Search results for: earthquake risk mitigation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6924

Search results for: earthquake risk mitigation

6804 Quantification of Site Nonlinearity Based on HHT Analysis of Seismic Recordings

Authors: Ruichong Zhang

Abstract:

This study proposes a recording-based approach to characterize and quantify earthquake-induced site nonlinearity, exemplified as soil nonlinearity and/or liquefaction. Alternative to Fourier spectral analysis (FSA), the paper introduces time-frequency analysis of earthquake ground motion recordings with the aid of so-called Hilbert-Huang transform (HHT), and offers justification for the HHT in addressing the nonlinear features shown in the recordings. With the use of the 2001 Nisqually earthquake recordings, this study shows that the proposed approach is effective in characterizing site nonlinearity and quantifying the influences in seismic ground responses.

Keywords: site nonlinearity, site amplification, site damping, Hilbert-Huang Transform (HHT), liquefaction, 2001 Nisqually Earthquake

Procedia PDF Downloads 456
6803 Evaluating of Turkish Earthquake Code (2007) for FRP Wrapped Circular Concrete Cylinders

Authors: Guler S., Guzel E., Gulen M.

Abstract:

Fiber Reinforced Polymer (FRP) materials are commonly used in construction sector to enhance the strength and ductility capacities of structural elements. The equations on confined compressive strength of FRP wrapped concrete cylinders is described in the 7th chapter of the Turkish Earthquake Code (TEC-07) that enter into force in 2007. This study aims to evaluate the applicability of TEC-07 on confined compressive strengths of circular FRP wrapped concrete cylinders. To this end, a large number of data on circular FRP wrapped concrete cylinders are collected from the literature. It is clearly seen that the predictions of TEC-07 on circular FRP wrapped the FRP wrapped columns is not same accuracy for different ranges of concrete strengths.

Keywords: Fiber Reinforced Polymer (FRP), concrete cylinders, Turkish Earthquake Code, earthquake

Procedia PDF Downloads 495
6802 Case Studies of Mitigation Methods against the Impacts of High Water Levels in the Great Lakes

Authors: Jennifer M. Penton

Abstract:

Record high lake levels in 2017 and 2019 (2017 max lake level = 75.81 m; 2018 max lake level = 75.26 m; 2019 max lake level = 75.92 m) combined with a number of severe storms in the Great Lakes region, have resulted in significant wave generation across Lake Ontario. The resulting large wave heights have led to erosion of the natural shoreline, overtopping of existing revetments, backshore erosion, and partial and complete failure of several coastal structures, which in turn have led to further erosion of the shoreline and damaged existing infrastructure. Such impacts can be seen all along the coast of Lake Ontario. Three specific locations have been chosen as case studies for this paper, each addressing erosion and/or flood mitigation methods, such as revetments and sheet piling with increased land levels. Varying site conditions and the resulting shoreline damage are compared herein. The results are reflected in the case-specific design components of the mitigation and adaptation methods and are presented in this paper.

Keywords: erosion mitigation, flood mitigation, great lakes, high water levels

Procedia PDF Downloads 139
6801 Integrated Modeling Approach for Energy Planning and Climate Change Mitigation Assessment in the State of Florida

Authors: K. Thakkar, C. Ghenai

Abstract:

An integrated modeling approach was used in this study to (1) track energy consumption, production, and resource extraction, (2) track greenhouse gases emissions and (3) analyze emissions for local and regional air pollutions. The model was used in this study for short and long term energy and GHG emissions reduction analysis for the state of Florida. The integrated modeling methodology will help to evaluate the alternative energy scenarios and examine emissions-reduction strategies. The mitigation scenarios have been designed to describe the future energy strategies. They consist of various demand and supply side scenarios. One of the GHG mitigation scenarios is crafted by taking into account the available renewable resources potential for power generation in the state of Florida to compare and analyze the GHG reduction measure against ‘Business As Usual’ and ‘Florida State Policy’ scenario. Two more ‘integrated’ scenarios, (‘Electrification’ and ‘Efficiency and Lifestyle’) are crafted through combination of various mitigation scenarios to assess the cumulative impact of the reduction measures such as technological changes and energy efficiency and conservation.

Keywords: energy planning, climate change mitigation assessment, integrated modeling approach, energy alternatives, and GHG emission reductions

Procedia PDF Downloads 415
6800 Urban Flood Risk Mapping–a Review

Authors: Sherly M. A., Subhankar Karmakar, Terence Chan, Christian Rau

Abstract:

Floods are one of the most frequent natural disasters, causing widespread devastation, economic damage and threat to human lives. Hydrologic impacts of climate change and intensification of urbanization are two root causes of increased flood occurrences, and recent research trends are oriented towards understanding these aspects. Due to rapid urbanization, population of cities across the world has increased exponentially leading to improperly planned developments. Climate change due to natural and anthropogenic activities on our environment has resulted in spatiotemporal changes in rainfall patterns. The combined effect of both aggravates the vulnerability of urban populations to floods. In this context, an efficient and effective flood risk management with its core component as flood risk mapping is essential in prevention and mitigation of flood disasters. Urban flood risk mapping involves zoning of an urban region based on its flood risk, which depicts the spatiotemporal pattern of frequency and severity of hazards, exposure to hazards, and degree of vulnerability of the population in terms of socio-economic, environmental and infrastructural aspects. Although vulnerability is a key component of risk, its assessment and mapping is often less advanced than hazard mapping and quantification. A synergic effort from technical experts and social scientists is vital for the effectiveness of flood risk management programs. Despite an increasing volume of quality research conducted on urban flood risk, a comprehensive multidisciplinary approach towards flood risk mapping still remains neglected due to which many of the input parameters and definitions of flood risk concepts are imprecise. Thus, the objectives of this review are to introduce and precisely define the relevant input parameters, concepts and terms in urban flood risk mapping, along with its methodology, current status and limitations. The review also aims at providing thought-provoking insights to potential future researchers and flood management professionals.

Keywords: flood risk, flood hazard, flood vulnerability, flood modeling, urban flooding, urban flood risk mapping

Procedia PDF Downloads 553
6799 Community Based Landslide Investigation and Treatment in the Earthquake Affected Areas, Nepal

Authors: Basanta Raj Adhikari

Abstract:

Large and small scale earthquakes are frequent in the Nepal, Himalaya, and many co-seismic landslides are resulted out of it. Recently, Gorkha earthquake-2015 has triggered many co-seismic landslides destroying many lives and properties. People have displaced their original places due to having many cracks and unstable ground. Therefore, Nepal has been adopting a pronged development strategy to address the earthquake issues through reconstruction and rehabilitation policy, plans and budgets. Landslides are major threat for the mountain livelihood, and it is very important to investigate and mitigate to improve human wellbeing factoring in considerations of economic growth, environmental safety, and sustainable development. Community based landslide investigation was carried with the involvement of the local community in the Sindhupalchowk District of Central Nepal. Landslide training and field orientation were the major methodological approach of this study. Combination of indigenous and modern scientific knowledge has created unique working environment which enhanced the local capacity and trained people for replication. Local topography of the landslide was created with the help of Total Station and bill of quantity was derived based on it. River training works, plantation of trees and grasses, support structures, surface and sub-surface drainage management are the recommended mitigative measures. This is a very unique example of how academia and local community can work together for sustainable development by reducing disaster risk at the local level with very low-cost technology.

Keywords: community, earthquake, landslides, Nepal

Procedia PDF Downloads 134
6798 The Role of the Basel Accords in Mitigating Systemic Risk

Authors: Wassamon Kun-Amornpong

Abstract:

When a financial crisis occurs, there will be a law and regulatory reform in order to manage the turmoil and prevent a future crisis. One of the most important regulatory efforts to help cope with systemic risk and a financial crisis is the third version of the Basel Accord. Basel III has introduced some measures and tools (e.g., systemic risk buffer, countercyclical buffer, capital conservation buffer and liquidity risk) in order to mitigate systemic risk. Nevertheless, the effectiveness of these measures in Basel III in adequately addressing the problem of contagious runs that can quickly spread throughout the financial system is questionable. This paper seeks to contribute to the knowledge regarding the role of the Basel Accords in mitigating systemic risk. The research question is to what extent the Basel Accords can help control systemic risk in the financial markets? The paper tackles this question by analysing the concept of systemic risk. It will then examine the weaknesses of the Basel Accords before and after the Global financial crisis in 2008. Finally, it will suggest some possible solutions in order to improve the Basel Accord. The rationale of the study is the fact that academic works on systemic risk and financial crises are largely studied from economic or financial perspective. There is comparatively little research from the legal and regulatory perspective. The finding of the paper is that there are some problems in all of the three pillars of the Basel Accords. With regards to Pillar I, the risk model is excessively complex while the benefits of its complexity are doubtful. Concerning Pillar II, the effectiveness of the risk-based supervision in preventing systemic risk still depends largely upon its design and implementation. Factors such as organizational culture of the regulator and the political context within which the risk-based supervision operates might be a barrier against the success of Pillar II. Meanwhile, Pillar III could not provide adequate market discipline as market participants do not always act in a rational way. In addition, the too-big-to-fail perception reduced the incentives of the market participants to monitor risks. There has been some development in resolution measure (e.g. TLAC and MREL) which might potentially help strengthen the incentive of the market participants to monitor risks. However, those measures have some weaknesses. The paper argues that if the weaknesses in the three pillars are resolved, it can be expected that the Basel Accord could contribute to the mitigation of systemic risk in a more significant way in the future.

Keywords: Basel accords, financial regulation, risk-based supervision, systemic risk

Procedia PDF Downloads 102
6797 GIS and Remote Sensing Approach in Earthquake Hazard Assessment and Monitoring: A Case Study in the Momase Region of Papua New Guinea

Authors: Tingneyuc Sekac, Sujoy Kumar Jana, Indrajit Pal, Dilip Kumar Pal

Abstract:

Tectonism induced Tsunami, landslide, ground shaking leading to liquefaction, infrastructure collapse, conflagration are the common earthquake hazards that are experienced worldwide. Apart from human casualty, the damage to built-up infrastructures like roads, bridges, buildings and other properties are the collateral episodes. The appropriate planning must precede with a view to safeguarding people’s welfare, infrastructures and other properties at a site based on proper evaluation and assessments of the potential level of earthquake hazard. The information or output results can be used as a tool that can assist in minimizing risk from earthquakes and also can foster appropriate construction design and formulation of building codes at a particular site. Different disciplines adopt different approaches in assessing and monitoring earthquake hazard throughout the world. For the present study, GIS and Remote Sensing potentials were utilized to evaluate and assess earthquake hazards of the study region. Subsurface geology and geomorphology were the common features or factors that were assessed and integrated within GIS environment coupling with seismicity data layers like; Peak Ground Acceleration (PGA), historical earthquake magnitude and earthquake depth to evaluate and prepare liquefaction potential zones (LPZ) culminating in earthquake hazard zonation of our study sites. The liquefaction can eventuate in the aftermath of severe ground shaking with amenable site soil condition, geology and geomorphology. The latter site conditions or the wave propagation media were assessed to identify the potential zones. The precept has been that during any earthquake event the seismic wave is generated and propagates from earthquake focus to the surface. As it propagates, it passes through certain geological or geomorphological and specific soil features, where these features according to their strength/stiffness/moisture content, aggravates or attenuates the strength of wave propagation to the surface. Accordingly, the resulting intensity of shaking may or may not culminate in the collapse of built-up infrastructures. For the case of earthquake hazard zonation, the overall assessment was carried out through integrating seismicity data layers with LPZ. Multi-criteria Evaluation (MCE) with Saaty’s Analytical Hierarchy Process (AHP) was adopted for this study. It is a GIS technology that involves integration of several factors (thematic layers) that can have a potential contribution to liquefaction triggered by earthquake hazard. The factors are to be weighted and ranked in the order of their contribution to earthquake induced liquefaction. The weightage and ranking assigned to each factor are to be normalized with AHP technique. The spatial analysis tools i.e., Raster calculator, reclassify, overlay analysis in ArcGIS 10 software were mainly employed in the study. The final output of LPZ and Earthquake hazard zones were reclassified to ‘Very high’, ‘High’, ‘Moderate’, ‘Low’ and ‘Very Low’ to indicate levels of hazard within a study region.

Keywords: hazard micro-zonation, liquefaction, multi criteria evaluation, tectonism

Procedia PDF Downloads 236
6796 Test and Evaluation of Patient Tracking Platform in an Earthquake Simulation

Authors: Nahid Tavakoli, Mohammad H. Yarmohammadian, Ali Samimi

Abstract:

In earthquake situation, medical response communities such as field and referral hospitals are challenged with injured victims’ identification and tracking. In our project, it was developed a patient tracking platform (PTP) where first responders triage the patients with an electronic tag which report the location and some information of each patient during his/her movement. This platform includes: 1) near field communication (NFC) tags (ISO 14443), 2) smart mobile phones (Android-base version 4.2.2), 3) Base station laptops (Windows), 4) server software, 5) Android software to use by first responders, 5) disaster command software, and 6) system architecture. Our model has been completed through literature review, Delphi technique, focus group, design the platform, and implement in an earthquake exercise. This paper presents consideration for content, function, and technologies that must apply for patient tracking in medical emergencies situations. It is demonstrated the robustness of the patient tracking platform (PTP) in tracking 6 patients in a simulated earthquake situation in the yard of the relief and rescue department of Isfahan’s Red Crescent.

Keywords: test and evaluation, patient tracking platform, earthquake, simulation

Procedia PDF Downloads 112
6795 Finding Out the Best Place for Resettling of Victims after the Earthquake: A Case Study for Tehran, Iran

Authors: Reyhaneh Saeedi, Nima Ghasemloo

Abstract:

Iran is a capable zone for earthquake that follows loss of lives and financial damages. To have sheltering for earthquake victims is one of the basic requirements although it is hard to select suitable places for temporary resettling after an earthquake happens. Before these kinds of disasters happen, the best places for resettling the victims must be designated. This matter is an important issue in disaster management and planning. Geospatial Information System (GIS) has a determining role in disaster management; it can determine the best places for temporary resettling after such a disaster. In this paper the best criteria have been determined associated with their weights and buffers by use of research and questionnaire for locating the best places. In this paper, AHP method is used as decision model and to locate the best places for temporary resettling is done based on the selected criteria. Also in this research are made the buffer layers of criteria and change them to the raster layers. Later on, the raster layers are multiplied on desired weights then, the results are added together. Finally there are suitable places for resettling of victims by desired criteria by different colors with their optimum rate in QGIS software.

Keywords: disaster management, temporary resettlement, earthquake, criteria

Procedia PDF Downloads 437
6794 Liquefaction Phenomenon in the Kathmandu Valley during the 2015 Earthquake of Nepal

Authors: Kalpana Adhikari, Mandip Subedi, Keshab Sharma, Indra P. Acharya

Abstract:

The Gorkha Nepal earthquake of moment magnitude (Mw) 7.8 struck the central region of Nepal on April 25, 2015 with the epicenter about 77 km northwest of Kathmandu Valley . Peak ground acceleration observed during the earthquake was 0.18g. This motion induced several geotechnical effects such as landslides, foundation failures liquefaction, lateral spreading and settlement, and local amplification. An aftershock of moment magnitude (Mw) 7.3 hit northeast of Kathmandu on May 12 after 17 days of main shock caused additional damages. Kathmandu is the largest city in Nepal, have a population over four million. As the Kathmandu Valley deposits are composed mainly of sand, silt and clay layers with a shallow ground water table, liquefaction is highly anticipated. Extensive liquefaction was also observed in Kathmandu Valley during the 1934 Nepal-Bihar earthquake. Field investigations were carried out in Kathmandu Valley immediately after Mw 7.8, April 25 main shock and Mw 7.3, May 12 aftershock. Geotechnical investigation of both liquefied and non-liquefied sites were conducted after the earthquake. This paper presents observations of liquefaction and liquefaction induced damage, and the liquefaction potential assessment based on Standard Penetration Tests (SPT) for liquefied and non-liquefied sites. SPT based semi-empirical approach has been used for evaluating liquefaction potential of the soil and Liquefaction Potential Index (LPI) has been used to determine liquefaction probability. Recorded ground motions from the event are presented. Geological aspect of Kathmandu Valley and local site effect on the occurrence of liquefaction is described briefly. Observed liquefaction case studies are described briefly. Typically, these are sand boils formed by freshly ejected sand forced out of over-pressurized sub-strata. At most site, sand was ejected to agricultural fields forming deposits that varied from millimetres to a few centimeters thick. Liquefaction-induced damage to structures in these areas was not significant except buildings on some places tilted slightly. Boiled soils at liquefied sites were collected and the particle size distributions of ejected soils were analyzed. SPT blow counts and the soil profiles at ten liquefied and non-liquefied sites were obtained. The factors of safety against liquefaction with depth and liquefaction potential index of the ten sites were estimated and compared with observed liquefaction after 2015 Gorkha earthquake. The liquefaction potential indices obtained from the analysis were found to be consistent with the field observation. The field observations along with results from liquefaction assessment were compared with the existing liquefaction hazard map. It was found that the existing hazard maps are unrepresentative and underestimate the liquefaction susceptibility in Kathmandu Valley. The lessons learned from the liquefaction during this earthquake are also summarized in this paper. Some recommendations are also made to the seismic liquefaction mitigation in the Kathmandu Valley.

Keywords: factor of safety, geotechnical investigation, liquefaction, Nepal earthquake

Procedia PDF Downloads 302
6793 Seismic Preparedness Challenge in Ionian Islands (Greece) through 'Telemachus' Project

Authors: A. Kourou, M. Panoutsopoulou

Abstract:

Nowadays, disaster risk reduction requires innovative ways of working collaboratively, monitoring tools, management methods, risk communication, and knowledge, as key factors for decision-making actors. Experience has shown that the assessment of seismic risk and its effective management is still an important challenge. In Greece, Ionian Islands region is characterized as the most seismic area of the country and one of the most active worldwide. It is well known that in case of a disastrous earthquake the local authorities need to assess the situation in the affected area and coordinate the disaster response. In particular, the main outcomes of 'Telemachus' project are the development of an innovative operational system that hosts the needed data of seismic risk management in the Ionian Islands and the implementation of educational actions for the involved target groups. This project is funded in the Priority Axis 'Environmental Protection and Sustainable Development' of Operational Plan 'Ionian Islands 2014-2020'. EPPO is one of the partners of the project and it is responsible, among others, for the development of proper training material. This paper presents the training material of 'Telemachus' and its usage as a helpful, managerial tool in case of earthquake emergency. This material is addressed to different target groups, such as civil protection staff, people that involved with the tourism industry, educators of disabled people, etc. Very positive aspect of the project is the involvement of end-users that should evaluate the training products; test standards; clarify the personnel’s roles and responsibilities; improve interagency coordination; identify gaps in resources; improve individual performance; and identify opportunities for improvement. It is worth mentioning that even though the abovementioned material developed is useful for the training of specific target groups on emergency management issues within Ionian Islands Region, it could be used throughout Greece and other countries too.

Keywords: education of civil protection staff, Ionian Islands Region of Greece, seismic risk, training material

Procedia PDF Downloads 101
6792 Survey of Hawke's Bay Tourism Based Businesses: Tsunami Understanding and Preparation

Authors: V. A. Ritchie

Abstract:

The loss of life and livelihood experienced after the magnitude 9.3 Sumatra earthquake and tsunami on 26 December 2004 and magnitude 9 earthquake and tsunami in northeastern Japan on 11 March 2011, has raised global awareness and brought tsunami phenomenology, nomenclature, and representation into sharp focus. At the same time, travel and tourism continue to increase, contributing around 1 in 11 jobs worldwide. This increase in tourism is especially true for coastal zones, placing pressure on decision-makers to downplay tsunami risks and at the same time provide adequate tsunami warning so that holidaymakers will feel confident enough to visit places of high tsunami risk. This study investigates how well tsunami preparedness messages are getting through for tourist-based businesses in Hawke’s Bay New Zealand, a region of frequent seismic activity and a high probability of experiencing a nearshore tsunami. The aim of this study is to investigate whether tourists based businesses are well informed about tsunamis, how well they understand that information and to what extent their clients are included in awareness raising and evacuation processes. In high-risk tsunami zones, such as Hawke’s Bay, tourism based businesses face competitive tension between short term business profitability and longer term reputational issues related to preventable loss of life from natural hazards, such as tsunamis. This study will address ways to accommodate culturally and linguistically relevant tourist awareness measures without discouraging tourists or being too costly to implement.

Keywords: tsunami risk and response, travel and tourism, business preparedness, cross cultural knowledge transfer

Procedia PDF Downloads 124
6791 Finding out the Best Criteria for Locating the Best Place Resettling of Victims after the Earthquake: A Case Study for Tehran, Iran

Authors: Reyhaneh Saeedi

Abstract:

Iran is a capable zone for the earthquake that follows the loss of lives and financial damages. To have sheltering for earthquake victims is one of the basic requirements although it is hard to select suitable places for temporary resettling after an earthquake happens. Before these kinds of disasters happen, the best places for resettling the victims must be designated. This matter is an important issue in disaster management and planning. Geospatial Information System(GIS) has a determining role in disaster management, it can determine the best places for temporary resettling after such a disaster. In this paper, the best criteria have been determined associated with their weights and buffers by use of research and questionnaire for locating the best places. In this paper, AHP method is used as decision model and to locate the best places for temporary resettling is done based on the selected criteria. Also, in this research are made the buffer layers of criteria and change them to the raster layers. Later on, the raster layers are multiplied on desired weights then, the results are added together. Finally, there are suitable places for resettling of victims by desired criteria by different colors with their optimum rate in ArcGIS software.

Keywords: disaster management, temporary resettlement, earthquake, criteria

Procedia PDF Downloads 267
6790 Variations in the Frequency-Magnitude Distribution with Depth in Kalabsha Area, Aswan, South Egypt

Authors: Ezzat Mohamed El-Amin

Abstract:

Mapping the earthquake-size distribution in various tectonic regimes on a local to regional scale reveals statistically significant variations in the range of at least 0.4 to 2.0 for the b-value in the frequency-magnitude distribution. We map the earthquake frequency–magnitude distribution (b value) as a function of depth in the Reservoir Triggered Seismicity (RTS) region in Kalabsha region, in south Egypt. About 1680 well-located events recorded during 1981–2014 in the Kalabsha region are selected for the analysis. The earthquake data sets are separated in 5 km zones from 0 to 25 km depth. The result shows a systematic decrease in b value up to 12 km followed by an increase. The increase in b value is interpreted to be caused by the presence of fluids. We also investigate the spatial distribution of b value with depth. Significant variations in the b value are detected, with b ranging from b 0.7 to 1.19. Low b value areas at 5 km depth indicate localized high stresses which are favorable for future rupture.

Keywords: seismicity, frequency-magnitude, b-value, earthquake

Procedia PDF Downloads 537
6789 Downward Vertical Evacuation for Disabilities People from Tsunami Using Escape Bunker Technology

Authors: Febrian Tegar Wicaksana, Niqmatul Kurniati, Surya Nandika

Abstract:

Indonesia is one of the countries that have great number of disaster occurrence and threat because it is located in not only between three tectonic plates such as Eurasia plates, Indo-Australia plates and Pacific plates, but also in the Ring of Fire path, like earthquake, Tsunami, volcanic eruption and many more. Recently, research shows that there are potential areas that will be devastated by Tsunami in southern coast of Java. Tsunami is a series of waves in a body of water caused by the displacement of a large volume of water, generally in an ocean. When the waves enter shallow water, they may rise to several feet or, in rare cases, tens of feet, striking the coast with devastating force. The parameter for reference such as magnitude, the depth of epicentre, distance between epicentres with land, the depth of every points, when reached the shore and the growth of waves. Interaction between parameters will bring the big variance of Tsunami wave. Based on that, we can formulate preparation that needed for disaster mitigation strategies. The mitigation strategies will take the important role in an effort to reduce the number of victims and damage in the area. It will reduce the number of victim and casualties. Reducing is directed to the most difficult mobilization casualties in the tsunami disaster area like old people, sick people and disabilities people. Until now, the method that used for rescuing people from Tsunami is basic horizontal evacuation. This evacuation system is not optimal because it needs so long time and it cannot be used by people with disabilities. The writers propose to create a vertical evacuation model with an escape bunker system. This bunker system is chosen because the downward vertical evacuation is considered more efficient and faster. Especially in coastal areas without any highlands surround it. The downward evacuation system is better than upward evacuation because it can avoid the risk of erosion at the ground around the structure which can affect the building. The structure of the bunker and the evacuation process while, and even after, disaster are the main priority to be considered. The power of bunker has quake’s resistance, the durability from water stream, variety of interaction to the ground, and waterproof design. When the situation is back to normal, victim and casualties can go into the safer place. The bunker will be located near the hospital and public places, and will have wide entrance supported by large slide in it so it will ease the disabilities people. The technology of the escape bunker system is expected to reduce the number of victims who have low mobility in the Tsunami.

Keywords: escape bunker, tsunami, vertical evacuation, mitigation, disaster management

Procedia PDF Downloads 466
6788 Post-Earthquake Road Damage Detection by SVM Classification from Quickbird Satellite Images

Authors: Moein Izadi, Ali Mohammadzadeh

Abstract:

Detection of damaged parts of roads after earthquake is essential for coordinating rescuers. In this study, an approach is presented for the semi-automatic detection of damaged roads in a city using pre-event vector maps and both pre- and post-earthquake QuickBird satellite images. Damage is defined in this study as the debris of damaged buildings adjacent to the roads. Some spectral and texture features are considered for SVM classification step to detect damages. Finally, the proposed method is tested on QuickBird pan-sharpened images from the Bam City earthquake and the results show that an overall accuracy of 81% and a kappa coefficient of 0.71 are achieved for the damage detection. The obtained results indicate the efficiency and accuracy of the proposed approach.

Keywords: SVM classifier, disaster management, road damage detection, quickBird images

Procedia PDF Downloads 594
6787 Adequacy of Advanced Earthquake Intensity Measures for Estimation of Damage under Seismic Excitation with Arbitrary Orientation

Authors: Konstantinos G. Kostinakis, Manthos K. Papadopoulos, Asimina M. Athanatopoulou

Abstract:

An important area of research in seismic risk analysis is the evaluation of expected seismic damage of structures under a specific earthquake ground motion. Several conventional intensity measures of ground motion have been used to estimate their damage potential to structures. Yet, none of them was proved to be able to predict adequately the seismic damage of any structural system. Therefore, alternative advanced intensity measures which take into account not only ground motion characteristics but also structural information have been proposed. The adequacy of a number of advanced earthquake intensity measures in prediction of structural damage of 3D R/C buildings under seismic excitation which attacks the building with arbitrary incident angle is investigated in the present paper. To achieve this purpose, a symmetric in plan and an asymmetric 5-story R/C building are studied. The two buildings are subjected to 20 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along horizontal orthogonal axes forming 72 different angles with the structural axes. The response is computed by non-linear time history analysis. The structural damage is expressed in terms of the maximum interstory drift as well as the overall structural damage index. The values of the aforementioned seismic damage measures determined for incident angle 0° as well as their maximum values over all seismic incident angles are correlated with 9 structure-specific ground motion intensity measures. The research identified certain intensity measures which exhibited strong correlation with the seismic damage of the two buildings. However, their adequacy for estimation of the structural damage depends on the response parameter adopted. Furthermore, it was confirmed that the widely used spectral acceleration at the fundamental period of the structure is a good indicator of the expected earthquake damage level.

Keywords: damage indices, non-linear response, seismic excitation angle, structure-specific intensity measures

Procedia PDF Downloads 472
6786 Performance of On-site Earthquake Early Warning Systems for Different Sensor Locations

Authors: Ting-Yu Hsu, Shyu-Yu Wu, Shieh-Kung Huang, Hung-Wei Chiang, Kung-Chun Lu, Pei-Yang Lin, Kuo-Liang Wen

Abstract:

Regional earthquake early warning (EEW) systems are not suitable for Taiwan, as most destructive seismic hazards arise due to in-land earthquakes. These likely cause the lead-time provided by regional EEW systems before a destructive earthquake wave arrives to become null. On the other hand, an on-site EEW system can provide more lead-time at a region closer to an epicenter, since only seismic information of the target site is required. Instead of leveraging the information of several stations, the on-site system extracts some P-wave features from the first few seconds of vertical ground acceleration of a single station and performs a prediction of the oncoming earthquake intensity at the same station according to these features. Since seismometers could be triggered by non-earthquake events such as a passing of a truck or other human activities, to reduce the likelihood of false alarms, a seismometer was installed at three different locations on the same site and the performance of the EEW system for these three sensor locations were discussed. The results show that the location on the ground of the first floor of a school building maybe a good choice, since the false alarms could be reduced and the cost for installation and maintenance is the lowest.

Keywords: earthquake early warning, on-site, seismometer location, support vector machine

Procedia PDF Downloads 219
6785 Analysis of Steel Beam-Column Joints Under Seismic Loads

Authors: Mizam Doğan

Abstract:

Adapazarı railway car factory, the only railway car factory of Turkey, was constructed in 1950. It was a steel design and it had filled beam sections and truss beam systems. Columns were steel profiles and box sections. The factory was damaged heavily on Izmit Earthquake and closed. In this earthquake 90% of damaged structures are reinforced concrete, the others are %7 prefabricated and 3% steel construction. As can be seen in statistical data, damaged industrial buildings in this earthquake were generally reinforced concrete and prefabricated structures. Adapazari railway car factory is the greatest steel structure damaged in the earthquake. This factory has 95% of the total damaged steel structure area. In this paper; earthquake damages on beams and columns of the factory are studied by considering TS648 'Turkish Standard Building Code for Steel Structures' and also damaged connection elements as welds, rivets and bolts are examined. A model similar to the damaged system is made and high-stress zones are searched. These examinations, conclusions, suggestions are explained by damage photos and details.

Keywords: column-beam connection, seismic analysis, seismic load, steel structure

Procedia PDF Downloads 248
6784 Modeling of Dam Break Flood Wave Propagation Using HEC-RAS 2D and GIS: A Case Study of Taksebt Dam in Algeria

Authors: Abdelghani Leghouchi

Abstract:

This study aims to predict the consequences associated with the propagation of the flood wave that may occur after the failure of the Taksebt dam and suggest an efficient emergency action plan (EAP) for mitigation purposes. To achieve the objectives of this study, the hydrodynamic model HEC-RAS 2D was used for the flood routing of the dam break wave, which gave an estimate of the hydraulic characteristics downstream the Taksebt dam. Geospatial analysis of the simulation results conducted in a Geographic information system (GIS) environment showed that many residential areas are considered to be in danger in case of the Taksebt dam break event. Based on the obtained results, an emergency actions plan was suggested to moderate the causalities in the downstream area at risk. Overall, the present study showed that the integration of 2D hydraulic modeling and GIS provides great capabilities in providing realistic view of the dam break wave propagation that enhances assessing the associated risks and proposing appropriate mitigation measures.

Keywords: taksebt dam, dam break, wave propagation time, HEC-RAS 2D

Procedia PDF Downloads 71
6783 Three Dimensional Numerical Analysis for Longitudinal Seismic Response of Tunnels under Asynchronous Earthquake

Authors: Peng Li, Er-xiang Song

Abstract:

Numerical analysis of longitudinal tunnel seismic response due to spatial variation of earthquake ground motion is an important issue that cannot be ignored in the design and safety evaluation of tunnel structures. In this paper, numerical methods for analysis of tunnel longitudinal response under asynchronous seismic wave is extensively studied, including the improvement of the 1D time-domain finite element method, three dimensional numerical simulation technique for the site asynchronous earthquake response as well as the 3-D soil-tunnel structure interaction analysis. The study outcome will be beneficial to aid further research on the nonlinear meticulous numerical analysis and seismic response mechanism of tunnel structures under asynchronous earthquake motion.

Keywords: asynchronous input, longitudinal seismic response, tunnel structure, numerical simulation, traveling wave effect

Procedia PDF Downloads 401
6782 Seismic Analysis of URM Buildings in South Africa

Authors: Trevor N. Haas, Thomas van der Kolf

Abstract:

South Africa has some regions which are susceptible to moderate seismic activity. A peak ground acceleration of between 0.1g and 0.15g can be expected in the southern parts of the Western Cape. Unreinforced Masonry (URM) is commonly used as a construction material for 2 to 5 storey buildings in underprivileged areas in and around Cape Town. URM is typically regarded as the material most vulnerable to damage when subjected to earthquake excitation. In this study, a three-storey URM building was analysed by applying seven earthquake time-histories, which can be expected to occur in South Africa using a finite element approach. Experimental data was used to calibrate the in- and out-of-plane stiffness of the URM. The results indicated that tensile cracking of the in-plane piers was the dominant failure mode. It is concluded that URM buildings of this type are at risk of failure especially if sufficient ductility is not provided. The results also showed that connection failure must be investigated further.

Keywords: URM, seismic analysis, FEM, Cape Town

Procedia PDF Downloads 345
6781 UEMSD Risk Identification: Case Study

Authors: K. Sekulová, M. Šimon

Abstract:

The article demonstrates on a case study how it is possible to identify MSD risk. It is based on a dissertation risk identification model of occupational diseases formation in relation to the work activity that determines what risk can endanger workers who are exposed to the specific risk factors. It is evaluated based on statistical calculations. These risk factors are main cause of upper-extremities musculoskeletal disorders.

Keywords: case study, upper-extremity musculoskeletal disorders, ergonomics, risk identification

Procedia PDF Downloads 469
6780 Economic Growth After an Earthquake: A Synthetic Control Approach

Authors: Diego Diaz H., Cristian Larroulet

Abstract:

Although a large earthquake has clear and immediate consequences such as deaths, destruction of infrastructure and displacement (at least temporary) of part of the population, scientific research about the impact of a geological disaster in economic activity is inconclusive, especially when looking beyond the very short term. Estimating the economic impact years after a disaster strike is non-trivial since there is an unavoidable difficulty in attributing the observed effect to the disaster and not to other economic shocks. Case studies are performed that determine the impact of earthquakes in Chile, Japan, and New Zealand at a regional level by applying the synthetic control method, using the natural disaster as treatment. This consisted in constructing a counterfactual from every region in the same country that is not affected (or is slightly affected) by the earthquake. The results show that the economies of Canterbury and Tohoku achieved greater levels of GDP per capita in the years after the disaster than they would have in the absence of the disaster. For the case of Chile, however, the region of Maule experiences a decline in GDP per capita because of the earthquake. All the results are robust according to the placebo tests. Also, the results suggest that national institutional quality improve the growth process after the disaster.

Keywords: earthquake, economic growth, institutional quality, synthetic control

Procedia PDF Downloads 193
6779 Enhancing the Implementation Strategy of Simultaneous Operations (SIMOPS) for the Major Turnaround at Pertamina Plaju Refinery

Authors: Fahrur Rozi, Daniswara Krisna Prabatha, Latief Zulfikar Chusaini

Abstract:

Amidst the backdrop of Pertamina Plaju Refinery, which stands as the oldest and historically less technologically advanced among Pertamina's refineries, lies a unique challenge. Originally integrating facilities established by Shell in 1904 and Stanvac (originally Standard Oil) in 1926, the primary challenge at Plaju Refinery does not solely revolve around complexity; instead, it lies in ensuring reliability, considering its operational history of over a century. After centuries of existence, Plaju Refinery has never undergone a comprehensive major turnaround encompassing all its units. The usual practice involves partial turnarounds that are sequentially conducted across its primary, secondary, and tertiary units (utilities and offsite). However, a significant shift is on the horizon. In the Q-IV of 2023, the refinery embarks on its first-ever major turnaround since its establishment. This decision was driven by the alignment of maintenance timelines across various units. Plaju Refinery's major turnaround was scheduled for October-November 2023, spanning 45 calendar days, with the objective of enhancing the operational reliability of all refinery units. The extensive job list for this turnaround encompasses 1583 tasks across 18 units/areas, involving approximately 9000 contracted workers. In this context, the Strategy of Simultaneous Operations (SIMOPS) execution emerges as a pivotal tool to optimize time efficiency and ensure safety. A Hazard Effect Management Process (HEMP) has been employed to assess the risk ratings of each task within the turnaround. Out of the tasks assessed, 22 are deemed high-risk and necessitate mitigation. The SIMOPS approach serves as a preventive measure against potential incidents. It is noteworthy that every turnaround period at Pertamina Plaju Refinery involves SIMOPS-related tasks. In this context, enhancing the implementation strategy of "Simultaneous Operations (SIMOPS)" becomes imperative to minimize the occurrence of incidents. At least four improvements have been introduced in the enhancement process for the major turnaround at Refinery Plaju. The first improvement involves conducting systematic risk assessment and potential hazard mitigation studies for SIMOPS tasks before task execution, as opposed to the previous on-site approach. The second improvement includes the completion of SIMOPS Job Mitigation and Work Matrices Sheets, which was often neglected in the past. The third improvement emphasizes comprehensive awareness to workers/contractors regarding potential hazards and mitigation strategies for SIMOPS tasks before and during the major turnaround. The final improvement is the introduction of a daily program for inspecting and observing work in progress for SIMOPS tasks. Prior to these improvements, there was no established program for monitoring ongoing activities related to SIMOPS tasks during the turnaround. This study elucidates the steps taken to enhance SIMOPS within Pertamina, drawing from the experiences of Plaju Refinery as a guide. A real actual case study will be provided from our experience in the operational unit. In conclusion, these efforts are essential for the success of the first-ever major turnaround at Plaju Refinery, with the SIMOPS strategy serving as a central component. Based on these experiences, enhancements have been made to Pertamina's official Internal Guidelines for Executing SIMOPS Risk Mitigation, benefiting all Pertamina units.

Keywords: process safety management, turn around, oil refinery, risk assessment

Procedia PDF Downloads 37
6778 Intelligent Earthquake Prediction System Based On Neural Network

Authors: Emad Amar, Tawfik Khattab, Fatma Zada

Abstract:

Predicting earthquakes is an important issue in the study of geography. Accurate prediction of earthquakes can help people to take effective measures to minimize the loss of personal and economic damage, such as large casualties, destruction of buildings and broken of traffic, occurred within a few seconds. United States Geological Survey (USGS) science organization provides reliable scientific information of Earthquake Existed throughout history & Preliminary database from the National Center Earthquake Information (NEIC) show some useful factors to predict an earthquake in a seismic area like Aleutian Arc in the U.S. state of Alaska. The main advantage of this prediction method that it does not require any assumption, it makes prediction according to the future evolution of object's time series. The article compares between simulation data result from trained BP and RBF neural network versus actual output result from the system calculations. Therefore, this article focuses on analysis of data relating to real earthquakes. Evaluation results show better accuracy and higher speed by using radial basis functions (RBF) neural network.

Keywords: BP neural network, prediction, RBF neural network, earthquake

Procedia PDF Downloads 465
6777 Secure Mobile E-Business Applications

Authors: Hala A. Alrumaih

Abstract:

It is widely believed that mobile device is a promising technology for lending the opportunity for the third wave of electronic commerce. Mobile devices have changed the way companies do business. Many applications are under development or being incorporated into business processes. In this day, mobile applications are a vital component of any industry strategy. One of the greatest benefits of selling merchandise and providing services on a mobile application is that it widens a company’s customer base significantly. Mobile applications are accessible to interested customers across regional and international borders in different electronic business (e-business) area. But there is a dark side to this success story. The security risks associated with mobile devices and applications are very significant. This paper introduces a broad risk analysis for the various threats, vulnerabilities, and risks in mobile e-business applications and presents some important risk mitigation approaches. It reviews and compares two different frameworks for security assurance in mobile e-business applications. Based on the comparison, the paper suggests some recommendations for applications developers and business owners in mobile e-business application development process.

Keywords: e-business, mobile applications, risk mitigations, security assurance

Procedia PDF Downloads 267
6776 Earthquakes and Buildings: Lesson Learnt from Past Earthquakes in Turkey

Authors: Yavuz Yardım

Abstract:

The most important criteria for structural engineering is the structure’s ability to carry intended loads safely. The key element of this ability is mathematical modeling of really loadings situation into a simple loads input to use in structure analysis and design. Amongst many different types of loads, the most challenging load is earthquake load. It is possible magnitude is unclear and timing is unknown. Therefore the concept of intended loads and safety have been built on experience of previous earthquake impact on the structures. Understanding and developing these concepts is achieved by investigating performance of the structures after real earthquakes. Damage after an earthquake provide results of thousands of full-scale structure test under a real seismic load. Thus, Earthquakes reveille all the weakness, mistakes and deficiencies of analysis, design rules and practice. This study deals with lesson learnt from earthquake recoded last two decades in Turkey. Results of investigation after several earthquakes exposes many deficiencies in structural detailing, inappropriate design, wrong architecture layout, and mainly mistake in construction practice.

Keywords: earthquake, seismic assessment, RC buildings, building performance

Procedia PDF Downloads 241
6775 The Problems of Current Earth Coordinate System for Earthquake Forecasting Using Single Layer Hierarchical Graph Neuron

Authors: Benny Benyamin Nasution, Rahmat Widia Sembiring, Abdul Rahman Dalimunthe, Nursiah Mustari, Nisfan Bahri, Berta br Ginting, Riadil Akhir Lubis, Rita Tavip Megawati, Indri Dithisari

Abstract:

The earth coordinate system is an important part of an attempt for earthquake forecasting, such as the one using Single Layer Hierarchical Graph Neuron (SLHGN). However, there are a number of problems that need to be worked out before the coordinate system can be utilized for the forecaster. One example of those is that SLHGN requires that the focused area of an earthquake must be constructed in a grid-like form. In fact, within the current earth coordinate system, the same longitude-difference would produce different distances. This can be observed at the distance on the Equator compared to distance at both poles. To deal with such a problem, a coordinate system has been developed, so that it can be used to support the ongoing earthquake forecasting using SLHGN. Two important issues have been developed in this system: 1) each location is not represented through two-value (longitude and latitude), but only a single value, 2) the conversion of the earth coordinate system to the x-y cartesian system requires no angular formulas, which is therefore fast. The accuracy and the performance have not been measured yet, since earthquake data is difficult to obtain. However, the characteristics of the SLHGN results show a very promising answer.

Keywords: hierarchical graph neuron, multidimensional hierarchical graph neuron, single layer hierarchical graph neuron, natural disaster forecasting, earthquake forecasting, earth coordinate system

Procedia PDF Downloads 192