The performance was then evaluated on multiple processor computers. With reinforcement learning, the mutation operators utilized were reduced by 50 – 100%.

Keywords: automated-testing, machine learning, mutation testing, parallel processing, reinforcement learning, software engineering, software testing

Procedia PDF Downloads 169
3222 A More Powerful Test Procedure for Multiple Hypothesis Testing

Authors: Shunpu Zhang

Abstract:

We propose a new multiple test called the minPOP test for testing multiple hypotheses simultaneously. Under the assumption that the test statistics are independent, we show that the minPOP test has higher global power than the existing multiple testing methods. We further propose a stepwise multiple-testing procedure based on the minPOP test and two of its modified versions (the Double Truncated and Left Truncated minPOP tests). We show that these multiple tests have strong control of the family-wise error rate (FWER). A method for finding the p-values of the proposed tests after adjusting for multiplicity is also developed. Simulation results show that the Double Truncated and Left Truncated minPOP tests, in general, have a higher number of rejections than the existing multiple testing procedures.

Keywords: multiple test, single-step procedure, stepwise procedure, p-value for multiple testing

Procedia PDF Downloads 31
3221 Safety Risks of Gaseous Toxic Compounds Released from Li Batteries

Authors: Jan Karl, Ondrej Suchy, Eliska Fiserova, Milan Ruzicka

Abstract:

The evolving electromobility and all the electronics also bring an increase of danger with used Li-batteries. Li-batteries have been used in many industries, and currently many types of the batteries are available. Batteries have different compositions that affect their behavior. In the field of Li-battery safety, there are some areas of little discussion, such as extinguishing of fires caused by Li-batteries as well as toxicity of gaseous compounds released from Li batteries, transport or storage. Technical Institute of Fire Protection, which is a part of Fire Brigades of the Czech Republic, is dealing with the safety of Li batteries. That is the reason why we are dealing with toxicity of gaseous compounds released under conditions of fire, mechanical damage, overcharging and other emergencies that may occur. This is necessary for protection of intervening of fire brigade units, people in the vicinity and other envirnomental consequences. In this work, different types of batteries (Li-ion, Li-Po, LTO, LFP) with different kind of damage were tested, and the toxicity and total amount of released gases were studied. These values were evaluated according to their environmental hazard. FTIR spectroscopy was used for the evaluation of toxicity. We used a FTIR gas cell for continuous measurement. The total amount of released gases was determined by collecting the total gas phase through the absorbers and then determining the toxicants absorbed into the solutions. Based on the obtained results, it is possible to determine the protective equipment necessary for the event of an emergency with a Li-battery, to define the environmental load and the immediate danger in an emergency.

Keywords: Li-battery, toxicity, gaseous toxic compounds, FTIR spectroscopy

Procedia PDF Downloads 116
3220 The Complexity of Testing Cryptographic Devices on Input Faults

Authors: Alisher Ikramov, Gayrat Juraev

Abstract:

The production of logic devices faces the occurrence of faults during manufacturing. This work analyses the complexity of testing a special type of logic device on inverse, adhesion, and constant input faults. The focus of this work is on devices that implement cryptographic functions. The complexity values for the general case faults and for some frequently occurring subsets were determined and proved in this work. For a special case, when the length of the text block is equal to the length of the key block, the complexity of testing is proven to be asymptotically half the complexity of testing all logic devices on the same types of input faults.

Keywords: complexity, cryptographic devices, input faults, testing

Procedia PDF Downloads 193
3219 Optimizing Design Parameters for Efficient Saturated Steam Production in Fire Tube Boilers: A Cost-Effective Approach

Authors: Yoftahe Nigussie Worku

Abstract:

This research focuses on advancing fire tube boiler technology by systematically optimizing design parameters to achieve efficient saturated steam production. The main objective is to design a high-performance boiler with a production capacity of 2000kg/h at a 12-bar design pressure while minimizing costs. The methodology employs iterative analysis, utilizing relevant formulas, and considers material selection and production methods. The study successfully results in a boiler operating at 85.25% efficiency, with a fuel consumption rate of 140.37kg/hr and a heat output of 1610kW. Theoretical importance lies in balancing efficiency, safety considerations, and cost minimization. The research addresses key questions on parameter optimization, material choices, and safety-efficiency balance, contributing valuable insights to fire tube boiler design.

Keywords: safety consideration, efficiency, production methods, material selection

Procedia PDF Downloads 30
3218 Gaussian Probability Density for Forest Fire Detection Using Satellite Imagery

Authors: S. Benkraouda, Z. Djelloul-Khedda, B. Yagoubi

Abstract:

we present a method for early detection of forest fires from a thermal infrared satellite image, using the image matrix of the probability of belonging. The principle of the method is to compare a theoretical mathematical model to an experimental model. We considered that each line of the image matrix, as an embodiment of a non-stationary random process. Since the distribution of pixels in the satellite image is statistically dependent, we divided these lines into small stationary and ergodic intervals to characterize the image by an adequate mathematical model. A standard deviation was chosen to generate random variables, so each interval behaves naturally like white Gaussian noise. The latter has been selected as the mathematical model that represents a set of very majority pixels, which we can be considered as the image background. Before modeling the image, we made a few pretreatments, then the parameters of the theoretical Gaussian model were extracted from the modeled image, these settings will be used to calculate the probability of each interval of the modeled image to belong to the theoretical Gaussian model. The high intensities pixels are regarded as foreign elements to it, so they will have a low probability, and the pixels that belong to the background image will have a high probability. Finally, we did present the reverse of the matrix of probabilities of these intervals for a better fire detection.

Keywords: forest fire, forest fire detection, satellite image, normal distribution, theoretical gaussian model, thermal infrared matrix image

Procedia PDF Downloads 113
3217 Examination of the South African Fire Legislative Framework

Authors: Mokgadi Julia Ngoepe-Ntsoane

Abstract:

The article aims to make a case for a legislative framework for the fire sector in South Africa. Robust legislative framework is essential for empowering those with obligatory mandate within the sector. This article contributes to the body of knowledge in the field of policy reviews particularly with regards to the legal framework. It has been observed overtime that the scholarly contributions in this field are limited. Document analysis was the methodology selected for the investigation of the various legal frameworks existing in the country. It has been established that indeed the national legislation on the fire industry does not exist in South Africa. From the documents analysed, it was revealed that the sector is dominated by cartels who are exploiting the new entrants to the market particularly SMEs. It is evident that these cartels are monopolising the system as they have long been operating in the system turning it into self- owned entities. Commitment to addressing the challenges faced by fire services and creating a framework for the evolving role that fire brigade services are expected to execute in building safer and sustainable communities is vital. Legislation for the fire sector ought to be concluded with immediate effect. The outdated national fire legislation has necessitated the monopolisation and manipulation of the system by dominating organisations which cause a painful discrimination and exploitation of smaller service providers to enter the market for trading in that occupation. The barrier to entry bears long term negative effects on national priority areas such as employment creation, poverty, and others. This monopolisation and marginalisation practices by cartels in the sector calls for urgent attention by government because if left attended, it will leave a lot of people particularly women and youth being disadvantaged and frustrated. The downcast syndrome exercised within the fire sector has wreaked havoc and is devastating. This is caused by cartels that have been within the sector for some time, who know the strengths and weaknesses of processes, shortcuts, advantages and consequences of various actions. These people take advantage of new entrants to the sector who in turn find it difficult to manoeuvre, find the market dissonant and end up giving up their good ideas and intentions. There are many pieces of legislation which are industry specific such as housing, forestry, agriculture, health, security, environmental which are used to regulate systems within the institutions involved. Other regulations exist as bi-laws for guiding the management within the municipalities.

Keywords: sustainable job creation, growth and development, transformation, risk management

Procedia PDF Downloads 149
3216 Fire Resistance of High Alumina Cement and Slag Based Ultra High Performance Fibre-Reinforced Cementitious Composites

Authors: A. Q. Sobia, M. S. Hamidah, I. Azmi, S. F. A. Rafeeqi

Abstract:

Fibre-reinforced polymer (FRP) strengthened reinforced concrete (RC) structures are susceptible to intense deterioration when exposed to elevated temperatures, particularly in the incident of fire. FRP has the tendency to lose bond with the substrate due to the low glass transition temperature of epoxy; the key component of FRP matrix.  In the past few decades, various types of high performance cementitious composites (HPCC) were explored for the protection of RC structural members against elevated temperature. However, there is an inadequate information on the influence of elevated temperature on the ultra high performance fibre-reinforced cementitious composites (UHPFRCC) containing ground granulated blast furnace slag (GGBS) as a replacement of high alumina cement (HAC) in conjunction with hybrid fibres (basalt and polypropylene fibres), which could be a prospective fire resisting material for the structural components. The influence of elevated temperatures on the compressive as well as flexural strength of UHPFRCC, made of HAC-GGBS and hybrid fibres, were examined in this study. Besides control sample (without fibres), three other samples, containing 0.5%, 1% and 1.5% of basalt fibres by total weight of mix and 1 kg/m3 of polypropylene fibres, were prepared and tested. Another mix was also prepared with only 1 kg/m3 of polypropylene fibres. Each of the samples were retained at ambient temperature as well as exposed to 400, 700 and 1000 °C followed by testing after 28 and 56 days of conventional curing. Investigation of results disclosed that the use of hybrid fibres significantly helped to improve the ambient temperature compressive and flexural strength of UHPFRCC, which was found to be 80 and 14.3 MPa respectively. However, the optimum residual compressive strength was marked by UHPFRCC-CP (with polypropylene fibres only), equally after both curing days (28 and 56 days), i.e. 41%. In addition, the utmost residual flexural strength, after 28 and 56 days of curing, was marked by UHPFRCC– CP and UHPFRCC– CB2 (1 kg/m3 of PP fibres + 1% of basalt fibres) i.e. 39% and 48.5% respectively.

Keywords: fibre reinforced polymer materials (FRP), ground granulated blast furnace slag (GGBS), high-alumina cement, hybrid, fibres

Procedia PDF Downloads 265
3215 Dynamic Process of Single Water Droplet Impacting on a Hot Heptane Surface

Authors: Mingjun Xu, Shouxiang Lu

Abstract:

Understanding the interaction mechanism between the water droplet and pool fire has an important significance in engineering application of water sprinkle/spray/mist fire suppression. The micro impact process is unclear when the droplet impacts on the burning liquid surface at present. To deepen the understanding of the mechanisms of pool fire suppression with water spray/mist, dynamic processes of single water droplet impinging onto a hot heptane surface are visualized with the aid of a high-speed digital camera at 2000 fps. Each test is repeated 20 times. The water droplet diameter is around 1.98 mm, and the impact Weber number ranges from 30 to 695. The heptane is heated by a hot plate to mimic the burning condition, and the temperature varies from 30 to 90°C. The results show that three typical phenomena, including penetration, crater-jet and surface bubble, are observed, and the pool temperature has a significant influence on the critical condition for the appearance of each phenomenon. A global picture of different phenomena is built according to impact Weber number and pool temperature. In addition, the pool temperature and Weber number have important influences on the characteristic parameters including maximum crater depth, crown height and liquid column height. For a fixed Weber number, the liquid column height increases with pool temperature.

Keywords: droplet impact, fire suppression, hot surface, water spray

Procedia PDF Downloads 206
3214 Geospatial Analysis of Hydrological Response to Forest Fires in Small Mediterranean Catchments

Authors: Bojana Horvat, Barbara Karleusa, Goran Volf, Nevenka Ozanic, Ivica Kisic

Abstract:

Forest fire is a major threat in many regions in Croatia, especially in coastal areas. Although they are often caused by natural processes, the most common cause is the human factor, intentional or unintentional. Forest fires drastically transform landscapes and influence natural processes. The main goal of the presented research is to analyse and quantify the impact of the forest fire on hydrological processes and propose the model that best describes changes in hydrological patterns in the analysed catchments. Keeping in mind the spatial component of the processes, geospatial analysis is performed to gain better insight into the spatial variability of the hydrological response to disastrous events. In that respect, two catchments that experienced severe forest fire were delineated, and various hydrological and meteorological data were collected both attribute and spatial. The major drawback is certainly the lack of hydrological data, common in small torrential karstic streams; hence modelling results should be validated with the data collected in the catchment that has similar characteristics and established hydrological monitoring. The event chosen for the modelling is the forest fire that occurred in July 2019 and burned nearly 10% of the analysed area. Surface (land use/land cover) conditions before and after the event were derived from the two Sentinel-2 images. The mapping of the burnt area is based on a comparison of the Normalized Burn Index (NBR) computed from both images. To estimate and compare hydrological behaviour before and after the event, curve number (CN) values are assigned to the land use/land cover classes derived from the satellite images. Hydrological modelling resulted in surface runoff generation and hence prediction of hydrological responses in the catchments to a forest fire event. The research was supported by the Croatian Science Foundation through the project 'Influence of Open Fires on Water and Soil Quality' (IP-2018-01-1645).

Keywords: Croatia, forest fire, geospatial analysis, hydrological response

Procedia PDF Downloads 100
3213 Healthcare Fire Disasters: Readiness, Response and Resilience Strategies: A Real-Time Experience of a Healthcare Organization of North India

Authors: Raman Sharma, Ashok Kumar, Vipin Koushal

Abstract:

Healthcare facilities are always seen as places of haven and protection for managing the external incidents, but the situation becomes more difficult and challenging when such facilities themselves are affected from internal hazards. Such internal hazards are arguably more disruptive than external incidents affecting vulnerable ones, as patients are always dependent on supportive measures and are neither in a position to respond to such crisis situation nor do they know how to respond. The situation becomes more arduous and exigent to manage if, in case critical care areas like Intensive Care Units (ICUs) and Operating Rooms (OR) are convoluted. And, due to these complexities of patients’ in-housed there, it becomes difficult to move such critically ill patients on immediate basis. Healthcare organisations use different types of electrical equipment, inflammable liquids, and medical gases often at a single point of use, hence, any sort of error can spark the fire. Even though healthcare facilities face many fire hazards, damage caused by smoke rather than flames is often more severe. Besides burns, smoke inhalation is primary cause of fatality in fire-related incidents. The greatest cause of illness and mortality in fire victims, particularly in enclosed places, appears to be the inhalation of fire smoke, which contains a complex mixture of gases in addition to carbon monoxide. Therefore, healthcare organizations are required to have a well-planned disaster mitigation strategy, proactive and well prepared manpower to cater all types of exigencies resulting from internal as well as external hazards. This case report delineates a true OR fire incident in Emergency Operation Theatre (OT) of a tertiary care multispecialty hospital and details the real life evidence of the challenges encountered by OR staff in preserving both life and property. No adverse event was reported during or after this fire commotion, yet, this case report aimed to congregate the lessons identified of the incident in a sequential and logical manner. Also, timely smoke evacuation and preventing the spread of smoke to adjoining patient care areas by opting appropriate measures, viz. compartmentation, pressurisation, dilution, ventilation, buoyancy, and airflow, helped to reduce smoke-related fatalities. Henceforth, precautionary measures may be implemented to mitigate such incidents. Careful coordination, continuous training, and fire drill exercises can improve the overall outcomes and minimize the possibility of these potentially fatal problems, thereby making a safer healthcare environment for every worker and patient.

Keywords: healthcare, fires, smoke, management, strategies

Procedia PDF Downloads 42
3212 Horizontal-Vertical and Enhanced-Unicast Interconnect Testing Techniques for Network-on-Chip

Authors: Mahdiar Hosseinghadiry, Razali Ismail, F. Fotovati

Abstract:

One of the most important and challenging tasks in testing network-on-chip based system-on-chips (NoC based SoCs) is to verify the communication entity. It is important because of its usage for transferring both data packets and test patterns for intellectual properties (IPs) during normal and test mode. Hence, ensuring of NoC reliability is required for reliable IPs functionality and testing. On the other hand, it is challenging due to the required time to test it and the way of transferring test patterns from the tester to the NoC components. In this paper, two testing techniques for mesh-based NoC interconnections are proposed. The first one is based on one-by-one testing and the second one divides NoC interconnects into three parts, horizontal links of switches in even columns, horizontal links of switches in odd columns and all vertical. A design for testability (DFT) architecture is represented to send test patterns directly to each switch under test and also support the proposed testing techniques by providing a loopback path in each switch. The simulation results shows the second proposed testing mechanism outperforms in terms of test time because this method test all the interconnects in only three phases, independent to the number of existed interconnects in the network, while test time of other methods are highly dependent to the number of switches and interconnects in the NoC.

Keywords: on chip, interconnection testing, horizontal-vertical testing, enhanced unicast

Procedia PDF Downloads 523
3211 Wireless Information Transfer Management and Case Study of a Fire Alarm System in a Residential Building

Authors: Mohsen Azarmjoo, Mehdi Mehdizadeh Koupaei, Maryam Mehdizadeh Koupaei, Asghar Mahdlouei Azar

Abstract:

The increasing prevalence of wireless networks in our daily lives has made them indispensable. The aim of this research is to investigate the management of information transfer in wireless networks and the integration of renewable solar energy resources in a residential building. The focus is on the transmission of electricity and information through wireless networks, as well as the utilization of sensors and wireless fire alarm systems. The research employs a descriptive approach to examine the transmission of electricity and information on a wireless network with electric and optical telephone lines. It also investigates the transmission of signals from sensors and wireless fire alarm systems via radio waves. The methodology includes a detailed analysis of security, comfort conditions, and costs related to the utilization of wireless networks and renewable solar energy resources. The study reveals that it is feasible to transmit electricity on a network cable using two pairs of network cables without the need for separate power cabling. Additionally, the integration of renewable solar energy systems in residential buildings can reduce dependence on traditional energy carriers. The use of sensors and wireless remote information processing can enhance the safety and efficiency of energy usage in buildings and the surrounding spaces.

Keywords: renewable energy, intelligentization, wireless sensors, fire alarm system

Procedia PDF Downloads 29
3210 Fire Effects on Soil Properties of Meshchera Plain, Russia

Authors: Anna Tsibart, Timur Koshovskii

Abstract:

The properties of soils affected by the wildfires of 2002, 2010, and 2012 in Meshchera plain (Moscow region, Russia) were considered in a current research. The formation of ash horizons instead of organic peat horizons was detected both in histosols and histic podzols. The increase of pH and magnetic susceptibility was observed in soil profiles. Significant burning out of organic matter was observed, but already two years after the fire the new stage of organic matter accumulation started.

Keywords: wildfires, peat soils, organic matter, Meshchera plain

Procedia PDF Downloads 628
3209 Time Effective Structural Frequency Response Testing with Oblique Impact

Authors: Khoo Shin Yee, Lian Yee Cheng, Ong Zhi Chao, Zubaidah Ismail, Siamak Noroozi

Abstract:

Structural frequency response testing is accurate in identifying the dynamic characteristic of a machinery structure. In practical perspective, conventional structural frequency response testing such as experimental modal analysis with impulse technique (also known as “impulse testing”) has limitation especially on its long acquisition time. The high acquisition time is mainly due to the redundancy procedure where the engineer has to repeatedly perform the test in 3 directions, namely the axial-, horizontal- and vertical-axis, in order to comprehensively define the dynamic behavior of a 3D structure. This is unfavorable to numerous industries where the downtime cost is high. This study proposes to reduce the testing time by using oblique impact. Theoretically, a single oblique impact can induce significant vibration responses and vibration modes in all the 3 directions. Hence, the acquisition time with the implementation of the oblique impulse technique can be reduced by a factor of three (i.e. for a 3D dynamic system). This study initiates an experimental investigation of impulse testing with oblique excitation. A motor-driven test rig has been used for the testing purpose. Its dynamic characteristic has been identified using the impulse testing with the conventional normal impact and the proposed oblique impact respectively. The results show that the proposed oblique impulse testing is able to obtain all the desired natural frequencies in all 3 directions and thus providing a feasible solution for a fast and time effective way of conducting the impulse testing.

Keywords: frequency response function, impact testing, modal analysis, oblique angle, oblique impact

Procedia PDF Downloads 470
3208 Development of a New Device for Bending Fatigue Testing

Authors: B. Mokhtarnia, M. Layeghi

Abstract:

This work presented an original bending fatigue-testing setup for fatigue characterization of composite materials. A three-point quasi-static setup was introduced that was capable of applying stress control load in different loading waveforms, frequencies, and stress ratios. This setup was equipped with computerized measuring instruments to evaluate fatigue damage mechanisms. A detailed description of its different parts and working features was given, and dynamic analysis was done to verify the functional accuracy of the device. Feasibility was validated successfully by conducting experimental fatigue tests.

Keywords: bending fatigue, quasi-static testing setup, experimental fatigue testing, composites

Procedia PDF Downloads 87
3207 Antagonistic Potential of Epiphytic Bacteria Isolated in Kazakhstan against Erwinia amylovora, the Causal Agent of Fire Blight

Authors: Assel E. Molzhigitova, Amankeldi K. Sadanov, Elvira T. Ismailova, Kulyash A. Iskandarova, Olga N. Shemshura, Ainur I. Seitbattalova

Abstract:

Fire blight is a very harmful for commercial apple and pear production quarantine bacterial disease. To date, several different methods have been proposed for disease control, including the use of copperbased preparations and antibiotics, which are not always reliable or effective. The use of bacteria as biocontrol agents is one of the most promising and eco-friendly alternative methods. Bacteria with protective activity against the causal agent of fire blight are often present among the epiphytic microorganisms of the phyllosphere of host plants. Therefore, the main objective of our study was screening of local epiphytic bacteria as possible antagonists against Erwinia amylovora, the causal agent of fire blight. Samples of infected organs of apple and pear trees (shoots, leaves, fruits) were collected from the industrial horticulture areas in various agro-ecological zones of Kazakhstan. Epiphytic microorganisms were isolated by standard and modified methods on specific nutrient media. The primary screening of selected microorganisms under laboratory conditions to determine the ability to suppress the growth of Erwinia amylovora was performed by agar-diffusion-test. Among 142 bacteria isolated from the fire blight host plants, 5 isolates, belonging to the genera Bacillus, Lactobacillus, Pseudomonas, Paenibacillus and Pantoea showed higher antagonistic activity against the pathogen. The diameters of inhibition zone have been depended on the species and ranged from 10 mm to 48 mm. The maximum diameter of inhibition zone (48 mm) was exhibited by B. amyloliquefaciens. Less inhibitory effect was showed by Pantoea agglomerans PA1 (19 mm). The study of inhibitory effect of Lactobacillus species against E. amylovora showed that among 7 isolates tested only one (Lactobacillus plantarum 17M) demonstrated inhibitory zone (30 mm). In summary, this study was devoted to detect the beneficial epiphytic bacteria from plants organs of pear and apple trees due to fire blight control in Kazakhstan. Results obtained from the in vitro experiments showed that the most efficient bacterial isolates are Lactobacillus plantarum 17M, Bacillus amyloliquefaciens MB40, and Pantoea agglomerans PA1. These antagonists are suitable for development as biocontrol agents for fire blight control. Their efficacies will be evaluated additionally, in biological tests under in vitro and field conditions during our further study.

Keywords: antagonists, epiphytic bacteria, Erwinia amylovora, fire blight

Procedia PDF Downloads 137
3206 Analyzing Test Data Generation Techniques Using Evolutionary Algorithms

Authors: Arslan Ellahi, Syed Amjad Hussain

Abstract:

Software Testing is a vital process in software development life cycle. We can attain the quality of software after passing it through software testing phase. We have tried to find out automatic test data generation techniques that are a key research area of software testing to achieve test automation that can eventually decrease testing time. In this paper, we review some of the approaches presented in the literature which use evolutionary search based algorithms like Genetic Algorithm, Particle Swarm Optimization (PSO), etc. to validate the test data generation process. We also look into the quality of test data generation which increases or decreases the efficiency of testing. We have proposed test data generation techniques for model-based testing. We have worked on tuning and fitness function of PSO algorithm.

Keywords: search based, evolutionary algorithm, particle swarm optimization, genetic algorithm, test data generation

Procedia PDF Downloads 158
3205 Investigation of the Effect of Phosphorous on the Flame Retardant Polyacrylonitrile Nanofiber

Authors: Mustafa Yılmaz, Ahmet Akar, Nesrin Köken, Nilgün Kızılcan

Abstract:

Commercially available poly(acrylonitrile-co-vinyl acetate) P(AN-VA) or poly(acrylonitrile-co-methyl acrylate) P(AN-MA) are not satisfactory to meet the demand in flame and fire-resistance. In this work, vinylphosphonic acid is used during polymerization of acrylonitrile, vinyl acetate, methacrylic acid to produce fire-retardant polymers. These phosphorus containing polymers are successfully spun in the form of nanofibers. Properties such as water absorption of polymers are also determined and compared with commercial polymers.

Keywords: flame retardant, nanofiber, polyacrylonitrile, phosphorous compound, membrane

Procedia PDF Downloads 222
3204 The Threats of Deforestation, Forest Fire and CO2 Emission toward Giam Siak Kecil Bukit Batu Biosphere Reserve in Riau, Indonesia

Authors: Siti Badriyah Rushayati, Resti Meilani, Rachmad Hermawan

Abstract:

A biosphere reserve is developed to create harmony amongst economic development, community development, and environmental protection, through partnership between human and nature. Giam Siak Kecil Bukit Batu Biosphere Reserve (GSKBB BR) in Riau Province, Indonesia, is unique in that it has peat soil dominating the area, many springs essential for human livelihood, high biodiversity. Furthermore, it is the only biosphere reserve covering privately managed production forest areas. The annual occurrences of deforestation and forest fire pose a threat toward such unique biosphere reserve. Forest fire produced smokes that along with mass airflow reached neighboring countries, particularly Singapore and Malaysia. In this research, we aimed at analyzing the threat of deforestation and forest fire, and the potential of CO2 emission at GSKBB BR. We used Landsat image, arcView software, and ERDAS IMAGINE 8.5 Software to conduct spatial analysis of land cover and land use changes, calculated CO2 emission based on emission potential from each land cover and land use type, and exercised simple linear regression to demonstrate the relation between CO2 emission potential and deforestation. The result showed that, beside in the buffer zone and transition area, deforestation also occurred in the core area. Spatial analysis of land cover and land use changes from years 2010, 2012, and 2014 revealed that there were changes of land cover and land use from natural forest and industrial plantation forest to other land use types, such as garden, mixed garden, settlement, paddy fields, burnt areas, and dry agricultural land. Deforestation in core area, particularly at the Giam Siak Kecil Wildlife Reserve and Bukit Batu Wildlife Reserve, occurred in the form of changes from natural forest in to garden, mixed garden, shrubs, swamp shrubs, dry agricultural land, open area, and burnt area. In the buffer zone and transition area, changes also happened, what once swamp forest changed into garden, mixed garden, open area, shrubs, swamp shrubs, and dry agricultural land. Spatial analysis on land cover and land use changes indicated that deforestation rate in the biosphere reserve from 2010 to 2014 had reached 16 119 ha/year. Beside deforestation, threat toward the biosphere reserve area also came from forest fire. The occurrence of forest fire in 2014 had burned 101 723 ha of the area, in which 9 355 ha of core area, and 92 368 ha of buffer zone and transition area. Deforestation and forest fire had increased CO2 emission as much as 24 903 855 ton/year.

Keywords: biosphere reserve, CO2 emission, deforestation, forest fire

Procedia PDF Downloads 457
3203 The Legal Regulation of Direct-to-Consumer Genetic Testing In South Africa

Authors: Amy Gooden

Abstract:

Despite its prevalence, direct-to-consumer genetic testing (DTC-GT) remains under-investigated in South Africa (SA), and the issue of regulation is yet to be examined. Therefore, this research maps the current legal landscape relating to DTC-GT in SA through a legal analysis of the extant law relevant to the industry and the issues associated therewith – with the intention of determining if and how DTC-GT is legally governed. This research analyses: whether consumers are legally permitted to collect their saliva; whether DTC-GT are medical devices; licensing, registering, and advertising; importing and exporting; and genetic research conducted by companies.

Keywords: direct-to-consumer genetic testing, genetic testing, health, law, regulation, South Africa

Procedia PDF Downloads 107
3202 Flammability and Smoke Toxicity of Rainscreen Façades

Authors: Gabrielle Peck, Ryan Hayes

Abstract:

Four façade systems were tested using a reduced height BS 8414-2 (5 m) test rig. An L-shaped masonry test wall was clad with three types of insulation and an aluminum composite panel with a non-combustible filling (meeting Euroclass A2). A large (3 MW) wooden crib was ignited in a recess at the base of the L, and the fire was allowed to burn for 30 minutes. Air velocity measurements and gas samples were taken from the main ventilation duct and also a small additional ventilation duct, like those in an apartment bathroom or kitchen. This provided a direct route of travel for smoke from the building façade to a theoretical room using a similar design to many high-rise buildings where the vent is connected to (approximately) 30 m³ rooms. The times to incapacitation and lethality of the effluent were calculated for both the main exhaust vent and for a vent connected to a theoretical 30 m³ room. The rainscreen façade systems tested were the common combinations seen in many tower blocks across the UK. Three tests using ACM A2 with Stonewool, Phenolic foam, and Polyisocyanurate (PIR) foam. A fourth test was conducted with PIR and ACM-PE (polyethylene core). Measurements in the main exhaust duct were representative of the effluent from the burning wood crib. FEDs showed incapacitation could occur up to 30 times quicker with combustible insulation than non-combustible insulation, with lethal gas concentrations accumulating up to 2.7 times faster than other combinations. The PE-cored ACM/PIR combination produced a ferocious fire, resulting in the termination of the test after 13.5 minutes for safety reasons. Occupants of the theoretical room in the PIR/ACM A2 test reached a FED of 1 after 22 minutes; for PF/ACM A2, this took 25 minutes, and for stone wool, a lethal dose measurement of 0.6 was reached at the end of the 30-minute test. In conclusion, when measuring smoke toxicity in the exhaust duct, there is little difference between smoke toxicity measurements between façade systems. Toxicity measured in the main exhaust is largely a result of the wood crib used to ignite the façade system. The addition of a vent allowed smoke toxicity to be quantified in the cavity of the façade, providing a realistic way of measuring the toxicity of smoke that could enter an apartment from a façade fire.

Keywords: smoke toxicity, large-scale testing, BS8414, FED

Procedia PDF Downloads 35
3201 Design, Construction And Validation Of A Simple, Low-cost Phi Meter

Authors: Gabrielle Peck, Ryan Hayes

Abstract:

The use of a phi meter allows for definition of equivalence ratio during a fire test. Previous phi meter designs have used expensive catalysts and had restricted portability due to the large furnace and requirement for pure oxygen. The new design of the phi meter did not require the use of a catalyst. The furnace design was based on the existing micro-scale combustion calorimetry (MCC) furnace and operating conditions based on the secondary oxidizer furnace used in the steady state tube furnace (SSTF). Preliminary tests were conducted to study the effects of varying furnace temperatures on combustion efficiency. The SSTF was chosen to validate the phi meter measurements as it can both pre-set and independently quantify the equivalence ratio during a test. The data were in agreement with the data obtained on the SSTF. It was also validated by a comparison of CO2 yields obtained from the SSTF oxidizer and those obtained by the phi meter. The phi meter designed and constructed in this work was proven to work effectively on a bench-scale. The phi meter was then used to measure the equivalence ratio on a series of large-scale ISO 9705 tests for numerous fire conditions. The materials used were a range of non-homogenous materials such as polyurethane. The measurements corresponded accurately to the data collected, showing the novel design can be used from bench to large-scale tests to measure equivalence ratio. This cheaper, more portable, safer and easier to use phi meter design will enable more widespread use and the ability to quantify fire conditions of tests, allowing for better understanding of flammability and smoke toxicity.

Keywords: phi meter, smoke toxicity, fire condition, ISO9705, novel equipment

Procedia PDF Downloads 77
3200 Human Immunodeficiency Virus (HIV) Test Predictive Modeling and Identify Determinants of HIV Testing for People with Age above Fourteen Years in Ethiopia Using Data Mining Techniques: EDHS 2011

Authors: S. Abera, T. Gidey, W. Terefe

Abstract:

Introduction: Testing for HIV is the key entry point to HIV prevention, treatment, and care and support services. Hence, predictive data mining techniques can greatly benefit to analyze and discover new patterns from huge datasets like that of EDHS 2011 data. Objectives: The objective of this study is to build a predictive modeling for HIV testing and identify determinants of HIV testing for adults with age above fourteen years using data mining techniques. Methods: Cross-Industry Standard Process for Data Mining (CRISP-DM) was used to predict the model for HIV testing and explore association rules between HIV testing and the selected attributes among adult Ethiopians. Decision tree, Naïve-Bayes, logistic regression and artificial neural networks of data mining techniques were used to build the predictive models. Results: The target dataset contained 30,625 study participants; of which 16, 515 (53.9%) were women. Nearly two-fifth; 17,719 (58%), have never been tested for HIV while the rest 12,906 (42%) had been tested. Ethiopians with higher wealth index, higher educational level, belonging 20 to 29 years old, having no stigmatizing attitude towards HIV positive person, urban residents, having HIV related knowledge, information about family planning on mass media and knowing a place where to get testing for HIV showed an increased patterns with respect to HIV testing. Conclusion and Recommendation: Public health interventions should consider the identified determinants to promote people to get testing for HIV.

Keywords: data mining, HIV, testing, ethiopia

Procedia PDF Downloads 465
3199 Concrete-Wall-Climbing Testing Robot

Authors: S. Tokuomi, K. Mori, Y. Tsuruzono

Abstract:

A concrete-wall-climbing testing robot, has been developed. This robot adheres and climbs concrete walls using two sets of suction cups, as well as being able to rotate by the use of the alternating motion of the suction cups. The maximum climbing speed is about 60 cm/min. Each suction cup has a pressure sensor, which monitors the adhesion of each suction cup. The impact acoustic method is used in testing concrete walls. This robot has an impact acoustic device and four microphones for the acquisition of the impact sound. The effectiveness of the impact acoustic system was tested by applying it to an inspection of specimens with artificial circular void defects. A circular void defect with a diameter of 200 mm at a depth of 50 mm was able to be detected. The weight and the dimensions of the robot are about 17 kg and 1.0 m by 1.3 m, respectively. The upper limit of testing is about 10 m above the ground due to the length of the power cable.

Keywords: concrete wall, nondestructive testing, climbing robot, impact acoustic method

Procedia PDF Downloads 627