Search results for: emulsion mixture
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1550

Search results for: emulsion mixture

170 Control of Helminthosporiosis in Oryza sativa Varieties Treated with 24-Epibrassinolide

Authors: Kuate Tueguem William Norbert, Ngoh Dooh Jules Patrice, Kone Sangou Abdou Nourou, Mboussi Serge Bertrand, Chewachang Godwill Mih, Essome Sale Charles, Djuissi Tohoto Doriane, Ambang Zachee

Abstract:

The objectives of this study were to evaluate the effects of foliar application of 24-epibrassinolide (EBR) on the development of rice helminthosporiosis caused by Bipolaris oryzae and its influence on the improvement of growth parameters and induction of the synthesis of defense substances in the rice plants. The experimental asset up involved a multifactorial split-plot with two varieties (NERICA 3 and local variety KAMKOU) and five treatments (T0: control, T1: EBR, T2: BANKO PLUS (fungicide), T3: NPK (chemical fertilizer), T4: mixture: NPK + BANKO PLUS + EBR) with three repetitions. Agro-morphological and epidemiological parameters, as well as substances for plant resistance, were evaluated over two growing seasons. The application of the EBR induced significant growth of the rice plants for the 2015 and 2016 growing seasons on the two varieties tested compared to the T0 treatment. At 74 days after sowing (DAS), NERICA 3 showed plant heights of 58.9 ± 5.4; 83.1 ± 10.4; 86.01 ± 9.4; 69.4 ± 11.1 and 87.12 ± 7.4 cm at T0; T1; T2; T3, and T4, respectively. Plant height for the variety KAMKOU varied from 87,12 ± 8,1; 88.1 ± 8.1 and 92.02 ± 6.3 cm in T1, T2, and T3 to 74.1 ± 8.6 and 74.21 ± 11.4 cm in T0 and T3. In accordance with the low rate of expansion of helminthosporiosis in experimental plots, EBR (T1) significantly reduced the development of the disease with severities of 0.0; 1.29, and 2.04%, respectively at 78; 92, and 111 DAS on the variety NERICA 3 compared with1; 3.15 and 3.79% in the control T0. The reduction of disease development/severity as a result of the application of EBR is due to the induction of acquired resistance of rice varieties through increased phenol (13.73 eqAG/mg/PMF) and total protein (117.89 eqBSA/mg/PMF) in the T1 treatment against 5.37 eqAG/mg/PMF and 104.97 eqBSA/mg/PMF in T0 for the NERICA 3 variety. Similarly, on the KAMKOU variety, 148.53 eqBSA/mg/PMF were protein and 6.10 eqAG/mg/PMF of phenol in T1. In summary, the results show the significant effect of EBR on plant growth, yield, synthesis of secondary metabolites and defense proteins, and disease resistance. The EBR significantly reduced losses of rice grains by causing an average gain of about 1.55 t/ha compared to the control and 1.00 t/ha compared to the NPK-based treatment for the two varieties studied. Further, the enzymatic activities of PPOs, POXs, and PR2s were higher in leaves from treated EBR-based plants. These results show that 24-epibrassinolide can be used in the control of helminthosporiosis of rice to reduce disease and increase yields.

Keywords: Oryza sativa, 24-epibrassinolide, helminthosporiosis, secondary metabolites, PR proteins, acquired resistance

Procedia PDF Downloads 161
169 Enhanced Stability of Piezoelectric Crystalline Phase of Poly(Vinylidene Fluoride) (PVDF) and Its Copolymer upon Epitaxial Relationships

Authors: Devi Eka Septiyani Arifin, Jrjeng Ruan

Abstract:

As an approach to manipulate the performance of polymer thin film, epitaxy crystallization within polymer blends of poly(vinylidene fluoride) (PVDF) and its copolymer poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) was studied in this research, which involves the competition between phase separation and crystal growth of constitutive semicrystalline polymers. The unique piezoelectric feature of poly(vinylidene fluoride) crystalline phase is derived from the packing of molecular chains in all-trans conformation, which spatially arranges all the substituted fluorene atoms on one side of the molecular chain and hydrogen atoms on the other side. Therefore, the net dipole moment is induced across the lateral packing of molecular chains. Nevertheless, due to the mutual repulsion among fluorene atoms, this all-trans molecular conformation is not stable, and ready to change above curie temperature, where thermal energy is sufficient to cause segmental rotation. This research attempts to explore whether the epitaxial interactions between piezoelectric crystals and crystal lattice of hexamethylbenzene (HMB) crystalline platelet is able to stabilize this metastable all-trans molecular conformation or not. As an aromatic crystalline compound, the melt of HMB was surprisingly found able to dissolve the poly(vinylidene fluoride), resulting in homogeneous eutectic solution. Thus, after quenching this binary eutectic mixture to room temperature, subsequent heating or annealing processes were designed to explore the involve phase separation and crystallization behavior. The phase transition behaviors were observed in-situ by X-ray diffraction and differential scanning calorimetry (DSC). The molecular packing was observed via transmission electron microscope (TEM) and the principles of electron diffraction were brought to study the internal crystal structure epitaxially developed within thin films. Obtained results clearly indicated the occurrence of heteroepitaxy of PVDF/PVDF-TrFE on HMB crystalline platelet. Both the concentration of poly(vinylidene fluoride) and the mixing ratios of these two constitutive polymers have been adopted as the influential factors for studying the competition between the epitaxial crystallization of PVDF and P(VDF-TrFE) on HMB crystalline. Furthermore, the involved epitaxial relationship is to be deciphered and studied as a potential factor capable of guiding the wide spread of piezoelectric crystalline form.

Keywords: epitaxy, crystallization, crystalline platelet, thin film and mixing ratio

Procedia PDF Downloads 196
168 Rethinking Pathways to Shared Prosperity for Forest Communities: A Case Study of Nigerian REDD+ Readiness Project

Authors: U. Isyaku, C. Upton, J. Dickinson

Abstract:

Critical institutional approach for understanding pathways to shared prosperity among forest communities enabled questioning the underlying rational choice assumptions that have dominated traditional institutional thinking in natural resources management. Common pool resources framing assumes that communities as social groups share collective interests and values towards achieving greater development. Hence, policies related to natural resources management in the global South prioritise economic prosperity by focusing on how to maximise material benefits and improve the livelihood options of resource dependent communities. Recent trends in commodification and marketization of ecosystem goods and services into tradable natural capital and incentivising conservation are structured in this paradigm. Several researchers however, have problematized this emerging market-based model because it undermines cultural basis for protecting natural ecosystems. By exploring how forest people’s motivations for conservation differ within the context of reducing emissions from deforestation and forest degradation (REDD+) project in Nigeria, we aim to provide an alternative approach to conceptualising prosperity beyond the traditional economic thinking. Through in depth empirical work over seven months with five communities in Nigeria’s Cross River State, Q methodology was used to uncover communities’ perspectives and meanings of forest values that underpin contemporary and historic conservation practices, expected benefits, and willingness to participate in the REDD+ process. Our study finds six discourses about forest and conservation values that transcend wealth creation, poverty reduction and livelihoods. We argue that communities’ decisions about forest conservation consist of a complex mixture of economic, emotional, moral, and ecological justice concerns that constitute new meanings and dimensions of prosperity. Prosperity is thus reconfigured as having socio-cultural and psychological pathways that could be derived through place identity and attachment, connectedness to nature, family ties, and ability to participate in everyday social life. We therefore suggest that natural resources policy making and development interventions should consider institutional arrangements that also include the psycho-cultural dimensions of prosperity among diverse community groups.

Keywords: critical institutionalism, Q methodology, REDD+, shared prosperity

Procedia PDF Downloads 302
167 Study of Phase Separation Behavior in Flexible Polyurethane Foam

Authors: El Hatka Hicham, Hafidi Youssef, Saghiri Khalid, Ittobane Najim

Abstract:

Flexible polyurethane foam (FPUF) is a low-density cellular material generally used as a cushioning material in many applications such as furniture, bedding, packaging, etc. It is commercially produced during a continuous process, where a reactive mixture of foam chemicals is poured onto a moving conveyor. FPUFs are produced by the catalytic balancing of two reactions involved, the blowing reaction (isocyanate-water) and the gelation reaction (isocyanate-polyol). The microstructure of FPUF is generally composed of soft phases (polyol phases) and rigid domains that separate into two domains of different sizes: the rigid polyurea microdomains and the macrodomains (larger aggregates). The morphological features of FPUF are strongly influenced by the phase separation morphology that plays a key role in determining the global FPUF properties. This phase-separated morphology results from a thermodynamic incompatibility between soft segments derived from aliphatic polyether and hard segments derived from the commonly used aromatic isocyanate. In order to improve the properties of FPUF against the different stresses faced by this material during its use, we report in this work a study of the phase separation phenomenon in FPUF that has been examined using SAXS WAXS and FTIR. Indeed, we have studied with these techniques the effect of water, isocyanates, and alkaline chlorides on the phase separation behavior. SAXS was used to study the morphology of the microphase separated, WAXS to examine the nature of the hard segment packing, and FTIR to investigate the hydrogen bonding characteristics of the materials studied. The prepared foams were shown to have different levels of urea phase connectivity; the increase in water content in the FPUF formulation leads to an increase in the amount of urea formed and consequently the increase of the size of urea aggregates formed. Alkali chlorides (NaCl, KCl, and LiCl) incorporated into FPUF formulations show that is the ability to prevent hydrogen bond formation and subsequently alter the rigid domains. FPUFs prepared by different isocyanate structures showed that urea aggregates are difficult to be formed in foams prepared by asymmetric diisocyanate, while are more easily formed in foams prepared by symmetric and aliphatic diisocyanate.

Keywords: flexible polyurethane foam, hard segments, phase separation, soft segments

Procedia PDF Downloads 119
166 O-Functionalized CNT Mediated CO Hydro-Deoxygenation and Chain Growth

Authors: K. Mondal, S. Talapatra, M. Terrones, S. Pokhrel, C. Frizzel, B. Sumpter, V. Meunier, A. L. Elias

Abstract:

Worldwide energy independence is reliant on the ability to leverage locally available resources for fuel production. Recently, syngas produced through gasification of carbonaceous materials provided a gateway to a host of processes for the production of various chemicals including transportation fuels. The basis of the production of gasoline and diesel-like fuels is the Fischer Tropsch Synthesis (FTS) process: A catalyzed chemical reaction that converts a mixture of carbon monoxide (CO) and hydrogen (H2) into long chain hydrocarbons. Until now, it has been argued that only transition metal catalysts (usually Co or Fe) are active toward the CO hydrogenation and subsequent chain growth in the presence of hydrogen. In this paper, we demonstrate that carbon nanotube (CNT) surfaces are also capable of hydro-deoxygenating CO and producing long chain hydrocarbons similar to that obtained through the FTS but with orders of magnitude higher conversion efficiencies than the present state-of-the-art FTS catalysts. We have used advanced experimental tools such as XPS and microscopy techniques to characterize CNTs and identify C-O functional groups as the active sites for the enhanced catalytic activity. Furthermore, we have conducted quantum Density Functional Theory (DFT) calculations to confirm that C-O groups (inherent on CNT surfaces) could indeed be catalytically active towards reduction of CO with H2, and capable of sustaining chain growth. The DFT calculations have shown that the kinetically and thermodynamically feasible route for CO insertion and hydro-deoxygenation are different from that on transition metal catalysts. Experiments on a continuous flow tubular reactor with various nearly metal-free CNTs have been carried out and the products have been analyzed. CNTs functionalized by various methods were evaluated under different conditions. Reactor tests revealed that the hydrogen pre-treatment reduced the activity of the catalysts to negligible levels. Without the pretreatment, the activity for CO conversion as found to be 7 µmol CO/g CNT/s. The O-functionalized samples showed very activities greater than 85 µmol CO/g CNT/s with nearly 100% conversion. Analyses show that CO hydro-deoxygenation occurred at the C-O/O-H functional groups. It was found that while the products were similar to FT products, differences in selectivities were observed which, in turn, was a result of a different catalytic mechanism. These findings now open a new paradigm for CNT-based hydrogenation catalysts and constitute a defining point for obtaining clean, earth abundant, alternative fuels through the use of efficient and renewable catalyst.

Keywords: CNT, CO Hydrodeoxygenation, DFT, liquid fuels, XPS, XTL

Procedia PDF Downloads 317
165 Extraction and Quantification of Peramine Present in Dalaca pallens, a Pest of Grassland in Southtern Chile

Authors: Leonardo Parra, Daniel Martínez, Jorge Pizarro, Fernando Ortega, Manuel Chacón-Fuentes, Andrés Quiroz

Abstract:

Control of Dalaca pallens or blackworms, one of the most important hypogeous pest in grassland in southern Chile, is based on the use of broad-spectrum insecticides such as organophosphates and pyrethroids. However, the rapid development of insecticide resistance in field populations of this insect and public concern over the environmental impact of these insecticides has resulted in the search for other control methods. Specifically, the use of endophyte fungi for controlling pest has emerged as an interesting and promising strategy. Endophytes from ryegrass (Lolium perenne), establish a biotrophic relationship with the host, defined as mutualistic symbiosis. The plant-fungi association produces alkaloids where peramine is the main toxic substance against Listronotus bonariensis, the most important epigean pest of ryegrass. Nevertheless, the effect of peramina on others pest insects, such as D. pallens, to our knowledge has not been studied, and also its possible metabolization in the body of the larvae. Therefore, we addressed the following research question: Do larvae of D. pallens store peramine after consumption of ryegrass endophyte infected (E+)? For this, specimens of blackworms were fed with ryegrass plant of seven experimental lines and one commercial cultivar endophyte free (E-) sown at the Instituto de Investigaciones Agropecuarias Carillanca (Vilcún, Chile). Once the feeding period was over, ten larvae of each treatment were examined. Individuals were dissected, and their gut was removed to exclude any influence of remaining material. The rest of the larva's body was dried at 60°C by 24-48 h and ground into a fine powder using a mortar. 25 mg of dry powder was transferred to a microcentrifuge tube and extracted in 1 mL of a mixture of methanol:water:formic acid. Then, the samples were centrifuged at 16,000 rpm for 3 min, and the supernatant was colected and injected in the liquid chromatography of high resolution (HPLC). The results confirmed the presence of peramine in the larva's body of D. pallens. The insects that fed the experimental lines LQE-2 and LQE-6 were those where peramine was present in high proportion (0.205 and 0.199 ppm, respectively); while LQE-7 and LQE-3 obtained the lowest concentrations of the alkaloid (0.047 and 0.053 ppm, respectively). Peramine was not detected in the insects when the control cultivar Jumbo (E-) was tested. These results evidenced the storage and metabolism of peramine during consumption of the larvae. However, the effect of this alkaloid present in 'future ryegrass cultivars' (LQE-2 and LQE-6) on the performance and survival of blackworms must be studied and confirmed experimentally.

Keywords: blackworms, HPLC, alkaloid, pest

Procedia PDF Downloads 276
164 Enhancement of Fracture Toughness for Low-Temperature Applications in Mild Steel Weldments

Authors: Manjinder Singh, Jasvinder Singh

Abstract:

Existing theories of Titanic/Liberty ship, Sydney bridge accidents and practical experience generated an interest in developing weldments those has high toughness under sub-zero temperature conditions. The purpose was to protect the joint from undergoing DBT (Ductile to brittle transition), when ambient temperature reach sub-zero levels. Metallurgical improvement such as low carbonization or addition of deoxidization elements like Mn and Si was effective to prevent fracture in weldments (crack) at low temperature. In the present research, an attempt has been made to investigate the reason behind ductile to brittle transition of mild steel weldments when subjected to sub-zero temperatures and method of its mitigation. Nickel is added to weldments using manual metal arc welding (MMAW) preventing the DBT, but progressive reduction in charpy impact values as temperature is lowered. The variation in toughness with respect to nickel content being added to the weld pool is analyzed quantitatively to evaluate the rise in toughness value with increasing nickel amount. The impact performance of welded specimens was evaluated by Charpy V-notch impact tests at various temperatures (20 °C, 0 °C, -20 °C, -40 °C, -60 °C). Notch is made in the weldments, as notch sensitive failure is particularly likely to occur at zones of high stress concentration caused by a notch. Then the effect of nickel to weldments is investigated at various temperatures was studied by mechanical and metallurgical tests. It was noted that a large gain in impact toughness could be achieved by adding nickel content. The highest yield strength (462J) in combination with good impact toughness (over 220J at – 60 °C) was achieved with an alloying content of 16 wt. %nickel. Based on metallurgical behavior it was concluded that the weld metals solidify as austenite with increase in nickel. The microstructure was characterized using optical and high resolution SEM (scanning electron microscopy). At inter-dendritic regions mainly martensite was found. In dendrite core regions of the low carbon weld metals a mixture of upper bainite, lower bainite and a novel constituent coalesced bainite formed. Coalesced bainite was characterized by large bainitic ferrite grains with cementite precipitates and is believed to form when the bainite and martensite start temperatures are close to each other. Mechanical properties could be rationalized in terms of micro structural constituents as a function of nickel content.

Keywords: MMAW, Toughness, DBT, Notch, SEM, Coalesced bainite

Procedia PDF Downloads 498
163 Effect of Whey Proteins and Caffeic Acid Interactions on Antioxidant Activity and Protein Structure

Authors: Tassia Batista Pessato, Francielli Pires Ribeiro Morais, Fernanda Guimaraes Drummond Silva, Flavia Maria Netto

Abstract:

Proteins and phenolic compounds can interact mainly by hydrophobic interactions. Those interactions may lead to structural changes in both molecules, which in turn could affect positively or negatively their functional and nutritional properties. Here, the structural changes of whey proteins (WPI) due to interaction with caffeic acid (CA) were investigated by intrinsic and extrinsic fluorescence. The effects of protein-phenolic compounds interactions on the total phenolic content and antioxidant activity were also assessed. The WPI-CA complexes were obtained by mixture of WPI and CA stock solutions in deionized water. The complexation was carried out at room temperature during 60 min, using 0.1 M NaOH to adjust pH at 7.0. The WPI concentration was fixed at 5 mg/mL, whereas the CA concentration varied in order to obtain four different WPI:CA molar relations (1:1; 2:1; 5:1; 10:1). WPI and phenolic solutions were used as controls. Intrinsic fluorescence spectra of the complexes (mainly due to Trp fluorescence emission) were obtained at λex = 280 nm and the emission intensities were measured from 290 to 500 nm. Extrinsic fluorescence was obtained as the measure of protein surface hydrophobicity (S0) using ANS as a fluorescence probe. Total phenolic content was determined by Folin-Ciocalteau and the antioxidant activity by FRAP and ORAC methods. Increasing concentrations of CA resulted in decreasing of WPI intrinsic fluorescence. The emission band of WPI red shifted from 332 to 354 nm as the phenolic concentration increased, which is related to the exposure of Trp residue to the more hydrophilic environment and unfolding of protein structure. In general, the complexes presented lower S0 values than WPI, suggesting that CA hindered ANS binding to hydrophobic sites of WPI. The total phenolic content in the complexes was lower than the sum of two compounds isolated. WPI showed negligible AA measured by FRAP. However, as the relative concentration of CA increased in the complexes, the FRAP values enhanced, indicating that AA measure by this technique comes mainly from CA. In contrast, the WPI ORAC value (82.3 ± 1.5 µM TE/g) suggest that its AA is related to the capacity of H+ transfer. The complexes exhibited no important improvement of AA measured by ORAC in relation to the isolated components, suggesting complexation partially suppressed AA of the compounds. The results hereby presented indicate that interaction of WPI and CA occurred, and this interaction caused a structural change in the proteins. The complexation can either hide or expose antioxidant sites of both components. In conclusion, although the CA can undergo an AA suppression due to the interaction with proteins, the AA of WPI could be enhanced due to protein unfolding and exposure of antioxidant sites.

Keywords: bioactive properties, milk proteins, phenolic acids, protein-phenolic compounds complexation

Procedia PDF Downloads 511
162 Application of Metarhizium anisopliae against Meloidogyne javanica in Soil Amended with Oak Debris

Authors: Mohammad Abdollahi

Abstract:

Tomato (Lycopersicon esculentum Mill.) is one of the most popular, widely grown and the second most important vegetable crop, after potatoes. Nematodes have been identified as one of the major pests affecting tomato production throughout the world. The most destructive nematodes are the genus Meloidogyne. Most widespread and devastating species of this genus are M. incognita, M. javanica, and M. arenaria. These species can cause complete crop loss under adverse growing conditions. There are several potential methods for management of the root knot nematodes. Although the chemicals are widely used against the phytonematodes, because of hazardous effects of these compounds on non-target organisms and on the environment, there is a need to develop other control strategies. Nowadays, non-chemical measures are widely used to control the plant parasitic nematodes. Biocontrol of phytonematodes is an important method among environment-friendly measures of nematode management. There are some soil-inhabiting fungi that have biocontrol potential on phytonematodes, which can be used in nematode management program. The fungus Metarhizium anisopliae, originally is an entomopathogenic bioagent. Biocontrol potential of this fungus on some phytonematodes has been reported earlier. Recently, use of organic soil amendments as well as the use of bioagents is under special attention in sustainable agriculture. This research aimed to reduce the pesticide use in control of root-knot nematode, Meloidogyne javanica in tomato. The effects of M. anisopliae IMI 330189 and different levels of oak tree debris on M. javanica were determined. The combination effect of the fungus as well as the different rates of soil amendments was determined. Pots were filled with steam pasteurized soil mixture and the six leaf tomato seedlings were inoculated with 3000 second stage larvae of M. javanica/kg of soil. After eight weeks, plant growth parameters and nematode reproduction factors were compared. Based on the results of our experiment, combination of M. anisopliae IMI 330189 and oak debris caused more than 90% reduction in reproduction factor of nematode, at the rates of 100 and 150 g/kg soil (P ≤ 0.05). As compared to control, the reduction in number of galls was 76%. It was 86% for nematode reproduction factor, showing the significance of combined effect of both tested agents. Our results showed that plant debris can increase the biological activity of the tested bioagent. It was also proved that there was no adverse effect of oak debris, which potentially has antimicrobial activity, on antagonistic power of applied bioagent.

Keywords: biological control, nematode management, organic soil, Quercus branti, root knot nematode, soil amendment

Procedia PDF Downloads 142
161 Numerical Investigation of Plasma-Fuel System (PFS) for Coal Ignition and Combustion

Authors: Vladimir Messerle, Alexandr Ustimenko, Oleg Lavrichshev

Abstract:

To enhance the efficiency of solid fuels’ use, to decrease the fuel oil rate in the thermal power plants fuel balance and to minimize harmful emissions, a plasma technology of coal ignition, gasification and incineration is successfully applied. This technology is plasma thermochemical preparation of fuel for burning (PTCPF). In the framework of this concept, some portion of pulverized solid fuel (PF) is separated from the main PF flow and undergone the activation by arc plasma in a specific chamber with plasma torch – PFS. The air plasma flame is a source of heat and additional oxidation, it provides a high-temperature medium enriched with radicals, where the fuel mixture is heated, volatile components of coal are extracted, and carbon is partially gasified. This active blended fuel can ignite the main PF flow supplied into the furnace. This technology provides the boiler start-up and stabilization of PF flame and eliminates the necessity for addition of highly reactive fuel. In the report, a model of PTCPF, implemented as a program PlasmaKinTherm for the PFS calculation is described. The model combines thermodynamic and kinetic methods for describing the process of PTCPF in PFS. The numerical investigation of operational parameters of PFS depending on the electric power of the plasma generator and steam coal ash content revealed the temperature and velocity of gas and coal particles, and concentrations of PTCPF products dependences on the PFS length. Main mechanisms of PTCPF were disclosed. It was found that in the range of electric power of plasma generator from 40 to 100 kW high ash bituminous coal, having consumption 1667 kg/h is ignited stably. High level of temperature (1740 K) and concentration of combustible components (44%) at the PFS exit is a confirmation of it. Augmentation in power of plasma generator results displacement maxima temperatures and speeds of PTCPF products upstream (in the direction of the plasma source). The maximum temperature and velocity vary in a narrow range of values and practically do not depend on the power of the plasma torch. The numerical study of indicators of the process of PTCPF depending on the ash content in the range of its values 20-70% demonstrated that at the exit of PFS concentration of combustible components decreases with an increase in coal ash, the temperature of the gaseous products is increasing, and coal carbon conversion rate is increased to a maximum value when the ash content of 60%, dramatically decreasing with further increase in the ash content.

Keywords: coal, efficiency, ignition, numerical modeling, plasma generator, plasma-fuel system

Procedia PDF Downloads 276
160 Development of Extruded Prawn Snack Using Prawn Flavor Powder from Prawn Head Waste

Authors: S. K. Sharma, P. Kumar, Pratibha Singh

Abstract:

Consumption of SNACK is growing its popularity every day in India and a broad range of these items are available in the market. The end user interest in ready-to-eat snack foods is constantly growing mainly due to their ease, ample accessibility, appearance, taste and texture. Food extrusion has been practiced for over fifty years. Its role was initially limited to mixing and forming cereal products. Although thermoplastic extrusion has been successful for starch products, extrusion of proteins has achieved only limited success. In this study, value-added extruded prawn product was prepared with prawn flavor powder and corn flour using a twin-screw extruder. Prawn flavor concentrates prepared from fresh prawn head (Solenocera indica). To prepare flavor concentrate prawn head washed with potable water and blended with 200ml 3% salt solution per 250gm head weight to make the slurry, which was further put in muslin cloth and boiled with salt and starch solution for 10 minutes, cooled to room temperature and filtered, starch added to the filtrate and made into powder in an electrically drier at 43-450c. The mixture was passed through the twin-screw extruder (co-rotating twin screw extruder - basic technology Pvt. Ltd., Kolkata) which was operated at a particular speed of rotation, die diameter, temperature, moisture, and fish powder concentration. Many trial runs were conducted to set up the process variables. The different extrudes produced after each trail were examined for the quality and characteristics. The effect of temperature, moisture, screw speed, protein, fat, ash and thiobarbituric acid (TBA) number and expansion ratio were studied. In all the four trials, moisture, temperature, speed and die diameter used was 20%, 100°C, 350 rpm and 4 mm, respectively. The ratio of prawn powder and cornstarch used in different trials ranged between 2:98 and 10:90. The storage characteristics of the final product were studied using three different types of packaging under nitrogen flushing, i.e. a- 12-pm polyester, 12-pm metalized polyester, 60-11m polyethylene (metalized polyester a), b- 12-11m metalized polyester, 37.5-11m polyethylene (metalized polyester b), c- 12-11m polyethylene, 9-11m aluminium foil, 37.5-11m polyethylene (aluminium foil). The organoleptic analysis was carried out on a 9-point hedonic scale. The study revealed that the fried product packed in aluminum foil under nitrogen flushing would remain acceptable for more than three months.

Keywords: extruded product, prawn flavor, twin-screw extruder, storage characteristics

Procedia PDF Downloads 117
159 Development of an Ecological Binder by Geopolymerization of Untreated Dredged Sediments

Authors: Lisa Monteiro, Jacqueline Saliba, Nadia Saiyouri, Humberto Y. Godoy

Abstract:

Theevolution of the global environmental context incites companies to reduce their impact by reusing local materials and promoting circular economy. Dredged sediments represent a potential source of materials due to their large volume. Indeed, the dredging operations carried out in Gironde alone generated an annual volume of sediment of approximately 9 million m³. Moreover, on the eve of the evolution of laws concerning dredging practices, the recovery of sediments is necessary to create a viable economy for their management. This thesis work is oriented towards the development of an ecological binder from the fine fraction of untreated dredged sediments. In fact, their physico-chemical properties make them favorable for the synthesis of geopolymer, current competitor of cement, thanks to its lower carbon footprint and environmental impact. However, several obstacles must be overcome before implementing this new family of materials: the use of sediments without thermal or chemical treatment, the absence of a formulation approach, ignorance of the reactions produced, etc. During the first year of the thesis, a physico-chemical characterization of the sediments made it possible to validate their use as precursors forgeopolymerization according to three criteria: their fineness, their mineralogical composition, and the percentage of amorphous phase. Following these results, several formulations have been defined, taking into account the environmental impact. The sediments were activated with an alkaline solution of sodium hydroxide and sodium silicate. Two other formulations with cement and blast furnace slag have been defined for comparison. The results highlighted the possibility of forming geopolymers from untreated and still wet dredged sediments. The development of structural bonds through the formation of hydrated sodium aluminosilicate thus leads to higher strengths at 90 days (4.78 MPa) than a mixture with cement (0.75 MPa). A 30% gain in CO₂ emissions has also been obtained compared to cement. In order to reduce the uncertainties linked to the absence of a formulation approach, to optimize the number of experiments to be carried out in the laboratory, and to obtain an optimal formulation, an analysis by mixing plan was conducted in order to frame the responses according to the proportions of the constituents. Following the obtaining of an optimal binder, the work will focus on the study of the durability and the interspecific variability of the sediments on the mechanical properties by testing the binder developed with different sediments dredged from the Bordeaux estuary. , the Grand Port Maritime of Bayonne, La Rochelle, and the Bassinsd'Arcachon.

Keywords: compressive strength, dredged sediments, ecological binder, geopolymers

Procedia PDF Downloads 77
158 Development of a Reduced Multicomponent Jet Fuel Surrogate for Computational Fluid Dynamics Application

Authors: Muhammad Zaman Shakir, Mingfa Yao, Zohaib Iqbal

Abstract:

This study proposed four Jet fuel surrogate (S1, S2 S3, and 4) with careful selection of seven large hydrocarbon fuel components, ranging from C₉-C₁₆ of higher molecular weight and higher boiling point, adapting the standard molecular distribution size of the actual jet fuel. The surrogate was composed of seven components, including n-propyl cyclohexane (C₉H₁₈), n- propylbenzene (C₉H₁₂), n-undecane (C₁₁H₂₄), n- dodecane (C₁₂H₂₆), n-tetradecane (C₁₄H₃₀), n-hexadecane (C₁₆H₃₄) and iso-cetane (iC₁₆H₃₄). The skeletal jet fuel surrogate reaction mechanism was developed by two approaches, firstly based on a decoupling methodology by describing the C₄ -C₁₆ skeletal mechanism for the oxidation of heavy hydrocarbons and a detailed H₂ /CO/C₁ mechanism for prediction of oxidation of small hydrocarbons. The combined skeletal jet fuel surrogate mechanism was compressed into 128 species, and 355 reactions and thereby can be used in computational fluid dynamics (CFD) simulation. The extensive validation was performed for individual single-component including ignition delay time, species concentrations profile and laminar flame speed based on various fundamental experiments under wide operating conditions, and for their blended mixture, among all the surrogate, S1 has been extensively validated against the experimental data in a shock tube, rapid compression machine, jet-stirred reactor, counterflow flame, and premixed laminar flame over wide ranges of temperature (700-1700 K), pressure (8-50 atm), and equivalence ratio (0.5-2.0) to capture the properties target fuel Jet-A, while the rest of three surrogate S2, S3 and S4 has been validated for Shock Tube ignition delay time only to capture the ignition characteristic of target fuel S-8 & GTL, IPK and RP-3 respectively. Based on the newly proposed HyChem model, another four surrogate with similar components and composition, was developed and parallel validations data was used as followed for previously developed surrogate but at high-temperature condition only. After testing the mechanism prediction performance of surrogates developed by the decoupling methodology, the comparison was done with the results of surrogates developed by the HyChem model. It was observed that all of four proposed surrogates in this study showed good agreement with the experimental measurements and the study comes to this conclusion that like the decoupling methodology HyChem model also has a great potential for the development of oxidation mechanism for heavy alkanes because of applicability, simplicity, and compactness.

Keywords: computational fluid dynamics, decoupling methodology Hychem, jet fuel, surrogate, skeletal mechanism

Procedia PDF Downloads 104
157 Optimization and Evaluation of Different Pathways to Produce Biofuel from Biomass

Authors: Xiang Zheng, Zhaoping Zhong

Abstract:

In this study, Aspen Plus was used to simulate the whole process of biomass conversion to liquid fuel in different ways, and the main results of material and energy flow were obtained. The process optimization and evaluation were carried out on the four routes of cellulosic biomass pyrolysis gasification low-carbon olefin synthesis olefin oligomerization, biomass water pyrolysis and polymerization to jet fuel, biomass fermentation to ethanol, and biomass pyrolysis to liquid fuel. The environmental impacts of three biomass species (poplar wood, corn stover, and rice husk) were compared by the gasification synthesis pathway. The global warming potential, acidification potential, and eutrophication potential of the three biomasses were the same as those of rice husk > poplar wood > corn stover. In terms of human health hazard potential and solid waste potential, the results were poplar > rice husk > corn stover. In the popular pathway, 100 kg of poplar biomass was input to obtain 11.9 kg of aviation coal fraction and 6.3 kg of gasoline fraction. The energy conversion rate of the system was 31.6% when the output product energy included only the aviation coal product. In the basic process of hydrothermal depolymerization process, 14.41 kg aviation kerosene was produced per 100 kg biomass. The energy conversion rate of the basic process was 33.09%, which can be increased to 38.47% after the optimal utilization of lignin gasification and steam reforming for hydrogen production. The total exergy efficiency of the system increased from 30.48% to 34.43% after optimization, and the exergy loss mainly came from the concentration of precursor dilute solution. Global warming potential in environmental impact is mostly affected by the production process. Poplar wood was used as raw material in the process of ethanol production from cellulosic biomass. The simulation results showed that 827.4 kg of pretreatment mixture, 450.6 kg of fermentation broth, and 24.8 kg of ethanol were produced per 100 kg of biomass. The power output of boiler combustion reached 94.1 MJ, the unit power consumption in the process was 174.9 MJ, and the energy conversion rate was 33.5%. The environmental impact was mainly concentrated in the production process and agricultural processes. On the basis of the original biomass pyrolysis to liquid fuel, the enzymatic hydrolysis lignin residue produced by cellulose fermentation to produce ethanol was used as the pyrolysis raw material, and the fermentation and pyrolysis processes were coupled. In the coupled process, 24.8 kg ethanol and 4.78 kg upgraded liquid fuel were produced per 100 kg biomass with an energy conversion rate of 35.13%.

Keywords: biomass conversion, biofuel, process optimization, life cycle assessment

Procedia PDF Downloads 48
156 A Preliminary End-Point Approach for Calculating Odorous Emissions in Life Cycle Assessment

Authors: G. M. Cappucci, C. Losi, P. Neri, M. Pini, A. M. Ferrari

Abstract:

Waste treatment and many production processes cause significant emissions of odors, thus typically leading to intense debate. The introduction of odorimetric units and their units of measurement, i.e., U.O. / m3, with the European regulation UE 13725 of 2003 designates the dynamic olfactometry as the official method for odorimetric analysis. Italy has filled the pre-existing legislative gap on the regulation of odorous emissions only recently, by introducing the Legislative Decree n°183 in 2017. The concentration of the odor to which a perceptive response occurs to 50% of the panel corresponds to the odorimetric unit of the sample under examination (1 U.O. / m3) and is equal to the threshold of perceptibility of the substance (O.T.). In particular, the treatment of Municipal Solid Waste (MSW) by Mechanical-Biological Treatment (MBT) plants produces odorous emissions, typically generated by aerobic procedures, potentially leading to significant environmental burdens. The quantification of odorous emissions represents a challenge within a LCA study since primary data are often missing. The aim of this study is to present the preliminary findings of an ongoing study whose aim is to identify and quantify odor emissions from the Tre Monti MBT plant, located in Imola (Bologna, Italy). Particularly, the issues faced with odor emissions in the present work are: i) the identification of the components of the gaseous mixture, whose total quantification in terms of odorimetric units is known, ii) the distribution of the total odorimetric units among the single substances identified and iii) the quantification of the mass emitted for each substance. The environmental analysis was carried out on the basis of the amount of emitted substance. The calculation method IMPact Assessment of Chemical Toxics (IMPACT) 2002+ has been modified since the original one does not take into account indoor emissions. Characterization factors were obtained by adopting a preliminary method in order to calculate indoor human effects. The impact and damage assessments were performed without the identification of new categories, thus in accordance with the categories of the selected calculation method. The results show that the damage associated to odorous emissions is the 0.24% of the total damage, and the most affected damage category is Human Health, mainly as a consequence of ammonia emission (86.06%). In conclusion, this preliminary approach allowed identifying and quantifying the substances responsible for the odour impact, in order to attribute them the relative damage on human health as well as ecosystem quality.

Keywords: life cycle assessment, municipal solid waste, odorous emissions, waste treatment

Procedia PDF Downloads 152
155 The Role of Microbes in Organic Sustainable Agriculture and Plant Protection

Authors: Koppula Prawan, Kehinde D. Oyeyemi, Kushal P. Singh

Abstract:

As people become more conscious of the detrimental consequences of conventional agricultural practices on the environment and human health, organic, sustainable agriculture and plant protection employing microorganisms have grown in importance. Although the use of microorganisms in agriculture is a centuries-old tradition, it has recently attracted renewed interest as a sustainable alternative to chemical-based plant protection and fertilization. Healthy soil is the cornerstone of sustainable agriculture, and microbes are essential to this process. Synthetic fertilizers and pesticides can destroy the beneficial microorganisms in the soil, upsetting the ecosystem's equilibrium. By utilizing organic farming's natural practices, such as the usage of microbes, it aims to maintain and improve the health of the soil. Microbes have several functions in agriculture, including nitrogen fixation, phosphorus solubilization, and disease suppression. Nitrogen fixation is the process by which certain microbes, such as rhizobia and Azotobacter, convert atmospheric nitrogen into a form that plants can use. Phosphorus solubilization involves the conversion of insoluble phosphorus into a soluble form that plants can absorb. Disease suppression involves the use of microbes to control plant diseases by competing with pathogenic organisms for resources or by producing antimicrobial compounds. Microbes can be applied to plants through seed coatings, foliar sprays, or soil inoculants. Seed coatings involve applying a mixture of microbes and nutrients to the surface of seeds before planting. Foliar sprays involve applying microbes and nutrients to the leaves of plants during the growing season. Soil inoculants involve adding microbes to the soil before planting. The use of microbes in plant protection and fertilization has several advantages over conventional methods. Firstly, microbes are natural and non-toxic, making them safe for human health and the environment. Secondly, microbes have the ability to adapt to changing environmental conditions, making them more resilient to drought and other stressors. Finally, the use of microbes can reduce the need for synthetic fertilizers and pesticides, reducing costs and minimizing environmental impact. In conclusion, organic, sustainable agriculture and plant protection using microbes are an effective and sustainable alternatives to conventional farming practices. The use of microbes can help to preserve and enhance soil health, increase plant productivity, and reduce the need for synthetic fertilizers and pesticides. As the demand for organic and sustainable agriculture continues to grow, the use of microbes is likely to become more widespread, providing a more environmentally friendly and sustainable future for agriculture.

Keywords: microbes, inoculants, fertilization, soil health, conventional.

Procedia PDF Downloads 43
154 Archaic Ontologies Nowadays: Music of Rituals

Authors: Luminiţa Duţică, Gheorghe Duţică

Abstract:

Many of the interrogations or dilemmas of the contemporary world found the answer in what was generically called the appeal to matrix. This genuine spiritual exercise of re-connection of the present to origins, to the primary source, revealed the ontological condition of timelessness, ahistorical, immutable (epi)phenomena, of those pure essences concentrated in the archetypal-referential layer of the human existence. The musical creation was no exception to this trend, the impasse generated by the deterministic excesses of the whole serialism or, conversely, by some questionable results of the extreme indeterminism proper to the avant-garde movements, stimulating the orientation of many composers to rediscover a universal grammar, as an emanation of a new ‘collective’ order (reverse of the utopian individualism). In this context, the music of oral tradition and therefore the world of the ancient modes represented a true revelation for the composers of the twentieth century, who were suddenly in front of some unsuspected (re)sources, with a major impact on all levels of edification of the musical work: morphology, syntax, timbrality, semantics etc. For the contemporary Romanian creators, the music of rituals, existing in the local archaic culture, opened unsuspected perspectives for which it meant to be a synthetic, inclusive and recoverer vision, where the primary (archetypal) genuine elements merge with the latest achievements of language of the European composers. Thus, anchored in a strong and genuine modal source, the compositions analysed in this paper evoke, in a manner as modern as possible, the atmosphere of some ancestral rituals such as: the invocation of rain during the drought (Paparudele, Scaloianul), funeral ceremony (Bocetul), traditions specific to the winter holidays and new year (Colinda, Cântecul de stea, Sorcova, Folklore traditional dances) etc. The reactivity of those rituals in the sound context of the twentieth century meant potentiating or resizing the archaic spirit of the primordial symbolic entities, in terms of some complexity levels generated by the technique of harmonies of chordal layers, of complex aggregates (gravitational or non-gravitational, geometric), of the mixture polyphonies and with global effect (group, mass), by the technique of heterophony, of texture and cluster, leading to the implementation of some processes of collective improvisation and instrumental theatre.

Keywords: archetype, improvisation, polyphony, ritual, instrumental theatre

Procedia PDF Downloads 274
153 Liposomal Antihelmintics in Parasitology

Authors: Nina Ivanova

Abstract:

More than one third of the population and animals are infected with parasitic helminths. It is especially difficult to cure the larval forms of parasites. The larvae of Hymenolepis nana invade the villi of the intestinal mucosa. Toxocara larvae can live in the liver, heart, lungs, brain, eyes, and pancreas. Commercial antiparasitic drugs cannot guarantee a 100% cure after a single course of treatment, because parasite larvae invade the villi of the intestinal mucosa and the anthelmintics do not reach and kill cestode larvae. The aim of this work was to conduct a study of liposomal antihelminthics on the laboratory animals under the certification received from the Committee on Bioethics and Deontology. It has been checked: 1) anthelmintic activity of the liposomal form of fenasal in experimental hymenolepidosis of white mice (larval stage - Hymenolepis nana). 2) anthelmintic activity of the liposomal form of albendazole in experimental toxocariasis of white mice (in the lungs at the stage of larval migration). Since some helminths cause hemolysis of erythrocytes as we used a mixture of polar lipids developed by us with antihemolytic activity to obtain liposomes Fenasal and albendazole were included in the liposome membrane in the ratio of anthelmintic: lipids 1:10. . The average size of liposomes was 180 nm, and the concentration of lipids in liposomes was 1%. The researches were carried out on white male mice who were infected with Hymenolepis Nana invasional eggs in a peroral way with a doze of 100 eggs per animal. On the 5th day after infection, a liposomal fenasal and commercial fenasal were administered orally for comparison. The animals were observed for 15 days. Before the introduction of liposomes and on the 3rd, 5th, 15th day after the administration of the drug, studies were carried out on the presence of helminths in the organs of animals. The liposomal fenasal, when administered orally, had an anthelmintic effect on Hymenolepis Nana cysticercoids at a dose of 25 mg/kg. The percentage of efficiency was 90.06, 91.36 96.85% on days 3, 5, 15, respectively. For comparison, the commercial activity was at a dose of 200 mg/ml, which is 8 times higher than the dose of liposomal fenasal. To evaluate the anthelmintic effect of the liposomal form of albendazole in experimental toxocariasis of white mice (toxascaris in the lungs at the stage of larval migration), studies were also carried out on white mice. The animals were infected with invasive eggs of Toxocara canis, orally, at a dose of 100 eggs per animal. On the 5th day after infection, the liposomal albendazole was administered orally. The efficacy of the study dosage form was determined by counting Larva mirgans larvae in the lungs. The results obtained showed that the liposomal albendazole had the greatest anthelmintic effect on Toxocara larvae at a dose of 2.0 mg/kg, which was 3.75 times less than the therapeutic one. At the same time, the percentage of efficiency was 93.75% on the 3rd day, and 98.66% on the 5th day.

Keywords: hymenolepis, Toxocara, larvae, liposomes

Procedia PDF Downloads 80
152 A Study on the Shear-Induced Crystallization of Aliphatic-Aromatic Copolyester

Authors: Ramin Hosseinnezhad, Iurii Vozniak, Andrzej Galeski

Abstract:

Shear-induced crystallization, originated from orientation of chains along the flow direction, is an inevitable part of most polymer processing technologies. It plays a dominant role in determining the final product properties and is affected by many factors such as shear rate, cooling rate, total strain, etc. Investigation of the shear-induced crystallization process become of great importance for preparation of nanocomposite, which requires crystallization of nanofibrous sheared inclusions at higher temperatures. Thus, the effects of shear time, shear rate, and also thermal condition of cooling on crystallization of two aliphatic-aromatic copolyesters have been investigated. This was performed using Linkam optical shearing system (CSS450) for both Ecoflex® F Blend C1200 produced by BASF and synthesized copolyester of butylene terephthalate and a mixture of butylene esters: adipate, succinate, and glutarate, (PBASGT), containing 60% of aromatic comonomer. Crystallization kinetics of these biodegradable copolyesters was studied at two different conditions of shearing. First, sample with a thickness of 60µm was heated to 60˚C above its melting point and subsequently subjected to different shear rates (100–800 sec-1) while cooling with specific rates. Second, the same type of sample was cooled down when shearing at constant temperature was finished. The intensity of transmitted depolarized light, recorded by a camera attached to the optical microscope, was used as a measure to follow the crystallization. Temperature dependencies of conversion degree of samples during cooling were collected and used to determine the half-temperature (Th), at which 50% conversion degree was reached. Shearing ecoflex films for 45 seconds with a shear rate of 100 sec-1 resulted in significant increase of Th from 56˚C to 70˚C. Moreover, the temperature range for the transition of molten samples to crystallized state decreased from 42˚C to 20˚C. Comparatively low shift of 10˚C in Th towards higher temperature was observed for PBASGT films at shear rate of 600 sec-1 for 45 seconds. However, insufficient melt flow strength and non-laminar flow due to Taylor vortices was a hindrance to reach more elevated Th at very high shear rates (600–800 sec-1). The shift in Th was smaller for the samples sheared at a constant temperature and subsequently cooled down. This may be attributed to the longer time gap between cessation of shearing and the onset of crystallization. The longer this time gap, the more possibility for crystal nucleus to re-melt at temperatures above Tm and for polymer chains to recoil and relax. It is found that the crystallization temperature, crystallization induction time and spherulite growth of aliphatic-aromatic copolyesters are dramatically influenced by both the cooling rate and the shear imposed during the process.

Keywords: induced crystallization, shear rate, aliphatic-aromatic copolyester, ecoflex

Procedia PDF Downloads 417
151 Compression-Extrusion Test to Assess Texture of Thickened Liquids for Dysphagia

Authors: Jesus Salmeron, Carmen De Vega, Maria Soledad Vicente, Mireia Olabarria, Olaia Martinez

Abstract:

Dysphagia or difficulty in swallowing affects mostly elder people: 56-78% of the institutionalized and 44% of the hospitalized. Liquid food thickening is a necessary measure in this situation because it reduces the risk of penetration-aspiration. Until now, and as proposed by the American Dietetic Association in 2002, possible consistencies have been categorized in three groups attending to their viscosity: nectar (50-350 mPa•s), honey (350-1750 mPa•s) and pudding (>1750 mPa•s). The adequate viscosity level should be identified for every patient, according to her/his impairment. Nevertheless, a systematic review on dysphagia diet performed recently indicated that there is no evidence to suggest that there is any transition of clinical relevance between the three levels proposed. It was also stated that other physical properties of the bolus (slipperiness, density or cohesiveness, among others) could influence swallowing in affected patients and could contribute to the amount of remaining residue. Texture parameters need to be evaluated as possible alternative to viscosity. The aim of this study was to evaluate the instrumental extrusion-compression test as a possible tool to characterize changes along time in water thickened with various products and in the three theoretical consistencies. Six commercial thickeners were used: NM® (NM), Multi-thick® (M), Nutilis Powder® (Nut), Resource® (R), Thick&Easy® (TE) and Vegenat® (V). All of them with a modified starch base. Only one of them, Nut, also had a 6,4% of gum (guar, tara and xanthan). They were prepared as indicated in the instructions of each product and dispensing the correspondent amount for nectar, honey and pudding consistencies in 300 mL of tap water at 18ºC-20ºC. The mixture was stirred for about 30 s. Once it was homogeneously spread, it was dispensed in 30 mL plastic glasses; always to the same height. Each of these glasses was used as a measuring point. Viscosity was measured using a rotational viscometer (ST-2001, Selecta, Barcelona). Extrusion-compression test was performed using a TA.XT2i texture analyzer (Stable Micro Systems, UK) with a 25 mm diameter cylindrical probe (SMSP/25). Penetration distance was set at 10 mm and a speed of 3 mm/s. Measurements were made at 1, 5, 10, 20, 30, 40, 50 and 60 minutes from the moment samples were mixed. From the force (g)–time (s) curves obtained in the instrumental assays, maximum force peak (F) was chosen a reference parameter. Viscosity (mPa•s) and F (g) showed to be highly correlated and had similar development along time, following time-dependent quadratic models. It was possible to predict viscosity using F as an independent variable, as they were linearly correlated. In conclusion, compression-extrusion test could be an alternative and a useful tool to assess physical characteristics of thickened liquids.

Keywords: compression-extrusion test, dysphagia, texture analyzer, thickener

Procedia PDF Downloads 341
150 Dendroremediation of a Defunct Lead Acid Battery Recycling Site

Authors: Alejandro Ruiz-Olivares, M. del Carmen González-Chávez, Rogelio Carrillo-González, Martha Reyes-Ramos, Javier Suárez Espinosa

Abstract:

Use of automobiles has increased and proportionally, the demand for batteries to impulse them. When the device is aged, all the battery materials are reused through lead acid battery recycling (LABR). Importation of used lead acid batteries in Mexico has increased in the last years since many recycling factories have been settled in the country. Inadequate disposal of lead-acid battery recycling (LABR) wastes left soil severely polluted with Pb, Cu, and salts (Na+, SO2− 4, PO3− 4). Soil organic amendments may contribute with essential nutrients and sequester (scavenger compounds) metals to allow plant establishment. The objective of this research was to revegetate a former lead-acid battery recycling site aided with organic amendments. Seven tree species (Acacia farnesiana, Casuarina equisetifolia, Cupressus lusitanica, Eucalyptus obliqua, Fraxinus excelsior, Prosopis laevigata and Pinus greggii) and two organic amendments (vermicompost and vermicompost + sawdust mixture) were tested for phytoremediation of a defunct LABR site. Plants were irrigated during the dry season. Monitoring of the soils was carried out during the experiment: Available metals, salts concentrations and their spatial pattern in soil were analyzed. Plant species and amendments were compared through analysis of covariance and longitudinal analysis. High concentrations of extractable (DTPA-TEA-CaCl₂) metals (up to 15,685 mg kg⁻¹ and 478 mg kg⁻¹ for Pb and Cu) and soluble salts (292 mg kg-1 and 23,578 mg kg-1 for PO3− 4and SO2− 4) were found in the soil after three and six months of setting up the experiment. Lead and Cu concentrations were depleted in the rhizosphere after amendments addition. Spatial pattern of PO3− 4, SO2− 4 and DTPA-extractable Pb and Cu changed slightly through time. In spite of extreme soil conditions the plant species planted: A. farnesiana, E. obliqua, C. equisetifolia and F. excelsior had 100% of survival. Available metals and salts differently affected each species. In addition, negative effect on growth due to Pb accumulated in shoots was observed only in C. lusitanica. Many specimens accumulated high concentrations of Pb ( > 1000 mg kg-1) in shoots. C. equisetifolia and C. lusitanica had the best rate of growth. Based on the results, all the evaluated species may be useful for revegetation of Pb-polluted soils. Besides their use in phytoremediation, some ecosystem services can be obtained from the woodland such as encourage wildlife, wood production, and carbon sequestration. Further research should be conducted to analyze these services.

Keywords: heavy metals, inadequate disposal, organic amendments, phytoremediation with trees

Procedia PDF Downloads 257
149 An Acyclic Zincgermylene: Rapid H₂ Activation

Authors: Martin Juckel

Abstract:

Probably no other field of inorganic chemistry has undergone such a rapid development in the past two decades than the low oxidation state chemistry of main group elements. This rapid development has only been possible by the development of new bulky ligands. In case of our research group, super-bulky monodentate amido ligands and β-diketiminate ligands have been used to a great success. We first synthesized the unprecedented magnesium(I) dimer [ᴹᵉˢNacnacMg]₂ (ᴹᵉˢNacnac = [(ᴹᵉˢNCMe)₂CH]-; Mes = mesityl, which has since been used both as reducing agent and also for the synthesis of new metal-magnesium bonds. In case of the zinc bromide precursor [L*ZnBr] (L*=(N(Ar*)(SiPri₃); (Ar* = C₆H₂{C(H)Ph₂}₂Me-2,6,4, the reduction with [ᴹᵉˢNacnacMg]₂ led to such a metal-magnesium bond. This [L*ZnMg(ᴹᵉˢNacnac)] compound can be seen as an ‘inorganic Grignard reagent’, which can be used to transfer the metal fragment onto other functional groups or other metal centers; just like the conventional Grignard reagent. By simple addition of (TBoN)GeCl (TBoN = N(SiMe₃){B(DipNCH)₂) to the aforesaid compound, we were able to transfer the amido-zinc fragment to the Ge center of the germylene starting material and to synthesize the first example of a germanium(II)-zinc bond: [:Ge(TBoN)(ZnL*)]. While these reactions typically led to complex product mixture, [:Ge(TBoN)(ZnL*)] could be isolated as dark blue crystals in a good yield. This new compound shows interesting reactivity towards small molecules, especially dihydrogen gas. This is of special interest as dihydrogen is one of the more difficult small molecules to activate, due to its strong (BDE = 108 kcal/mol) and non-polar bond. In this context, the interaction between H₂ σ-bond with the tetrelylene p-Orbital (LUMO), with concomitant donation of the tetrelylene lone pair (HOMO) into the H₂ σ* orbital are responsible for the activation of dihydrogen gas. Accordingly, the narrower the HOMO-LUMO gap of tertelylene, the more reactivity towards H₂ it typically is. The aim of a narrow HOMO-LUMO gap was reached by transferring electropositive substituents respectively metal substituents with relatively low Pauling electronegativity (zinc: 1.65) onto the Ge center (here: the zinc-amido fragment). In consideration of the unprecedented reactivity of [:Ge(TBoN)(ZnL*)], a computational examination of its frontier orbital energies was undertaken. The energy separation between the HOMO, which has significant Ge lone pair character, and the LUMO, which has predominantly Ge p-orbital character, is narrow (40.8 kcal/mol; cf.∆S-T= 24.8 kcal/mol), and comparable to the HOMO-LUMO gaps calculated for other literature known complexes). The calculated very narrow HOMO-LUMO gap for the [:Ge(TBoN)(ZnL*)] complex is consistent with its high reactivity, and is remarkable considering that it incorporates a π-basic amide ligand, which are known to raise the LUMO of germylenes considerably.

Keywords: activation of dihydrogen gas, narrow HOMO-LUMO gap, first germanium(II)-zinc bond, inorganic Grignard reagent

Procedia PDF Downloads 146
148 Biostimulant Activity of Chitooligomers: Effect of Different Degrees of Acetylation and Polymerization on Wheat Seedlings under Salt Stress

Authors: Xiaoqian Zhang, Ping Zou, Pengcheng Li

Abstract:

Salt stress is one of the most serious abiotic stresses, and it can lead to the reduction of agricultural productivity. High salt concentration makes it more difficult for roots to absorb water and disturbs the homeostasis of cellular ions resulting in osmotic stress, ion toxicity and generation of reactive oxygen species (ROS). Compared with the normal physiological conditions, salt stress could inhibit the photosynthesis, break metabolic balance and damage cellular structures, and ultimately results in the reduction of crop yield. Therefore it is vital to develop practical methods for improving the salt tolerance of plants. Chitooligomers (COS) is partially depolymerized products of chitosan, which is consisted of D-glucosamine and N-acetyl-D-glucosamine. In agriculture, COS has the ability to promote plant growth and induce plant innate immunity. The bioactivity of COS closely related to its degree of polymerization (DP) and acetylation (DA). However, most of the previous reports fail to mention the function of COS with different DP and DAs in improving the capacity of plants against salt stress. Accordingly, in this study, chitooligomers (COS) with different degrees of DAs were used to test wheat seedlings response to salt stress. In addition, the determined degrees of polymerization (DPs) COS(DP 4-12) and a heterogeneous COS mixture were applied to explore the relationship between the DP of COSs and its effect on the growth of wheat seedlings in response to salt stress. It showed that COSs, the exogenous elicitor, could promote the growth of wheat seedling, reduce the malondialdehyde (MDA) concentration, and increase the activities of antioxidant enzymes. The results of mRNA expression level test for salt stress-responsive genes indicated that COS keep plants away from being hurt by the salt stress via the regulation of the concentration and the increased antioxidant enzymes activities. Moreover, it was found that the activities of COS was closely related to its Das and COS (DA: 50%) displayed the best salt resistance activity to wheat seedlings. The results also showed that COS with different DP could promote the growth of wheat seedlings under salt stress. COS with a DP (6-8) showed better activities than the other tested samples, implied its activity had a close relationship with its DP. After treatment with chitohexaose, chitoheptaose, and chitooctaose, the photosynthetic parameters were improved obviously. The soluble sugar and proline contents were improved by 26.7%-53.3% and 43.6.0%-70.2%, respectively, while the concentration of malondialdehyde (MDA) was reduced by 36.8% - 49.6%. In addition, the antioxidant enzymes activities were clearly activated. At the molecular level, the results revealed that they could obviously induce the expression of Na+/H+ antiporter genes. In general, these results were fundamental to the study of action mechanism of COS on promoting plant growth under salt stress and the preparation of plant growth regulator.

Keywords: chitooligomers (COS), degree of polymerization (DP), degree of acetylation (DA), salt stress

Procedia PDF Downloads 146
147 Approach to Honey Volatiles' Profiling by Gas Chromatography and Mass Spectrometry

Authors: Igor Jerkovic

Abstract:

Biodiversity of flora provides many different nectar sources for the bees. Unifloral honeys possess distinctive flavours, mainly derived from their nectar sources (characteristic volatile organic components (VOCs)). Specific or nonspecific VOCs (chemical markers) could be used for unifloral honey characterisation as addition to the melissopalynologycal analysis. The main honey volatiles belong, in general, to three principal categories: terpenes, norisoprenoids, and benzene derivatives. Some of these substances have been described as characteristics of the floral source, and other compounds, like several alcohols, branched aldehydes, and furan derivatives, may be related to the microbial purity of honey processing and storage conditions. Selection of the extraction method for the honey volatiles profiling should consider that heating of the honey produce different artefacts and therefore conventional methods of VOCs isolation (such as hydrodistillation) cannot be applied for the honey. Two-way approach for the isolation of the honey VOCs was applied using headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE). The extracts were analysed by gas chromatography and mass spectrometry (GC-MS). HS-SPME (with the fibers of different polarity such as polydimethylsiloxane/ divinylbenzene (PDMS/DVB) or divinylbenzene/carboxene/ polydimethylsiloxane (DVB/CAR/PDMS)) enabled isolation of high volatile headspace VOCs of the honey samples. Among them, some characteristic or specific compounds can be found such as 3,4-dihydro-3-oxoedulan (in Centaurea cyanus L. honey) or 1H-indole, methyl anthranilate, and cis-jasmone (in Citrus unshiu Marc. honey). USE with different solvents (mainly dichloromethane or the mixture pentane : diethyl ether 1 : 2 v/v) enabled isolation of less volatile and semi-volatile VOCs of the honey samples. Characteristic compounds from C. unshiu honey extracts were caffeine, 1H-indole, 1,3-dihydro-2H-indol-2-one, methyl anthranilate, and phenylacetonitrile. Sometimes, the selection of solvent sequence was useful for more complete profiling such as sequence I: pentane → diethyl ether or sequence II: pentane → pentane/diethyl ether (1:2, v/v) → dichloromethane). The extracts with diethyl ether contained hydroquinone and 4-hydroxybenzoic acid as the major compounds, while (E)-4-(r-1’,t-2’,c-4’-trihydroxy-2’,6’,6’-trimethylcyclo-hexyl)but-3-en-2-one predominated in dichloromethane extracts of Allium ursinum L. honey. With this two-way approach, it was possible to obtain a more detailed insight into the honey volatile and semi-volatile compounds and to minimize the risks of compound discrimination due to their partial extraction that is of significant importance for the complete honey profiling and identification of the chemical biomarkers that can complement the pollen analysis.

Keywords: honey chemical biomarkers, honey volatile compounds profiling, headspace solid-phase microextraction (HS-SPME), ultrasonic solvent extraction (USE)

Procedia PDF Downloads 169
146 First Documented Anesthesia with Use of Low Doses of Tiletamine-Zolazepam Combination in Ovoviparous Amazon Tree Boa Undergoing Emergency Coeliotomy-Case Report

Authors: Krzysztof Buczak, Sonia Lachowska, Pawel Kucharski, Agnieszka Antonczyk

Abstract:

Tiletamine - zolazepam combination is increasingly used in veterinary anaesthesiology in wild animals, including snakes. The available literature shows a lack of information about anesthesia in this mixture in ovoviviparous snakes. The studies show the possibility of using the combination at a dose of 20 mg/kg or more for snake immobilization. This paper presents an anesthetic protocol with the use of a combination of tiletamine - zolazepam at the dose of 10 mg/kg intramuscularly and maintenance with inhalant anesthesia with isoflurane in pure oxygen. The objective of this study was to evaluate the usefulness of the anesthetic protocol to proceed with coeliotomy in Amazon Tree Boa. The patient was a five years old bicolor female Amazon Tree Boa (Corallus hortulanus) with dystocia. The clinical examination reveals significant emaciation (bodyweight 520g), high degree of dehydration, heart rate (HR = 60 / min), pale mucous membranes and poor reactivity. Meloxicam (1 mg/kg) and tramadol (10 mg/kg) were administered subcutaneously and the patient was placed in an incubator with access to fresh oxygen. Four hours later, the combination of tiletamine - zolazepam (10 mg/kg) was administered intramuscularly for induction of anesthesia. The snake was intubated and connected to inhalant anesthesia equipment. For maintenance, the anesthesia isoflurane in pure oxygen was used due to apnea, which occurs 30 minutes after the induction semi-closed system was attached and the ventilator was turned on (PCV system, four breaths per minute, 8 cm of H2O). Cardiopulmonary parameters (HR, RR, SPO2, ETCO2, ETISO) were assessed throughout the procedure. During the entire procedure, the operating room was heated to a temperature of 26 degrees Celsius. Additionally, the hose was placed on a heating mat, which maintained a temperature of 30 degrees Celsius. For 15 minutes after induction, the loss of muscle tone was observed from the head to the tail. Induction of general anesthesia was scored as good because of the possibility of intubation. During the whole procedure, the heart rate was at the rate of 58 beats per minute (bpm). Ventilation parameters were stable throughout the procedure. The recovery period lasts for about 4 hours after the end of general anesthesia. The muscle tension returned from tail to head. The snake started to breathe spontaneously within 1,5 hours after the end of general anesthesia. The protocol of general anesthesia with the combination of tiletamine- zolazepam with a dose of 10 mg/kg is useful for proceeding with the emergency coeliotomy in maintenance with isoflurane in oxygen. Further study about the impact of the combination of tiletamine- zolazepam for the recovery period is needed.

Keywords: anesthesia, corallus hortulanus, ovoviparous, snake, tiletamine, zolazepam

Procedia PDF Downloads 209
145 New Teaching Tools for a Modern Representation of Chemical Bond in the Course of Food Science

Authors: Nicola G. G. Cecca

Abstract:

In Italian IPSSEOAs, high schools that give a vocational education to students that will work in the field of Enogastronomy and Hotel Management, the course of Food Science allows the students to start and see food as a mixture of substances that they will transform during their profession. These substances are characterized not only by a chemical composition but also by a molecular structure that makes them nutritionally active. But the increasing number of new products proposed by Food Industry, the modern techniques of production and transformation, the innovative preparations required by customers have made many information reported in the most wide spread Food Science textbooks not up-to-date or too poor for the people who will work in catering sector. Often Authors offer information aged to Bohr’s Atomic Model and to the ‘Octet Rule’ proposed by G.N. Lewis to describe the Chemical Bond, without giving any reference to new as Orbital Atomic Model and Molecular Orbital Theory that, in the meantime, start to be old themselves. Furthermore, this antiquated information precludes an easy understanding of a wide range of properties of nutritive substances and many reactions in which the food constituents are involved. In this paper, our attention is pointed out to use GEOMAG™ to represent the dynamics with which the chemical bond is formed during the synthesis of the molecules. GEOMAG™ is a toy, produced by the Swiss Company Geomagword S.A., pointed to stimulate in children, aged between 6-10 years, their fantasy and their handling ability and constituted by metallic spheres and metallic magnetic bars coated by coloured plastic materials. The simulation carried out with GEOMAG™ is based on the similitude existing between the Coulomb’s force and the magnetic attraction’s force and in particular between the formulae with which they are calculated. The electrostatic force (F in Newton) that allows the formation of the chemical bond can be calculated by mean Fc = kc q1 q2/d2 where: q1 e q2 are the charge of particles [in Coulomb], d is the distance between the particles [in meters] and kc is the Coulomb’s constant. It is surprising to observe that the attraction’s force (Fm) acting between the magnetic extremities of GEOMAG™ used to simulate the chemical bond can be calculated in the same way by using the formula Fm = km m1 m2/d2 where: m1 e m2 represent the strength of the poles [A•m], d is the distance between the particles [m], km = μ/4π in which μ is the magnetic permeability of medium [N•A-2]. The magnetic attraction can be tested by students by trying to keep the magnetic elements of GEOMAG™ separate by hands or trying to measure by mean an appropriate dynamometric system. Furthermore, by using a dynamometric system to measure the magnetic attraction between the GEOMAG™ elements is possible draw a graphic F=f(d) to verify that the curve obtained during the simulation is very similar to that one hypnotized, around the 1920’s by Linus Pauling to describe the formation of H2+ in according with Molecular Orbital Theory.

Keywords: chemical bond, molecular orbital theory, magnetic attraction force, GEOMAG™

Procedia PDF Downloads 234
144 Simple and Effective Method of Lubrication and Wear Protection

Authors: Buddha Ratna Shrestha, Jimmy Faivre, Xavier Banquy

Abstract:

By precisely controlling the molecular interactions between anti-wear macromolecules and bottle-brush lubricating molecules in the solution state, we obtained a fluid with excellent lubricating and wear protection capabilities. The reason for this synergistic behavior relies on the subtle interaction forces between the fluid components which allow the confined macromolecules to sustain high loads under shear without rupture. Our results provide rational guides to design such fluids for virtually any type of surfaces. The lowest friction coefficient and the maximum pressure that it can sustain is 5*10-3 and 2.5 MPa which is close to the physiological pressure. Lubricating and protecting surfaces against wear using liquid lubricants is a great technological challenge. Until now, wear protection was usually imparted by surface coatings involving complex chemical modifications of the surface while lubrication was provided by a lubricating fluid. Hence, we here research for a simple, effective and applicable solution to the above problem using surface force apparatus (SFA). SFA is a powerful technique with sub-angstrom resolution in distance and 10 nN/m resolution in interaction force while performing friction experiment. Thus, SFA is used to have the direct insight into interaction force, material and friction at interface. Also, we always know the exact contact area. From our experiments, we found that by precisely controlling the molecular interactions between anti-wear macromolecules and lubricating molecules, we obtained a fluid with excellent lubricating and wear protection capabilities. The reason for this synergistic behavior relies on the subtle interaction forces between the fluid components which allow the confined macromolecules to sustain high loads under shear without rupture. The lowest friction coefficient and the maximum pressure that it can sustain in our system is 5*10-3 and 2.5 GPA which is well above the physiological pressure. Our results provide rational guides to design such fluids for virtually any type of surfaces. Most importantly this process is simple, effective and applicable method of lubrication and protection as until now wear protection was usually imparted by surface coatings involving complex chemical modifications of the surface. Currently, the frictional data that are obtained while sliding the flat mica surfaces are compared and confirmed that a particular mixture of solution was found to surpass all other combination. So, further we would like to confirm that the lubricating and antiwear protection remains the same by performing the friction experiments in synthetic cartilages.

Keywords: bottle brush polymer, hyaluronic acid, lubrication, tribology

Procedia PDF Downloads 241
143 Cardiac Arrest after Cardiac Surgery

Authors: Ravshan A. Ibadov, Sardor Kh. Ibragimov

Abstract:

Objective. The aim of the study was to optimize the protocol of cardiopulmonary resuscitation (CPR) after cardiovascular surgical interventions. Methods. The experience of CPR conducted on patients after cardiovascular surgical interventions in the Department of Intensive Care and Resuscitation (DIR) of the Republican Specialized Scientific-Practical Medical Center of Surgery named after Academician V. Vakhidov is presented. The key to the new approach is the rapid elimination of reversible causes of cardiac arrest, followed by either defibrillation or electrical cardioversion (depending on the situation) before external heart compression, which may damage sternotomy. Careful use of adrenaline is emphasized due to the potential recurrence of hypertension, and timely resternotomy (within 5 minutes) is performed to ensure optimal cerebral perfusion through direct massage. Out of 32 patients, cardiac arrest in the form of asystole was observed in 16 (50%), with hypoxemia as the cause, while the remaining 16 (50%) experienced ventricular fibrillation caused by arrhythmogenic reactions. The age of the patients ranged from 6 to 60 years. All patients were evaluated before the operation using the ASA and EuroSCORE scales, falling into the moderate-risk group (3-5 points). CPR was conducted for cardiac activity restoration according to the American Heart Association and European Resuscitation Council guidelines (Ley SJ. Standards for Resuscitation After Cardiac Surgery. Critical Care Nurse. 2015;35(2):30-38). The duration of CPR ranged from 8 to 50 minutes. The ARASNE II scale was used to assess the severity of patients' conditions after CPR, and the Glasgow Coma Scale was employed to evaluate patients' consciousness after the restoration of cardiac activity and sedation withdrawal. Results. In all patients, immediate chest compressions of the necessary depth (4-5 cm) at a frequency of 100-120 compressions per minute were initiated upon detection of cardiac arrest. Regardless of the type of cardiac arrest, defibrillation with a manual defibrillator was performed 3-5 minutes later, and adrenaline was administered in doses ranging from 100 to 300 mcg. Persistent ventricular fibrillation was also treated with antiarrhythmic therapy (amiodarone, lidocaine). If necessary, infusion of inotropes and vasopressors was used, and for the prevention of brain edema and the restoration of adequate neurostatus within 1-3 days, sedation, a magnesium-lidocaine mixture, mechanical intranasal cooling of the brain stem, and neuroprotective drugs were employed. A coordinated effort by the resuscitation team and proper role allocation within the team were essential for effective cardiopulmonary resuscitation (CPR). All these measures contributed to the improvement of CPR outcomes. Conclusion. Successful CPR following cardiac surgical interventions involves interdisciplinary collaboration. The application of an optimized CPR standard leads to a reduction in mortality rates and favorable neurological outcomes.

Keywords: cardiac surgery, cardiac arrest, resuscitation, critically ill patients

Procedia PDF Downloads 27
142 Grain Size Statistics and Depositional Pattern of the Ecca Group Sandstones, Karoo Supergroup in the Eastern Cape Province, South Africa

Authors: Christopher Baiyegunhi, Kuiwu Liu, Oswald Gwavava

Abstract:

Grain size analysis is a vital sedimentological tool used to unravel the hydrodynamic conditions, mode of transportation and deposition of detrital sediments. In this study, detailed grain-size analysis was carried out on thirty-five sandstone samples from the Ecca Group in the Eastern Cape Province of South Africa. Grain-size statistical parameters, bivariate analysis, linear discriminate functions, Passega diagrams and log-probability curves were used to reveal the depositional processes, sedimentation mechanisms, hydrodynamic energy conditions and to discriminate different depositional environments. The grain-size parameters show that most of the sandstones are very fine to fine grained, moderately well sorted, mostly near-symmetrical and mesokurtic in nature. The abundance of very fine to fine grained sandstones indicates the dominance of low energy environment. The bivariate plots that the samples are mostly grouped, except for the Prince Albert samples that show scattered trend, which is due to the either mixture of two modes in equal proportion in bimodal sediments or good sorting in unimodal sediments. The linear discriminant function (LDF) analysis is dominantly indicative of turbidity current deposits under shallow marine environments for samples from the Prince Albert, Collingham and Ripon Formations, while those samples from the Fort Brown Formation are fluvial (deltaic) deposits. The graphic mean value shows the dominance of fine sand-size particles, which point to relatively low energy conditions of deposition. In addition, the LDF results point to low energy conditions during the deposition of the Prince Albert, Collingham and part of the Ripon Formation (Pluto Vale and Wonderfontein Shale Members), whereas the Trumpeters Member of the Ripon Formation and the overlying Fort Brown Formation accumulated under high energy conditions. The CM pattern shows a clustered distribution of sediments in the PQ and QR segments, indicating that the sediments were deposited mostly by suspension and rolling/saltation, and graded suspension. Furthermore, the plots also show that the sediments are mainly deposited by turbidity currents. Visher diagrams show the variability of hydraulic depositional conditions for the Permian Ecca Group sandstones. Saltation is the major process of transportation, although suspension and traction also played some role during deposition of the sediments. The sediments were mainly in saltation and suspension before being deposited.

Keywords: grain size analysis, hydrodynamic condition, depositional environment, Ecca Group, South Africa

Procedia PDF Downloads 451
141 Numerical Investigation on Transient Heat Conduction through Brine-Spongy Ice

Authors: S. R. Dehghani, Y. S. Muzychka, G. F. Naterer

Abstract:

The ice accretion of salt water on cold substrates creates brine-spongy ice. This type of ice is a mixture of pure ice and liquid brine. A real case of creation of this type of ice is superstructure icing which occurs on marine vessels and offshore structures in cold and harsh conditions. Transient heat transfer through this medium causes phase changes between brine pockets and pure ice. Salt rejection during the process of transient heat conduction increases the salinity of brine pockets to reach a local equilibrium state. In this process the only effect of passing heat through the medium is not changing the sensible heat of the ice and brine pockets; latent heat plays an important role and affects the mechanism of heat transfer. In this study, a new analytical model for evaluating heat transfer through brine-spongy ice is suggested. This model considers heat transfer and partial solidification and melting together. Properties of brine-spongy ice are obtained using properties of liquid brine and pure ice. A numerical solution using Method of Lines discretizes the medium to reach a set of ordinary differential equations. Boundary conditions are chosen using one of the applicable cases of this type of ice; one side is considered as a thermally isolated surface, and the other side is assumed to be suddenly affected by a constant temperature boundary. All cases are evaluated in temperatures between -20 C and the freezing point of brine-spongy ice. Solutions are conducted using different salinities from 5 to 60 ppt. Time steps and space intervals are chosen properly to maintain the most stable and fast solution. Variation of temperature, volume fraction of brine and brine salinity versus time are the most important outputs of this study. Results show that transient heat conduction through brine-spongy ice can create a various range of salinity of brine pockets from the initial salinity to that of 180 ppt. The rate of variation of temperature is found to be slower for high salinity cases. The maximum rate of heat transfer occurs at the start of the simulation. This rate decreases as time passes. Brine pockets are smaller at portions closer to the colder side than that of the warmer side. A the start of the solution, the numerical solution tends to increase instabilities. This is because of sharp variation of temperature at the start of the process. Changing the intervals improves the unstable situation. The analytical model using a numerical scheme is capable of predicting thermal behavior of brine spongy ice. This model and numerical solutions are important for modeling the process of freezing of salt water and ice accretion on cold structures.

Keywords: method of lines, brine-spongy ice, heat conduction, salt water

Procedia PDF Downloads 194