Search results for: elliptic PDEs
101 The Improved Laplace Homotopy Perturbation Method for Solving Non-integrable PDEs
Authors: Noufe H. Aljahdaly
Abstract:
The Laplace homotopy perturbation method (LHPM) is an approximate method that help to compute the approximate solution for partial differential equations. The method has been used for solving several problems in science. It requires the initial condition, so it solves the initial value problem. In physics, when some important terms are taken in account, we may obtain non-integrable partial differential equations that do not have analytical integrals. This type of PDEs do not have exact solution, therefore, we need to compute the solution without initial condition. In this work, we improved the LHPM to be able to solve non-integrable problem, especially the damped PDEs, which are the PDEs that include a damping term which makes the PDEs non-integrable. We improved the LHPM by setting a perturbation parameter and an embedding parameter as the damping parameter and using the initial condition for damped PDE as the initial condition for non-damped PDE.Keywords: non-integrable PDEs, modified Kawahara equation;, laplace homotopy perturbation method, damping term
Procedia PDF Downloads 100100 Exploring Regularity Results in the Context of Extremely Degenerate Elliptic Equations
Authors: Zahid Ullah, Atlas Khan
Abstract:
This research endeavors to explore the regularity properties associated with a specific class of equations, namely extremely degenerate elliptic equations. These equations hold significance in understanding complex physical systems like porous media flow, with applications spanning various branches of mathematics. The focus is on unraveling and analyzing regularity results to gain insights into the smoothness of solutions for these highly degenerate equations. Elliptic equations, fundamental in expressing and understanding diverse physical phenomena through partial differential equations (PDEs), are particularly adept at modeling steady-state and equilibrium behaviors. However, within the realm of elliptic equations, the subset of extremely degenerate cases presents a level of complexity that challenges traditional analytical methods, necessitating a deeper exploration of mathematical theory. While elliptic equations are celebrated for their versatility in capturing smooth and continuous behaviors across different disciplines, the introduction of degeneracy adds a layer of intricacy. Extremely degenerate elliptic equations are characterized by coefficients approaching singular behavior, posing non-trivial challenges in establishing classical solutions. Still, the exploration of extremely degenerate cases remains uncharted territory, requiring a profound understanding of mathematical structures and their implications. The motivation behind this research lies in addressing gaps in the current understanding of regularity properties within solutions to extremely degenerate elliptic equations. The study of extreme degeneracy is prompted by its prevalence in real-world applications, where physical phenomena often exhibit characteristics defying conventional mathematical modeling. Whether examining porous media flow or highly anisotropic materials, comprehending the regularity of solutions becomes crucial. Through this research, the aim is to contribute not only to the theoretical foundations of mathematics but also to the practical applicability of mathematical models in diverse scientific fields.Keywords: elliptic equations, extremely degenerate, regularity results, partial differential equations, mathematical modeling, porous media flow
Procedia PDF Downloads 7299 Existence and Concentration of Solutions for a Class of Elliptic Partial Differential Equations Involving p-Biharmonic Operator
Authors: Debajyoti Choudhuri, Ratan Kumar Giri, Shesadev Pradhan
Abstract:
The perturbed nonlinear Schrodinger equation involving the p-biharmonic and the p-Laplacian operators involving a real valued parameter and a continuous real valued potential function defined over the N- dimensional Euclidean space has been considered. By the variational technique, an existence result pertaining to a nontrivial solution to this non-linear partial differential equation has been proposed. Further, by the Concentration lemma, the concentration of solutions to the same problem defined on the set consisting of those elements where the potential function vanishes as the real parameter approaches to infinity has been addressed.Keywords: p-Laplacian, p-biharmonic, elliptic PDEs, Concentration lemma, Sobolev space
Procedia PDF Downloads 23498 Improved of Elliptic Curves Cryptography over a Ring
Authors: Abdelhakim Chillali, Abdelhamid Tadmori, Muhammed Ziane
Abstract:
In this article we will study the elliptic curve defined over the ring An and we define the mathematical operations of ECC, which provides a high security and advantage for wireless applications compared to other asymmetric key cryptosystem.Keywords: elliptic curves, finite ring, cryptography, study
Procedia PDF Downloads 37297 A Study of General Attacks on Elliptic Curve Discrete Logarithm Problem over Prime Field and Binary Field
Authors: Tun Myat Aung, Ni Ni Hla
Abstract:
This paper begins by describing basic properties of finite field and elliptic curve cryptography over prime field and binary field. Then we discuss the discrete logarithm problem for elliptic curves and its properties. We study the general common attacks on elliptic curve discrete logarithm problem such as the Baby Step, Giant Step method, Pollard’s rho method and Pohlig-Hellman method, and describe in detail experiments of these attacks over prime field and binary field. The paper finishes by describing expected running time of the attacks and suggesting strong elliptic curves that are not susceptible to these attacks.cKeywords: discrete logarithm problem, general attacks, elliptic curve, prime field, binary field
Procedia PDF Downloads 23396 Exact Solutions of K(N,N)-Type Equations Using Jacobi Elliptic Functions
Authors: Edamana Krishnan, Khalil Al-Ghafri
Abstract:
In this paper, modified K(n,n) and K(n+1,n+1) equations have been solved using mapping methods which give a variety of solutions in terms of Jacobi elliptic functions. The solutions when m approaches 0 and 1, with m as the modulus of the JEFs have also been deduced. The role of constraint conditions has been discussed.Keywords: travelling wave solutions, solitary wave solutions, compactons, Jacobi elliptic functions, mapping methods
Procedia PDF Downloads 30595 Nonlinear Static Analysis of Laminated Composite Hollow Beams with Super-Elliptic Cross-Sections
Authors: G. Akgun, I. Algul, H. Kurtaran
Abstract:
In this paper geometrically nonlinear static behavior of laminated composite hollow super-elliptic beams is investigated using generalized differential quadrature method. Super-elliptic beam can have both oval and elliptic cross-sections by adjusting parameters in super-ellipse formulation (also known as Lamé curves). Equilibrium equations of super-elliptic beam are obtained using the virtual work principle. Geometric nonlinearity is taken into account using von-Kármán nonlinear strain-displacement relations. Spatial derivatives in strains are expressed with the generalized differential quadrature method. Transverse shear effect is considered through the first-order shear deformation theory. Static equilibrium equations are solved using Newton-Raphson method. Several composite super-elliptic beam problems are solved with the proposed method. Effects of layer orientations of composite material, boundary conditions, ovality and ellipticity on bending behavior are investigated.Keywords: generalized differential quadrature, geometric nonlinearity, laminated composite, super-elliptic cross-section
Procedia PDF Downloads 29594 Passive Control of Elliptic Jet by Using Triangular and Truncated Tabs
Authors: Saif Akram, E. Rathakrishnan
Abstract:
The mixing promoting efficiency of two identical sharp and truncated vertex triangular tabs offering geometrical blockage of 2.5% each, placed at the exit of a Mach 1.5 elliptic nozzle was studied experimentally. The effectiveness of both the tabs in enhancing the mixing of jets with the ambient air are determined by measuring the Pitot pressure along the jet axis and the jet spread in both the minor and major axes of the elliptic nozzle, covering marginally overexpanded to moderately underexpanded levels at the nozzle exit. The results reveal that both the tabs enhance mixing characteristics of the uncontrolled elliptic jet when placed at minor axis. A core length reduction of 67% is achieved at NPR 3 which is the overexpanded state. Similarly, the core length is reduced by about 67%, 50% and 57% at NPRs of 4, 5 and 6 (underexpanded states) respectively. However, unlike the considerable increment in mixing promoting efficiency by the use of truncated vertex tabs for axisymmetric jets, the effect is not much pronounced for the case of supersonic elliptic jets. The CPD plots for both the cases almost overlap, especially when tabs are placed at minor axis, at all the pressure conditions. While, when the tabs are used at major axis, in the case of overexpanded condition, the sharp vertex triangular tabs act as a better mixing enhancer for the supersonic elliptic jets. For the jet controlled with truncated vertex triangular tabs, the core length reductions are of the same order as those for the sharp vertex triangular tabs. The jet mixing is hardly influenced by the tip effect in case of supersonic elliptic jet.Keywords: elliptic jet, tabs, truncated, triangular
Procedia PDF Downloads 38393 An Attack on the Lucas Based El-Gamal Cryptosystem in the Elliptic Curve Group Over Finite Field Using Greater Common Divisor
Authors: Lee Feng Koo, Tze Jin Wong, Pang Hung Yiu, Nik Mohd Asri Nik Long
Abstract:
Greater common divisor (GCD) attack is an attack that relies on the polynomial structure of the cryptosystem. This attack required two plaintexts differ from a fixed number and encrypted under same modulus. This paper reports a security reaction of Lucas Based El-Gamal Cryptosystem in the Elliptic Curve group over finite field under GCD attack. Lucas Based El-Gamal Cryptosystem in the Elliptic Curve group over finite field was exposed mathematically to the GCD attack using GCD and Dickson polynomial. The result shows that the cryptanalyst is able to get the plaintext without decryption by using GCD attack. Thus, the study concluded that it is highly perilous when two plaintexts have a slight difference from a fixed number in the same Elliptic curve group over finite field.Keywords: decryption, encryption, elliptic curve, greater common divisor
Procedia PDF Downloads 25692 Implementation of Integer Sub-Decomposition Method on Elliptic Curves with J-Invariant 1728
Authors: Siti Noor Farwina Anwar, Hailiza Kamarulhaili
Abstract:
In this paper, we present the idea of implementing the Integer Sub-Decomposition (ISD) method on elliptic curves with j-invariant 1728. The ISD method was proposed in 2013 to compute scalar multiplication in elliptic curves, which remains to be the most expensive operation in Elliptic Curve Cryptography (ECC). However, the original ISD method only works on integer number field and solve integer scalar multiplication. By extending the method into the complex quadratic field, we are able to solve complex multiplication and implement the ISD method on elliptic curves with j-invariant 1728. The curve with j-invariant 1728 has a unique discriminant of the imaginary quadratic field. This unique discriminant of quadratic field yields a unique efficiently computable endomorphism, which later able to speed up the computations on this curve. However, the ISD method needs three endomorphisms to be accomplished. Hence, we choose all three endomorphisms to be from the same imaginary quadratic field as the curve itself, where the first endomorphism is the unique endomorphism yield from the discriminant of the imaginary quadratic field.Keywords: efficiently computable endomorphism, elliptic scalar multiplication, j-invariant 1728, quadratic field
Procedia PDF Downloads 19991 The Application of Variable Coefficient Jacobian elliptic Function Method to Differential-Difference Equations
Authors: Chao-Qing Dai
Abstract:
In modern nonlinear science and textile engineering, nonlinear differential-difference equations are often used to describe some nonlinear phenomena. In this paper, we extend the variable coefficient Jacobian elliptic function method, which was used to find new exact travelling wave solutions of nonlinear partial differential equations, to nonlinear differential-difference equations. As illustration, we derive two series of Jacobian elliptic function solutions of the discrete sine-Gordon equation.Keywords: discrete sine-Gordon equation, variable coefficient Jacobian elliptic function method, exact solutions, equation
Procedia PDF Downloads 66890 Investigating Smoothness: An In-Depth Study of Extremely Degenerate Elliptic Equations
Authors: Zahid Ullah, Atlas Khan
Abstract:
The presented research is dedicated to an extensive examination of the regularity properties associated with a specific class of equations, namely extremely degenerate elliptic equations. This study holds significance in unraveling the complexities inherent in these equations and understanding the smoothness of their solutions. The focus is on analyzing the regularity of results, aiming to contribute to the broader field of mathematical theory. By delving into the intricacies of extremely degenerate elliptic equations, the research seeks to advance our understanding beyond conventional analyses, addressing challenges posed by degeneracy and pushing the boundaries of classical analytical methods. The motivation for this exploration lies in the practical applicability of mathematical models, particularly in real-world scenarios where physical phenomena exhibit characteristics that challenge traditional mathematical modeling. The research aspires to fill gaps in the current understanding of regularity properties within solutions to extremely degenerate elliptic equations, ultimately contributing to both theoretical foundations and practical applications in diverse scientific fields.Keywords: investigating smoothness, extremely degenerate elliptic equations, regularity properties, mathematical analysis, complexity solutions
Procedia PDF Downloads 5989 Arithmetic Operations Based on Double Base Number Systems
Authors: K. Sanjayani, C. Saraswathy, S. Sreenivasan, S. Sudhahar, D. Suganya, K. S. Neelukumari, N. Vijayarangan
Abstract:
Double Base Number System (DBNS) is an imminent system of representing a number using two bases namely 2 and 3, which has its application in Elliptic Curve Cryptography (ECC) and Digital Signature Algorithm (DSA).The previous binary method representation included only base 2. DBNS uses an approximation algorithm namely, Greedy Algorithm. By using this algorithm, the number of digits required to represent a larger number is less when compared to the standard binary method that uses base 2 algorithms. Hence, the computational speed is increased and time being reduced. The standard binary method uses binary digits 0 and 1 to represent a number whereas the DBNS method uses binary digit 1 alone to represent any number (canonical form). The greedy algorithm uses two ways to represent the number, one is by using only the positive summands and the other is by using both positive and negative summands. In this paper, arithmetic operations are used for elliptic curve cryptography. Elliptic curve discrete logarithm problem is the foundation for most of the day to day elliptic curve cryptography. This appears to be a momentous hard slog compared to digital logarithm problem. In elliptic curve digital signature algorithm, the key generation requires 160 bit of data by usage of standard binary representation. Whereas, the number of bits required generating the key can be reduced with the help of double base number representation. In this paper, a new technique is proposed to generate key during encryption and extraction of key in decryption.Keywords: cryptography, double base number system, elliptic curve cryptography, elliptic curve digital signature algorithm
Procedia PDF Downloads 39688 Alternative Key Exchange Algorithm Based on Elliptic Curve Digital Signature Algorithm Certificate and Usage in Applications
Authors: A. Andreasyan, C. Connors
Abstract:
The Elliptic Curve Digital Signature algorithm-based X509v3 certificates are becoming more popular due to their short public and private key sizes. Moreover, these certificates can be stored in Internet of Things (IoT) devices, with limited resources, using less memory and transmitted in network security protocols, such as Internet Key Exchange (IKE), Transport Layer Security (TLS) and Secure Shell (SSH) with less bandwidth. The proposed method gives another advantage, in that it increases the performance of the above-mentioned protocols in terms of key exchange by saving one scalar multiplication operation.Keywords: cryptography, elliptic curve digital signature algorithm, key exchange, network security protocol
Procedia PDF Downloads 14687 Numerical Evolution Methods of Rational Form for Diffusion Equations
Authors: Said Algarni
Abstract:
The purpose of this study was to investigate selected numerical methods that demonstrate good performance in solving PDEs. We adapted alternative method that involve rational polynomials. Padé time stepping (PTS) method, which is highly stable for the purposes of the present application and is associated with lower computational costs, was applied. Furthermore, PTS was modified for our study which focused on diffusion equations. Numerical runs were conducted to obtain the optimal local error control threshold.Keywords: Padé time stepping, finite difference, reaction diffusion equation, PDEs
Procedia PDF Downloads 29886 Symbolic Partial Differential Equations Analysis Using Mathematica
Authors: Davit Shahnazaryan, Diogo Gomes, Mher Safaryan
Abstract:
Many symbolic computations and manipulations required in the analysis of partial differential equations (PDE) or systems of PDEs are tedious and error-prone. These computations arise when determining conservation laws, entropies or integral identities, which are essential tools for the study of PDEs. Here, we discuss a new Mathematica package for the symbolic analysis of PDEs that automate multiple tasks, saving time and effort. Methodologies: During the research, we have used concepts of linear algebra and partial differential equations. We have been working on creating algorithms based on theoretical mathematics to find results mentioned below. Major Findings: Our package provides the following functionalities; finding symmetry group of different PDE systems, generation of polynomials invariant with respect to different symmetry groups; simplification of integral quantities by integration by parts and null Lagrangian cleaning, computing general forms of expressions by integration by parts; finding equivalent forms of an integral expression that are simpler or more symmetric form; determining necessary and sufficient conditions on the coefficients for the positivity of a given symbolic expression. Conclusion: Using this package, we can simplify integral identities, find conserved and dissipated quantities of time-dependent PDE or system of PDEs. Some examples in the theory of mean-field games and semiconductor equations are discussed.Keywords: partial differential equations, symbolic computation, conserved and dissipated quantities, mathematica
Procedia PDF Downloads 16385 Series Solutions to Boundary Value Differential Equations
Authors: Armin Ardekani, Mohammad Akbari
Abstract:
We present a method of generating series solutions to large classes of nonlinear differential equations. The method is well suited to be adapted in mathematical software and unlike the available commercial solvers, we are capable of generating solutions to boundary value ODEs and PDEs. Many of the generated solutions converge to closed form solutions. Our method can also be applied to systems of ODEs or PDEs, providing all the solutions efficiently. As examples, we present results to many difficult differential equations in engineering fields.Keywords: computational mathematics, differential equations, engineering, series
Procedia PDF Downloads 33684 Hohmann Transfer and Bi-Elliptic Hohmann Transfer in TRAPPIST-1 System
Authors: Jorge L. Nisperuza, Wilson Sandoval, Edward. A. Gil, Johan A. Jimenez
Abstract:
In orbital mechanics, an active research topic is the calculation of interplanetary trajectories efficient in terms of energy and time. In this sense, this work concerns the calculation of the orbital elements for sending interplanetary probes in the extrasolar system TRAPPIST-1. Specifically, using the mathematical expressions of the circular and elliptical trajectory parameters, expressions for the flight time and the orbital transfer rate increase between orbits, the orbital parameters and the graphs of the trajectories of Hohmann and Hohmann bi-elliptic for sending a probe from the innermost planet to all the other planets of the studied system, are obtained. The relationship between the orbital transfer rate increments and the relationship between the flight times for the two transfer types is found. The results show that, for all cases under consideration, the Hohmann transfer results to be the least energy and temporary cost, a result according to the theory associated with Hohmann and Hohmann bi-elliptic transfers. Saving in the increase of the speed reaches up to 87% was found, and it happens for the transference between the two innermost planets, whereas the time of flight increases by a factor of up to 6.6 if one makes use of the bi-elliptic transfer, this for the case of sending a probe from the innermost planet to the outermost.Keywords: bi-elliptic Hohmann transfer, exoplanet, extrasolar system, Hohmann transfer, TRAPPIST-1
Procedia PDF Downloads 19283 Implementation of Elliptic Curve Cryptography Encryption Engine on a FPGA
Authors: Mohamad Khairi Ishak
Abstract:
Conventional public key crypto systems such as RSA (Ron Rivest, Adi Shamir and Leonard Adleman), DSA (Digital Signature Algorithm), and Elgamal are no longer efficient to be implemented in the small, memory constrained devices. Elliptic Curve Cryptography (ECC), which allows smaller key length as compared to conventional public key crypto systems, has thus become a very attractive choice for many applications. This paper describes implementation of an elliptic curve cryptography (ECC) encryption engine on a FPGA. The system has been implemented in 2 different key sizes, which are 131 bits and 163 bits. Area and timing analysis are provided for both key sizes for comparison. The crypto system, which has been implemented on Altera’s EPF10K200SBC600-1, has a hardware size of 5945/9984 and 6913/9984 of logic cells for 131 bits implementation and 163 bits implementation respectively. The crypto system operates up to 43 MHz, and performs point multiplication operation in 11.3 ms for 131 bits implementation and 14.9 ms for 163 bits implementation. In terms of speed, our crypto system is about 8 times faster than the software implementation of the same system.Keywords: elliptic curve cryptography, FPGA, key sizes, memory
Procedia PDF Downloads 31982 Exact Solutions of Discrete Sine-Gordon Equation
Authors: Chao-Qing Dai
Abstract:
Two families of exact travelling solutions for the discrete sine-Gordon equation are constructed based on the variable-coefficient Jacobian elliptic function method and different transformations. When the modulus of Jacobian elliptic function solutions tends to 1, soliton solutions can be obtained. Some soliton solutions degenerate into the known solutions in literatures. Moreover, dynamical properties of exact solutions are investigated. Our analysis and results may have potential values for certain applications in modern nonlinear science and textile engineering.Keywords: exact solutions, variable-coefficient Jacobian elliptic function method, discrete sine-Gordon equation, dynamical behaviors
Procedia PDF Downloads 42081 A Lightweight Authentication and Key Exchange Protocol Design for Smart Homes
Authors: Zhifu Li, Lei Li, Wanting Zhou, Yuanhang He
Abstract:
This paper proposed a lightweight certificate-less authentication and key exchange protocol (Light-CL-PKC) based on elliptic curve cryptography and the Chinese Remainder Theorem for smart home scenarios. Light-CL-PKC can efficiently reduce the computational cost of both sides of authentication by forgoing time-consuming bilinear pair operations and making full use of point-addition and point-multiplication operations on elliptic curves. The authentication and key exchange processes in this system are also completed in a a single round of communication between the two parties. The analysis result demonstrates that it can significantly minimize the communication overhead of more than 32.14% compared with the referenced protocols, while the runtime for both authentication and key exchange have also been significantly reduced.Keywords: authentication, key exchange, certificateless public key cryptography, elliptic curve cryptography
Procedia PDF Downloads 9880 Cryptanalysis of ID-Based Deniable Authentication Protocol Based On Diffie-Hellman Problem on Elliptic Curve
Authors: Eun-Jun Yoon
Abstract:
Deniable authentication protocol is a new security authentication mechanism which can enable a receiver to identify the true source of a given message, but not to prove the identity of the sender to a third party. In 2013, Kar proposed a secure ID-based deniable authentication protocol whose security is based on computational infeasibility of solving Elliptic Curve Diffie-Hellman Problem (ECDHP). Kar claimed that the proposed protocol achieves properties of deniable authentication, mutual authentication, and message confidentiality. However, this paper points out that Kar's protocol still suffers from sender spoofing attack and message modification attack unlike its claims.Keywords: deniable authentication, elliptic curve cryptography, Diffie-Hellman problem, cryptanalysis
Procedia PDF Downloads 33179 Inverse Cauchy Problem of Doubly Connected Domains via Spectral Meshless Radial Point Interpolation
Authors: Elyas Shivanian
Abstract:
In this paper, the spectral meshless radial point interpolation (SMRPI) technique is applied to the Cauchy problems of two-dimensional elliptic PDEs in doubly connected domains. It is obtained the unknown data on the inner boundary of the domain while overspecified boundary data are imposed on the outer boundary of the domain by using the SMRPI. Shape functions, which are constructed through point interpolation method using the radial basis functions, help us to treat problem locally with the aim of high order convergence rate. In this way, localization in SMRPI can reduce the ill-conditioning for Cauchy problem. Furthermore, we improve previous results and it is revealed the SMRPI is more accurate and stable by adding strong perturbations.Keywords: cauchy problem, doubly connected domain, radial basis function, shape function
Procedia PDF Downloads 27878 Remarks on the Lattice Green's Function for the Anisotropic Face Cantered Cubic Lattice
Authors: Jihad H. Asad
Abstract:
An expression for the Green’s function (GF) of anisotropic face cantered cubic (IFCC) lattice is evaluated analytically and numerically for a single impurity problem. The density of states (DOS), phase shift and scattering cross section are expressed in terms of complete elliptic integrals of the first kind.Keywords: lattice Green's function, elliptic integral, physics, cubic lattice
Procedia PDF Downloads 46677 Differentiation of the Functional in an Optimization Problem for Coefficients of Elliptic Equations with Unbounded Nonlinearity
Authors: Aigul Manapova
Abstract:
We consider an optimal control problem in the higher coefficient of nonlinear equations with a divergent elliptic operator and unbounded nonlinearity, and the Dirichlet boundary condition. The conditions imposed on the coefficients of the state equation are assumed to hold only in a small neighborhood of the exact solution to the original problem. This assumption suggests that the state equation involves nonlinearities of unlimited growth and considerably expands the class of admissible functions as solutions of the state equation. We obtain formulas for the first partial derivatives of the objective functional with respect to the control functions. To calculate the gradients the numerical solutions of the state and adjoint problems are used. We also prove that the gradient of the cost function is Lipchitz continuous.Keywords: cost functional, differentiability, divergent elliptic operator, optimal control, unbounded nonlinearity
Procedia PDF Downloads 17276 Stability of Out-Of-Plane Equilibrium Points in the Elliptic Restricted Three-Body Problem with Oblateness up to Zonal Harmonic J₄ of Both Primaries
Authors: Kanshio Richard Tyokyaa, Jagadish Singh
Abstract:
In this paper, we examined the location and stability of Out-Of-Plane Equilibrium points in the elliptic restricted three-body problem of an infinitesimal body when both primaries are taken as oblate spheroids with oblateness up to zonal harmonic J₄. The positions of the Equilibrium points L₆,₇ and their stability depend on the oblateness of the primaries and the eccentricity of their orbits. We explored the problem numerically to show the effects of parameters involved in the position and stability of the Out-Of-Plane Equilibrium points for the systems: HD188753 and Gliese 667. It is found that their positions are affected by the oblateness of the primaries, eccentricity and the semi-major axis of the orbits, but its stability behavior remains unchanged and is unstable.Keywords: out-of-plane, equilibrium points, stability, elliptic restricted three-body problem, oblateness, zonal harmonic
Procedia PDF Downloads 19375 Fingerprint Image Encryption Using a 2D Chaotic Map and Elliptic Curve Cryptography
Authors: D. M. S. Bandara, Yunqi Lei, Ye Luo
Abstract:
Fingerprints are suitable as long-term markers of human identity since they provide detailed and unique individual features which are difficult to alter and durable over life time. In this paper, we propose an algorithm to encrypt and decrypt fingerprint images by using a specially designed Elliptic Curve Cryptography (ECC) procedure based on block ciphers. In addition, to increase the confusing effect of fingerprint encryption, we also utilize a chaotic-behaved method called Arnold Cat Map (ACM) for a 2D scrambling of pixel locations in our method. Experimental results are carried out with various types of efficiency and security analyses. As a result, we demonstrate that the proposed fingerprint encryption/decryption algorithm is advantageous in several different aspects including efficiency, security and flexibility. In particular, using this algorithm, we achieve a margin of about 0.1% in the test of Number of Pixel Changing Rate (NPCR) values comparing to the-state-of-the-art performances.Keywords: arnold cat map, biometric encryption, block cipher, elliptic curve cryptography, fingerprint encryption, Koblitz’s encoding
Procedia PDF Downloads 20474 Characteristics-Based Lq-Control of Cracking Reactor by Integral Reinforcement
Authors: Jana Abu Ahmada, Zaineb Mohamed, Ilyasse Aksikas
Abstract:
The linear quadratic control system of hyperbolic first order partial differential equations (PDEs) are presented. The aim of this research is to control chemical reactions. This is achieved by converting the PDEs system to ordinary differential equations (ODEs) using the method of characteristics to reduce the system to control it by using the integral reinforcement learning. The designed controller is applied to a catalytic cracking reactor. Background—Transport-Reaction systems cover a large chemical and bio-chemical processes. They are best described by nonlinear PDEs derived from mass and energy balances. As a main application to be considered in this work is the catalytic cracking reactor. Indeed, the cracking reactor is widely used to convert high-boiling, high-molecular weight hydrocarbon fractions of petroleum crude oils into more valuable gasoline, olefinic gases, and others. On the other hand, control of PDEs systems is an important and rich area of research. One of the main control techniques is feedback control. This type of control utilizes information coming from the system to correct its trajectories and drive it to a desired state. Moreover, feedback control rejects disturbances and reduces the variation effects on the plant parameters. Linear-quadratic control is a feedback control since the developed optimal input is expressed as feedback on the system state to exponentially stabilize and drive a linear plant to the steady-state while minimizing a cost criterion. The integral reinforcement learning policy iteration technique is a strong method that solves the linear quadratic regulator problem for continuous-time systems online in real time, using only partial information about the system dynamics (i.e. the drift dynamics A of the system need not be known), and without requiring measurements of the state derivative. This is, in effect, a direct (i.e. no system identification procedure is employed) adaptive control scheme for partially unknown linear systems that converges to the optimal control solution. Contribution—The goal of this research is to Develop a characteristics-based optimal controller for a class of hyperbolic PDEs and apply the developed controller to a catalytic cracking reactor model. In the first part, developing an algorithm to control a class of hyperbolic PDEs system will be investigated. The method of characteristics will be employed to convert the PDEs system into a system of ODEs. Then, the control problem will be solved along the characteristic curves. The reinforcement technique is implemented to find the state-feedback matrix. In the other half, applying the developed algorithm to the important application of a catalytic cracking reactor. The main objective is to use the inlet fraction of gas oil as a manipulated variable to drive the process state towards desired trajectories. The outcome of this challenging research would yield the potential to provide a significant technological innovation for the gas industries since the catalytic cracking reactor is one of the most important conversion processes in petroleum refineries.Keywords: PDEs, reinforcement iteration, method of characteristics, riccati equation, cracking reactor
Procedia PDF Downloads 9173 Analytical Solutions of Time Space Fractional, Advection-Dispersion and Whitham-Broer-Kaup Equations
Authors: Muhammad Danish Khan, Imran Naeem, Mudassar Imran
Abstract:
In this article, we study time-space Fractional Advection-Dispersion (FADE) equation and time-space Fractional Whitham-Broer-Kaup (FWBK) equation that have a significant role in hydrology. We introduce suitable transformations to convert fractional order derivatives to integer order derivatives and as a result these equations transform into Partial Differential Equations (PDEs). Then the Lie symmetries and corresponding optimal systems of the resulting PDEs are derived. The symmetry reductions and exact independent solutions based on optimal system are investigated which constitute the exact solutions of original fractional differential equations.Keywords: modified Riemann-Liouville fractional derivative, lie-symmetries, optimal system, invariant solutions
Procedia PDF Downloads 43172 Performance Analysis of Elliptic Curve Cryptography Using Onion Routing to Enhance the Privacy and Anonymity in Grid Computing
Authors: H. Parveen Begam, M. A. Maluk Mohamed
Abstract:
Grid computing is an environment that allows sharing and coordinated use of diverse resources in dynamic, heterogeneous and distributed environment using Virtual Organization (VO). Security is a critical issue due to the open nature of the wireless channels in the grid computing which requires three fundamental services: authentication, authorization, and encryption. The privacy and anonymity are considered as an important factor while communicating over publicly spanned network like web. To ensure a high level of security we explored an extension of onion routing, which has been used with dynamic token exchange along with protection of privacy and anonymity of individual identity. To improve the performance of encrypting the layers, the elliptic curve cryptography is used. Compared to traditional cryptosystems like RSA (Rivest-Shamir-Adelman), ECC (Elliptic Curve Cryptosystem) offers equivalent security with smaller key sizes which result in faster computations, lower power consumption, as well as memory and bandwidth savings. This paper presents the estimation of the performance improvements of onion routing using ECC as well as the comparison graph between performance level of RSA and ECC.Keywords: grid computing, privacy, anonymity, onion routing, ECC, RSA
Procedia PDF Downloads 398