Search results for: estimation method
20061 Time Delay Estimation Using Signal Envelopes for Synchronisation of Recordings
Authors: Sergei Aleinik, Mikhail Stolbov
Abstract:
In this work, a method of time delay estimation for dual-channel acoustic signals (speech, music, etc.) recorded under reverberant conditions is investigated. Standard methods based on cross-correlation of the signals show poor results in cases involving strong reverberation, large distances between microphones and asynchronous recordings. Under similar conditions, a method based on cross-correlation of temporal envelopes of the signals delivers a delay estimation of acceptable quality. This method and its properties are described and investigated in detail, including its limits of applicability. The method’s optimal parameter estimation and a comparison with other known methods of time delay estimation are also provided.Keywords: cross-correlation, delay estimation, signal envelope, signal processing
Procedia PDF Downloads 48220060 Parameter Estimation of Induction Motors by PSO Algorithm
Authors: A. Mohammadi, S. Asghari, M. Aien, M. Rashidinejad
Abstract:
After emergent of alternative current networks and their popularity, asynchronous motors became more widespread than other kinds of industrial motors. In order to control and run these motors efficiently, an accurate estimation of motor parameters is needed. There are different methods to obtain these parameters such as rotor locked test, no load test, DC test, analytical methods, and so on. The most common drawback of these methods is their inaccuracy in estimation of some motor parameters. In order to remove this concern, a novel method for parameter estimation of induction motors using particle swarm optimization (PSO) algorithm is proposed. In the proposed method, transient state of motor is used for parameter estimation. Comparison of the simulation results purtuined to the PSO algorithm with other available methods justifies the effectiveness of the proposed method.Keywords: induction motor, motor parameter estimation, PSO algorithm, analytical method
Procedia PDF Downloads 63220059 Online Battery Equivalent Circuit Model Estimation on Continuous-Time Domain Using Linear Integral Filter Method
Authors: Cheng Zhang, James Marco, Walid Allafi, Truong Q. Dinh, W. D. Widanage
Abstract:
Equivalent circuit models (ECMs) are widely used in battery management systems in electric vehicles and other battery energy storage systems. The battery dynamics and the model parameters vary under different working conditions, such as different temperature and state of charge (SOC) levels, and therefore online parameter identification can improve the modelling accuracy. This paper presents a way of online ECM parameter identification using a continuous time (CT) estimation method. The CT estimation method has several advantages over discrete time (DT) estimation methods for ECM parameter identification due to the widely separated battery dynamic modes and fast sampling. The presented method can be used for online SOC estimation. Test data are collected using a lithium ion cell, and the experimental results show that the presented CT method achieves better modelling accuracy compared with the conventional DT recursive least square method. The effectiveness of the presented method for online SOC estimation is also verified on test data.Keywords: electric circuit model, continuous time domain estimation, linear integral filter method, parameter and SOC estimation, recursive least square
Procedia PDF Downloads 38220058 State Estimation Method Based on Unscented Kalman Filter for Vehicle Nonlinear Dynamics
Authors: Wataru Nakamura, Tomoaki Hashimoto, Liang-Kuang Chen
Abstract:
This paper provides a state estimation method for automatic control systems of nonlinear vehicle dynamics. A nonlinear tire model is employed to represent the realistic behavior of a vehicle. In general, all the state variables of control systems are not precisedly known, because those variables are observed through output sensors and limited parts of them might be only measurable. Hence, automatic control systems must incorporate some type of state estimation. It is needed to establish a state estimation method for nonlinear vehicle dynamics with restricted measurable state variables. For this purpose, unscented Kalman filter method is applied in this study for estimating the state variables of nonlinear vehicle dynamics. The objective of this paper is to propose a state estimation method using unscented Kalman filter for nonlinear vehicle dynamics. The effectiveness of the proposed method is verified by numerical simulations.Keywords: state estimation, control systems, observer systems, nonlinear systems
Procedia PDF Downloads 13220057 Using Derivative Free Method to Improve the Error Estimation of Numerical Quadrature
Authors: Chin-Yun Chen
Abstract:
Numerical integration is an essential tool for deriving different physical quantities in engineering and science. The effectiveness of a numerical integrator depends on different factors, where the crucial one is the error estimation. This work presents an error estimator that combines a derivative free method to improve the performance of verified numerical quadrature.Keywords: numerical quadrature, error estimation, derivative free method, interval computation
Procedia PDF Downloads 46220056 Software Engineering Inspired Cost Estimation for Process Modelling
Authors: Felix Baumann, Aleksandar Milutinovic, Dieter Roller
Abstract:
Up to this point business process management projects in general and business process modelling projects in particular could not rely on a practical and scientifically validated method to estimate cost and effort. Especially the model development phase is not covered by a cost estimation method or model. Further phases of business process modelling starting with implementation are covered by initial solutions which are discussed in the literature. This article proposes a method of filling this gap by deriving a cost estimation method from available methods in similar domains namely software development or software engineering. Software development is regarded as closely similar to process modelling as we show. After the proposition of this method different ideas for further analysis and validation of the method are proposed. We derive this method from COCOMO II and Function Point which are established methods of effort estimation in the domain of software development. For this we lay out similarities of the software development rocess and the process of process modelling which is a phase of the Business Process Management life-cycle.Keywords: COCOMO II, busines process modeling, cost estimation method, BPM COCOMO
Procedia PDF Downloads 43920055 Online Estimation of Clutch Drag Torque in Wet Dual Clutch Transmission Based on Recursive Least Squares
Authors: Hongkui Li, Tongli Lu , Jianwu Zhang
Abstract:
This paper focuses on developing an estimation method of clutch drag torque in wet DCT. The modelling of clutch drag torque is investigated. As the main factor affecting the clutch drag torque, dynamic viscosity of oil is discussed. The paper proposes an estimation method of clutch drag torque based on recursive least squares by utilizing the dynamic equations of gear shifting synchronization process. The results demonstrate that the estimation method has good accuracy and efficiency.Keywords: clutch drag torque, wet DCT, dynamic viscosity, recursive least squares
Procedia PDF Downloads 31820054 Estimating Lost Digital Video Frames Using Unidirectional and Bidirectional Estimation Based on Autoregressive Time Model
Authors: Navid Daryasafar, Nima Farshidfar
Abstract:
In this article, we make attempt to hide error in video with an emphasis on the time-wise use of autoregressive (AR) models. To resolve this problem, we assume that all information in one or more video frames is lost. Then, lost frames are estimated using analogous Pixels time information in successive frames. Accordingly, after presenting autoregressive models and how they are applied to estimate lost frames, two general methods are presented for using these models. The first method which is the same standard method of autoregressive models estimates lost frame in unidirectional form. Usually, in such condition, previous frames information is used for estimating lost frame. Yet, in the second method, information from the previous and next frames is used for estimating the lost frame. As a result, this method is known as bidirectional estimation. Then, carrying out a series of tests, performance of each method is assessed in different modes. And, results are compared.Keywords: error steganography, unidirectional estimation, bidirectional estimation, AR linear estimation
Procedia PDF Downloads 53720053 Simulation of 3-D Direction-of-Arrival Estimation Using MUSIC Algorithm
Authors: Duckyong Kim, Jong Kang Park, Jong Tae Kim
Abstract:
DOA (Direction of Arrival) estimation is an important method in array signal processing and has a wide range of applications such as direction finding, beam forming, and so on. In this paper, we briefly introduce the MUSIC (Multiple Signal Classification) Algorithm, one of DOA estimation methods for analyzing several targets. Then we apply the MUSIC algorithm to the two-dimensional antenna array to analyze DOA estimation in 3D space through MATLAB simulation. We also analyze the design factors that can affect the accuracy of DOA estimation through simulation, and proceed with further consideration on how to apply the system.Keywords: DOA estimation, MUSIC algorithm, spatial spectrum, array signal processing
Procedia PDF Downloads 37820052 Hybrid Subspace Approach for Time Delay Estimation in MIMO Systems
Authors: Mojtaba Saeedinezhad, Sarah Yousefi
Abstract:
In this paper, we present a hybrid subspace approach for Time Delay Estimation (TDE) in multivariable systems. While several methods have been proposed for time delay estimation in SISO systems, delay estimation in MIMO systems were always a big challenge. In these systems the existing TDE methods have significant limitations because most of procedures are just based on system response estimation or correlation analysis. We introduce a new hybrid method for TDE in MIMO systems based on subspace identification and explicit output error method; and compare its performance with previously introduced procedures in presence of different noise levels and in a statistical manner. Then the best method is selected with multi objective decision making technique. It is shown that the performance of new approach is much better than the existing methods, even in low signal-to-noise conditions.Keywords: system identification, time delay estimation, ARX, OE, merit ratio, multi variable decision making
Procedia PDF Downloads 34420051 Considering the Reliability of Measurements Issue in Distributed Adaptive Estimation Algorithms
Authors: Wael M. Bazzi, Amir Rastegarnia, Azam Khalili
Abstract:
In this paper we consider the issue of reliability of measurements in distributed adaptive estimation problem. To this aim, we assume a sensor network with different observation noise variance among the sensors and propose new estimation method based on incremental distributed least mean-square (IDLMS) algorithm. The proposed method contains two phases: I) Estimation of each sensors observation noise variance, and II) Estimation of the desired parameter using the estimated observation variances. To deal with the reliability of measurements, in the second phase of the proposed algorithm, the step-size parameter is adjusted for each sensor according to its observation noise variance. As our simulation results show, the proposed algorithm considerably improves the performance of the IDLMS algorithm in the same condition.Keywords: adaptive filter, distributed estimation, sensor network, IDLMS algorithm
Procedia PDF Downloads 63220050 Parameters Estimation of Multidimensional Possibility Distributions
Authors: Sergey Sorokin, Irina Sorokina, Alexander Yazenin
Abstract:
We present a solution to the Maxmin u/E parameters estimation problem of possibility distributions in m-dimensional case. Our method is based on geometrical approach, where minimal area enclosing ellipsoid is constructed around the sample. Also we demonstrate that one can improve results of well-known algorithms in fuzzy model identification task using Maxmin u/E parameters estimation.Keywords: possibility distribution, parameters estimation, Maxmin u\E estimator, fuzzy model identification
Procedia PDF Downloads 46820049 An Approach to Noise Variance Estimation in Very Low Signal-to-Noise Ratio Stochastic Signals
Authors: Miljan B. Petrović, Dušan B. Petrović, Goran S. Nikolić
Abstract:
This paper describes a method for AWGN (Additive White Gaussian Noise) variance estimation in noisy stochastic signals, referred to as Multiplicative-Noising Variance Estimation (MNVE). The aim was to develop an estimation algorithm with minimal number of assumptions on the original signal structure. The provided MATLAB simulation and results analysis of the method applied on speech signals showed more accuracy than standardized AR (autoregressive) modeling noise estimation technique. In addition, great performance was observed on very low signal-to-noise ratios, which in general represents the worst case scenario for signal denoising methods. High execution time appears to be the only disadvantage of MNVE. After close examination of all the observed features of the proposed algorithm, it was concluded it is worth of exploring and that with some further adjustments and improvements can be enviably powerful.Keywords: noise, signal-to-noise ratio, stochastic signals, variance estimation
Procedia PDF Downloads 38520048 Estimation of Slab Depth, Column Size and Rebar Location of Concrete Specimen Using Impact Echo Method
Authors: Y. T. Lee, J. H. Na, S. H. Kim, S. U. Hong
Abstract:
In this study, an experimental research for estimation of slab depth, column size and location of rebar of concrete specimen is conducted using the Impact Echo Method (IE) based on stress wave among non-destructive test methods. Estimation of slab depth had total length of 1800×300 and 6 different depths including 150 mm, 180 mm, 210 mm, 240 mm, 270 mm and 300 mm. The concrete column specimen was manufactured by differentiating the size into 300×300×300 mm, 400×400×400 mm and 500×500×500 mm. In case of the specimen for estimation of rebar, rebar of ∅22 mm was used in a specimen of 300×370×200 and arranged at 130 mm and 150 mm from the top to the rebar top. As a result of error rate of slab depth was overall mean of 3.1%. Error rate of column size was overall mean of 1.7%. Mean error rate of rebar location was 1.72% for top, 1.19% for bottom and 1.5% for overall mean showing relative accuracy.Keywords: impact echo method, estimation, slab depth, column size, rebar location, concrete
Procedia PDF Downloads 35020047 Hardware Implementation and Real-time Experimental Validation of a Direction of Arrival Estimation Algorithm
Authors: Nizar Tayem, AbuMuhammad Moinuddeen, Ahmed A. Hussain, Redha M. Radaydeh
Abstract:
This research paper introduces an approach for estimating the direction of arrival (DOA) of multiple RF noncoherent sources in a uniform linear array (ULA). The proposed method utilizes a Capon-like estimation algorithm and incorporates LU decomposition to enhance the accuracy of DOA estimation while significantly reducing computational complexity compared to existing methods like the Capon method. Notably, the proposed method does not require prior knowledge of the number of sources. To validate its effectiveness, the proposed method undergoes validation through both software simulations and practical experimentation on a prototype testbed constructed using a software-defined radio (SDR) platform and GNU Radio software. The results obtained from MATLAB simulations and real-time experiments provide compelling evidence of the proposed method's efficacy.Keywords: DOA estimation, real-time validation, software defined radio, computational complexity, Capon's method, GNU radio
Procedia PDF Downloads 7320046 Effect of Adjacent Footings on Elastic Settlement of Shallow Foundations
Authors: Mustafa Aytekin
Abstract:
In this study, impact of adjacent footings is considered on the estimation of elastic settlement of shallow foundations. In the estimation of elastic settlement, the Schmertmann’s method that is a very popular method in the elastic settlement estimation of shallow foundations is employed. In order to consider affect of neighboring footings on elastic settlement of main footing in different configurations, a MATLAB script has been generated. Elastic settlements of the various configurations are estimated by the script and several conclusions have been reached.Keywords: elastic (immediate) settlement, Schmertman Method, adjacent footings, shallow foundations
Procedia PDF Downloads 46520045 Parameter Estimation of Gumbel Distribution with Maximum-Likelihood Based on Broyden Fletcher Goldfarb Shanno Quasi-Newton
Authors: Dewi Retno Sari Saputro, Purnami Widyaningsih, Hendrika Handayani
Abstract:
Extreme data on an observation can occur due to unusual circumstances in the observation. The data can provide important information that can’t be provided by other data so that its existence needs to be further investigated. The method for obtaining extreme data is one of them using maxima block method. The distribution of extreme data sets taken with the maxima block method is called the distribution of extreme values. Distribution of extreme values is Gumbel distribution with two parameters. The parameter estimation of Gumbel distribution with maximum likelihood method (ML) is difficult to determine its exact value so that it is necessary to solve the approach. The purpose of this study was to determine the parameter estimation of Gumbel distribution with quasi-Newton BFGS method. The quasi-Newton BFGS method is a numerical method used for nonlinear function optimization without constraint so that the method can be used for parameter estimation from Gumbel distribution whose distribution function is in the form of exponential doubel function. The quasi-New BFGS method is a development of the Newton method. The Newton method uses the second derivative to calculate the parameter value changes on each iteration. Newton's method is then modified with the addition of a step length to provide a guarantee of convergence when the second derivative requires complex calculations. In the quasi-Newton BFGS method, Newton's method is modified by updating both derivatives on each iteration. The parameter estimation of the Gumbel distribution by a numerical approach using the quasi-Newton BFGS method is done by calculating the parameter values that make the distribution function maximum. In this method, we need gradient vector and hessian matrix. This research is a theory research and application by studying several journals and textbooks. The results of this study obtained the quasi-Newton BFGS algorithm and estimation of Gumbel distribution parameters. The estimation method is then applied to daily rainfall data in Purworejo District to estimate the distribution parameters. This indicates that the high rainfall that occurred in Purworejo District decreased its intensity and the range of rainfall that occurred decreased.Keywords: parameter estimation, Gumbel distribution, maximum likelihood, broyden fletcher goldfarb shanno (BFGS)quasi newton
Procedia PDF Downloads 32320044 Contrasting The Water Consumption Estimation Methods
Authors: Etienne Alain Feukeu, L. W. Snyman
Abstract:
Water scarcity is becoming a real issue nowadays. Most countries in the world are facing it in their own way based on their own geographical coordinate and condition. Many countries are facing a challenge of a growing water demand as a result of not only an increased population, economic growth, but also as a pressure of the population dynamic and urbanization. In view to mitigate some of this related problem, an accurate method of water estimation and future prediction, forecast is essential to guarantee not only the sufficient quantity, but also a good water distribution and management system. Beside the fact that several works have been undertaken to address this concern, there is still a considerable disparity between different methods and standard used for water prediction and estimation. Hence this work contrast and compare two well-defined and established methods from two countries (USA and South Africa) to demonstrate the inconsistency when different method and standards are used interchangeably.Keywords: water scarcity, water estimation, water prediction, water forecast.
Procedia PDF Downloads 20020043 The Linear Combination of Kernels in the Estimation of the Cumulative Distribution Functions
Authors: Abdel-Razzaq Mugdadi, Ruqayyah Sani
Abstract:
The Kernel Distribution Function Estimator (KDFE) method is the most popular method for nonparametric estimation of the cumulative distribution function. The kernel and the bandwidth are the most important components of this estimator. In this investigation, we replace the kernel in the KDFE with a linear combination of kernels to obtain a new estimator based on the linear combination of kernels, the mean integrated squared error (MISE), asymptotic mean integrated squared error (AMISE) and the asymptotically optimal bandwidth for the new estimator are derived. We propose a new data-based method to select the bandwidth for the new estimator. The new technique is based on the Plug-in technique in density estimation. We evaluate the new estimator and the new technique using simulations and real-life data.Keywords: estimation, bandwidth, mean square error, cumulative distribution function
Procedia PDF Downloads 58020042 Estimating Destinations of Bus Passengers Using Smart Card Data
Authors: Hasik Lee, Seung-Young Kho
Abstract:
Nowadays, automatic fare collection (AFC) system is widely used in many countries. However, smart card data from many of cities does not contain alighting information which is necessary to build OD matrices. Therefore, in order to utilize smart card data, destinations of passengers should be estimated. In this paper, kernel density estimation was used to forecast probabilities of alighting stations of bus passengers and applied to smart card data in Seoul, Korea which contains boarding and alighting information. This method was also validated with actual data. In some cases, stochastic method was more accurate than deterministic method. Therefore, it is sufficiently accurate to be used to build OD matrices.Keywords: destination estimation, Kernel density estimation, smart card data, validation
Procedia PDF Downloads 35120041 Online Pose Estimation and Tracking Approach with Siamese Region Proposal Network
Authors: Cheng Fang, Lingwei Quan, Cunyue Lu
Abstract:
Human pose estimation and tracking are to accurately identify and locate the positions of human joints in the video. It is a computer vision task which is of great significance for human motion recognition, behavior understanding and scene analysis. There has been remarkable progress on human pose estimation in recent years. However, more researches are needed for human pose tracking especially for online tracking. In this paper, a framework, called PoseSRPN, is proposed for online single-person pose estimation and tracking. We use Siamese network attaching a pose estimation branch to incorporate Single-person Pose Tracking (SPT) and Visual Object Tracking (VOT) into one framework. The pose estimation branch has a simple network structure that replaces the complex upsampling and convolution network structure with deconvolution. By augmenting the loss of fully convolutional Siamese network with the pose estimation task, pose estimation and tracking can be trained in one stage. Once trained, PoseSRPN only relies on a single bounding box initialization and producing human joints location. The experimental results show that while maintaining the good accuracy of pose estimation on COCO and PoseTrack datasets, the proposed method achieves a speed of 59 frame/s, which is superior to other pose tracking frameworks.Keywords: computer vision, pose estimation, pose tracking, Siamese network
Procedia PDF Downloads 15220040 Residual Life Estimation Based on Multi-Phase Nonlinear Wiener Process
Authors: Hao Chen, Bo Guo, Ping Jiang
Abstract:
Residual life (RL) estimation based on multi-phase nonlinear Wiener process was studied in this paper, which is significant for complicated products with small samples. Firstly, nonlinear Wiener model with random parameter was introduced and multi-phase nonlinear Wiener model was proposed to model degradation process of products that were nonlinear and separated into different phases. Then the multi-phase RL probability density function based on the presented model was derived approximately in a closed form and parameters estimation was achieved with the method of maximum likelihood estimation (MLE). Finally, the method was applied to estimate the RL of high voltage plus capacitor. Compared with the other three different models by log-likelihood function (Log-LF) and Akaike information criterion (AIC), the results show that the proposed degradation model can capture degradation process of high voltage plus capacitors in a better way and provide a more reliable result.Keywords: multi-phase nonlinear wiener process, residual life estimation, maximum likelihood estimation, high voltage plus capacitor
Procedia PDF Downloads 45220039 A Quantification Method of Attractiveness of Stations and an Estimation Method of Number of Passengers Taking into Consideration the Attractiveness of the Station
Authors: Naoya Ozaki, Takuya Watanabe, Ryosuke Matsumoto, Noriko Fukasawa
Abstract:
In the metropolitan areas in Japan, in many stations, shopping areas are set up, and escalators and elevators are installed to make the stations be barrier-free. Further, many areas around the stations are being redeveloped. Railway business operators want to know how much effect these circumstances have on attractiveness of the station or number of passengers using the station. So, we performed a questionnaire survey of the station users in the metropolitan areas for finding factors to affect the attractiveness of stations. Then, based on the analysis of the survey, we developed a method to quantitatively evaluate attractiveness of the stations. We also developed an estimation method for number of passengers based on combination of attractiveness of the station quantitatively evaluated and the residential and labor population around the station. Then, we derived precise linear regression models estimating the attractiveness of the station and number of passengers of the station.Keywords: attractiveness of the station, estimation method, number of passengers of the station, redevelopment around the station, renovation of the station
Procedia PDF Downloads 28620038 Off-Line Parameter Estimation for the Induction Motor Drive System
Authors: Han-Woong Ahn, In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee
Abstract:
It is important to accurately identify machine parameters for direct vector control. To obtain the parameter values, traditional methods can be used such as no-load and rotor locked tests. However, there are many differences between values obtained from the traditional tests and actual values. In addition, there are drawbacks that additional equipment and cost are required for the experiment. Therefore, it is hard to temporary operation to estimate induction motor parameters. Therefore, this paper deals with the estimation algorithm of induction motor parameters without a motor operation and the measurement from additional equipment such as sensors and dynamometer. The validity and usefulness of the estimation algorithm considering inverter nonlinearity is verified by comparing the conventional method with the proposed method.Keywords: induction motor, parameter, off-line estimation, inverter nonlinearity
Procedia PDF Downloads 52720037 Brain Age Prediction Based on Brain Magnetic Resonance Imaging by 3D Convolutional Neural Network
Authors: Leila Keshavarz Afshar, Hedieh Sajedi
Abstract:
Estimation of biological brain age from MR images is a topic that has been much addressed in recent years due to the importance it attaches to early diagnosis of diseases such as Alzheimer's. In this paper, we use a 3D Convolutional Neural Network (CNN) to provide a method for estimating the biological age of the brain. The 3D-CNN model is trained by MRI data that has been normalized. In addition, to reduce computation while saving overall performance, some effectual slices are selected for age estimation. By this method, the biological age of individuals using selected normalized data was estimated with Mean Absolute Error (MAE) of 4.82 years.Keywords: brain age estimation, biological age, 3D-CNN, deep learning, T1-weighted image, SPM, preprocessing, MRI, canny, gray matter
Procedia PDF Downloads 14520036 Estimation of Train Operation Using an Exponential Smoothing Method
Authors: Taiyo Matsumura, Kuninori Takahashi, Takashi Ono
Abstract:
The purpose of this research is to improve the convenience of waiting for trains at level crossings and stations and to prevent accidents resulting from forcible entry into level crossings, by providing level crossing users and passengers with information that tells them when the next train will pass through or arrive. For this paper, we proposed methods for estimating operation by means of an average value method, variable response smoothing method, and exponential smoothing method, on the basis of open data, which has low accuracy, but for which performance schedules are distributed in real time. We then examined the accuracy of the estimations. The results showed that the application of an exponential smoothing method is valid.Keywords: exponential smoothing method, open data, operation estimation, train schedule
Procedia PDF Downloads 38820035 Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation
Authors: Somayeh Komeylian
Abstract:
The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).Keywords: DoA estimation, Adaptive antenna array, Deep Neural Network, LS-SVM optimization model, Radial basis function, and MSE
Procedia PDF Downloads 9920034 Applicability of Cameriere’s Age Estimation Method in a Sample of Turkish Adults
Authors: Hatice Boyacioglu, Nursel Akkaya, Humeyra Ozge Yilanci, Hilmi Kansu, Nihal Avcu
Abstract:
The strong relationship between the reduction in the size of the pulp cavity and increasing age has been reported in the literature. This relationship can be utilized to estimate the age of an individual by measuring the pulp cavity size using dental radiographs as a non-destructive method. The purpose of this study is to develop a population specific regression model for age estimation in a sample of Turkish adults by applying Cameriere’s method on panoramic radiographs. The sample consisted of 100 panoramic radiographs of Turkish patients (40 men, 60 women) aged between 20 and 70 years. Pulp and tooth area ratios (AR) of the maxilla¬¬ry canines were measured by two maxillofacial radiologists and then the results were subjected to regression analysis. There were no statistically significant intra-observer and inter-observer differences. The correlation coefficient between age and the AR of the maxillary canines was -0.71 and the following regression equation was derived: Estimated Age = 77,365 – ( 351,193 × AR ). The mean prediction error was 4 years which is within acceptable errors limits for age estimation. This shows that the pulp/tooth area ratio is a useful variable for assessing age with reasonable accuracy. Based on the results of this research, it was concluded that Cameriere’s method is suitable for dental age estimation and it can be used for forensic procedures in Turkish adults. These instructions give you guidelines for preparing papers for conferences or journals.Keywords: age estimation by teeth, forensic dentistry, panoramic radiograph, Cameriere's method
Procedia PDF Downloads 44920033 Identification of Wiener Model Using Iterative Schemes
Authors: Vikram Saini, Lillie Dewan
Abstract:
This paper presents the iterative schemes based on Least square, Hierarchical Least Square and Stochastic Approximation Gradient method for the Identification of Wiener model with parametric structure. A gradient method is presented for the parameter estimation of wiener model with noise conditions based on the stochastic approximation. Simulation results are presented for the Wiener model structure with different static non-linear elements in the presence of colored noise to show the comparative analysis of the iterative methods. The stochastic gradient method shows improvement in the estimation performance and provides fast convergence of the parameters estimates.Keywords: hard non-linearity, least square, parameter estimation, stochastic approximation gradient, Wiener model
Procedia PDF Downloads 40520032 Parameter Estimation for the Mixture of Generalized Gamma Model
Authors: Wikanda Phaphan
Abstract:
Mixture generalized gamma distribution is a combination of two distributions: generalized gamma distribution and length biased generalized gamma distribution. These two distributions were presented by Suksaengrakcharoen and Bodhisuwan in 2014. The findings showed that probability density function (pdf) had fairly complexities, so it made problems in estimating parameters. The problem occurred in parameter estimation was that we were unable to calculate estimators in the form of critical expression. Thus, we will use numerical estimation to find the estimators. In this study, we presented a new method of the parameter estimation by using the expectation – maximization algorithm (EM), the conjugate gradient method, and the quasi-Newton method. The data was generated by acceptance-rejection method which is used for estimating α, β, λ and p. λ is the scale parameter, p is the weight parameter, α and β are the shape parameters. We will use Monte Carlo technique to find the estimator's performance. Determining the size of sample equals 10, 30, 100; the simulations were repeated 20 times in each case. We evaluated the effectiveness of the estimators which was introduced by considering values of the mean squared errors and the bias. The findings revealed that the EM-algorithm had proximity to the actual values determined. Also, the maximum likelihood estimators via the conjugate gradient and the quasi-Newton method are less precision than the maximum likelihood estimators via the EM-algorithm.Keywords: conjugate gradient method, quasi-Newton method, EM-algorithm, generalized gamma distribution, length biased generalized gamma distribution, maximum likelihood method
Procedia PDF Downloads 219