Search results for: discrete time-varying systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9467

Search results for: discrete time-varying systems

9407 Discrete Group Search Optimizer for the Travelling Salesman Problem

Authors: Raed Alnajjar, Mohd Zakree, Ahmad Nazri

Abstract:

In this study, we apply Discrete Group Search Optimizer (DGSO) for solving Traveling Salesman Problem (TSP). The DGSO is a nature inspired optimization algorithm that imitates the animal behavior, especially animal searching behavior. The proposed DGSO uses a vector representation and some discrete operators, such as destruction, construction, differential evolution, swap and insert. The TSP is a well-known hard combinatorial optimization problem, which seeks to find the shortest path among numbers of cities. The performance of the proposed DGSO is evaluated and tested on benchmark instances which listed in LIBTSP dataset. The experimental results show that the performance of the proposed DGSO is comparable with the other methods in the state of the art for some instances. The results show that DGSO outperform Ant Colony System (ACS) in some instances whilst outperform other metaheuristic in most instances. In addition to that, the new results obtained a number of optimal solutions and some best known results. DGSO was able to obtain feasible and good quality solution across all dataset.

Keywords: discrete group search optimizer (DGSO); Travelling salesman problem (TSP); Variable neighborhood search(VNS)

Procedia PDF Downloads 299
9406 Assessment of Seismic Behavior of Masonry Minarets by Discrete Element Method

Authors: Ozden Saygili, Eser Cakti

Abstract:

Mosques and minarets can be severely damaged as a result of earthquakes. Non-linear behavior of minarets of Mihrimah Sultan and Süleymaniye Mosques and the minaret of St. Sophia are analyzed to investigate seismic response, damage and failure mechanisms of minarets during earthquake. Selected minarets have different height and diameter. Discrete elements method was used to create the numerical minaret models. Analyses were performed using sine waves. Two parameters were used for evaluating the results: the maximum relative dislocation of adjacent drums and the maximum displacement at the top of the minaret. Both parameters were normalized by the drum diameter. The effects of minaret geometry on seismic behavior were evaluated by comparing the results of analyses.

Keywords: discrete element method, earthquake safety, nonlinear analysis, masonry structures

Procedia PDF Downloads 288
9405 DISGAN: Efficient Generative Adversarial Network-Based Method for Cyber-Intrusion Detection

Authors: Hongyu Chen, Li Jiang

Abstract:

Ubiquitous anomalies endanger the security of our system con- stantly. They may bring irreversible damages to the system and cause leakage of privacy. Thus, it is of vital importance to promptly detect these anomalies. Traditional supervised methods such as Decision Trees and Support Vector Machine (SVM) are used to classify normality and abnormality. However, in some case, the abnormal status are largely rarer than normal status, which leads to decision bias of these methods. Generative adversarial network (GAN) has been proposed to handle the case. With its strong generative ability, it only needs to learn the distribution of normal status, and identify the abnormal status through the gap between it and the learned distribution. Nevertheless, existing GAN-based models are not suitable to process data with discrete values, leading to immense degradation of detection performance. To cope with the discrete features, in this paper, we propose an efficient GAN-based model with specifically-designed loss function. Experiment results show that our model outperforms state-of-the-art models on discrete dataset and remarkably reduce the overhead.

Keywords: GAN, discrete feature, Wasserstein distance, multiple intermediate layers

Procedia PDF Downloads 95
9404 The Potential of On-Demand Shuttle Services to Reduce Private Car Use

Authors: B. Mack, K. Tampe-Mai, E. Diesch

Abstract:

Findings of an ongoing discrete choice study of future transport mode choice will be presented. Many urban centers face the triple challenge of having to cope with ever increasing traffic congestion, environmental pollution, and greenhouse gas emission brought about by private car use. In principle, private car use may be diminished by extending public transport systems like bus lines, trams, tubes, and trains. However, there are limits to increasing the (perceived) spatial and temporal flexibility and reducing peak-time crowding of classical public transport systems. An emerging new type of system, publicly or privately operated on-demand shuttle bus services, seem suitable to ameliorate the situation. A fleet of on-demand shuttle busses operates without fixed stops and schedules. It may be deployed efficiently in that each bus picks up passengers whose itineraries may be combined into an optimized route. Crowding may be minimized by limiting the number of seats and the inter-seat distance for each bus. The study is conducted as a discrete choice experiment. The choice between private car, public transport, and shuttle service is registered as a function of several push and pull factors (financial costs, travel time, walking distances, mobility tax/congestion charge, and waiting time/parking space search time). After the completion of the discrete choice items, the study participant is asked to rate the three modes of transport with regard to the pull factors of comfort, safety, privacy, and opportunity to engage in activities like reading or surfing the internet. These ratings are entered as additional predictors into the discrete choice experiment regression model. The study is conducted in the region of Stuttgart in southern Germany. N=1000 participants are being recruited. Participants are between 18 and 69 years of age, hold a driver’s license, and live in the city or the surrounding region of Stuttgart. In the discrete choice experiment, participants are asked to assume they lived within the Stuttgart region, but outside of the city, and were planning the journey from their apartment to their place of work, training, or education during the peak traffic time in the morning. Then, for each item of the discrete choice experiment, they are asked to choose between the transport modes of private car, public transport, and on-demand shuttle in the light of particular values of the push and pull factors studied. The study will provide valuable information on the potential of switching from private car use to the use of on-demand shuttles, but also on the less desirable potential of switching from public transport to on-demand shuttle services. Furthermore, information will be provided on the modulation of these switching potentials by pull and push factors.

Keywords: determinants of travel mode choice, on-demand shuttle services, private car use, public transport

Procedia PDF Downloads 150
9403 Secure Proxy Signature Based on Factoring and Discrete Logarithm

Authors: H. El-Kamchouchi, Heba Gaber, Fatma Ahmed, Dalia H. El-Kamchouchi

Abstract:

A digital signature is an electronic signature form used by an original signer to sign a specific document. When the original signer is not in his office or when he/she travels outside, he/she delegates his signing capability to a proxy signer and then the proxy signer generates a signing message on behalf of the original signer. The two parties must be able to authenticate one another and agree on a secret encryption key, in order to communicate securely over an unreliable public network. Authenticated key agreement protocols have an important role in building a secure communications network between the two parties. In this paper, we present a secure proxy signature scheme over an efficient and secure authenticated key agreement protocol based on factoring and discrete logarithm problem.

Keywords: discrete logarithm, factoring, proxy signature, key agreement

Procedia PDF Downloads 271
9402 High Performance Electrocardiogram Steganography Based on Fast Discrete Cosine Transform

Authors: Liang-Ta Cheng, Ching-Yu Yang

Abstract:

Based on fast discrete cosine transform (FDCT), the authors present a high capacity and high perceived quality method for electrocardiogram (ECG) signal. By using a simple adjusting policy to the 1-dimentional (1-D) DCT coefficients, a large volume of secret message can be effectively embedded in an ECG host signal and be successfully extracted at the intended receiver. Simulations confirmed that the resulting perceived quality is good, while the hiding capability of the proposed method significantly outperforms that of existing techniques. In addition, our proposed method has a certain degree of robustness. Since the computational complexity is low, it is feasible for our method being employed in real-time applications.

Keywords: data hiding, ECG steganography, fast discrete cosine transform, 1-D DCT bundle, real-time applications

Procedia PDF Downloads 166
9401 Degeneracy and Defectiveness in Non-Hermitian Systems with Open Boundary

Authors: Yongxu Fu, Shaolong Wan

Abstract:

We study the band degeneracy, defectiveness, as well as exceptional points of non-Hermitian systems and materials analytically. We elaborate on the energy bands, the band degeneracy, and the defectiveness of eigenstates under open boundary conditions based on developing a general theory of one-dimensional (1D) non-Hermitian systems. We research the presence of the exceptional points in a generalized non-Hermitian Su-Schrieffer-Heeger model under open boundary conditions. Beyond our general theory, there exist infernal points in 1D non-Hermitian systems, where the energy spectra under open boundary conditions converge on some discrete energy values. We study two 1D non-Hermitian models with the existence of infernal points. We generalize the infernal points to the infernal knots in four-dimensional non-Hermitian systems.

Keywords: non-hermitian, degeneracy, defectiveness, exceptional points, infernal points

Procedia PDF Downloads 101
9400 Joint Discrete Hartley Transform-Clipping for Peak to Average Power Ratio Reduction in Orthogonal Frequency Division Multiplexing System

Authors: Selcuk Comlekci, Mohammed Aboajmaa

Abstract:

Orthogonal frequency division multiplexing (OFDM) is promising technique for the modern wireless communications systems due to its robustness against multipath environment. The high peak to average power ratio (PAPR) of the transmitted signal is one of the major drawbacks of OFDM system, PAPR degrade the performance of bit error rate (BER) and effect on the linear characteristics of high power amplifier (HPA). In this paper, we proposed DHT-Clipping reduction technique to reduce the high PAPR by the combination between discrete Hartley transform (DHT) and Clipping techniques. From the simulation results, we notified that DHT-Clipping technique offers better PAPR reduction than DHT and Clipping, as well as DHT-Clipping introduce improved BER performance better than clipping.

Keywords: ISI, cyclic prefix, BER, PAPR, HPA, DHT, subcarrier

Procedia PDF Downloads 415
9399 Analysis of Nonlinear Bertrand Duopoly Game with Heterogeneous Players

Authors: Jixiang Zhang

Abstract:

A dynamic of Bertrand duopoly game is analyzed, where players use different production methods and choose their prices with bounded rationality. The equilibriums of the corresponding discrete dynamical systems are investigated. The stability conditions of Nash equilibrium under a local adjustment process are studied. The stability conditions of Nash equilibrium under a local adjustment process are studied. The stability of Nash equilibrium, as some parameters of the model are varied, gives rise to complex dynamics such as cycles of higher order and chaos. On this basis, we discover that an increase of adjustment speed of bounded rational player can make Bertrand market sink into the chaotic state. Finally, the complex dynamics, bifurcations and chaos are displayed by numerical simulation.

Keywords: Bertrand duopoly model, discrete dynamical system, heterogeneous expectations, nash equilibrium

Procedia PDF Downloads 364
9398 Using Discrete Event Simulation Approach to Reduce Waiting Times in Computed Tomography Radiology Department

Authors: Mwafak Shakoor

Abstract:

The purpose of this study was to reduce patient waiting times, improve system throughput and improve resources utilization in radiology department. A discrete event simulation model was developed using Arena simulation software to investigate different alternatives to improve the overall system delivery based on adding resource scenarios due to the linkage between patient waiting times and resource availability. The study revealed that there is no addition investment need to procure additional scanner but hospital management deploy managerial tactics to enhance machine utilization and reduce the long waiting time in the department.

Keywords: discrete event simulation, radiology department, arena, waiting time, healthcare modeling, computed tomography

Procedia PDF Downloads 558
9397 Crack Width Analysis of Reinforced Concrete Members under Shrinkage Effect by Pseudo-Discrete Crack Model

Authors: F. J. Ma, A. K. H. Kwan

Abstract:

Crack caused by shrinkage movement of concrete is a serious problem especially when restraint is provided. It may cause severe serviceability and durability problems. The existing prediction methods for crack width of concrete due to shrinkage movement are mainly numerical methods under simplified circumstances, which do not agree with each other. To get a more unified prediction method applicable to more sophisticated circumstances, finite element crack width analysis for shrinkage effect should be developed. However, no existing finite element analysis can be carried out to predict the crack width of concrete due to shrinkage movement because of unsolved reasons of conventional finite element analysis. In this paper, crack width analysis implemented by finite element analysis is presented with pseudo-discrete crack model, which combines traditional smeared crack model and newly proposed crack queuing algorithm. The proposed pseudo-discrete crack model is capable of simulating separate and single crack without adopting discrete crack element. And the improved finite element analysis can successfully simulate the stress redistribution when concrete is cracked, which is crucial for predicting crack width, crack spacing and crack number.

Keywords: crack queuing algorithm, crack width analysis, finite element analysis, shrinkage effect

Procedia PDF Downloads 387
9396 Dynamic of Nonlinear Duopoly Game with Heterogeneous Players

Authors: Jixiang Zhang, Yanhua Wang

Abstract:

A dynamic of Bertrand duopoly game is analyzed, where players use different production methods and choose their prices with bounded rationality. The equilibriums of the corresponding discrete dynamical systems are investigated. The stability conditions of Nash equilibrium under a local adjustment process are studied. The stability conditions of Nash equilibrium under a local adjustment process are studied. The stability of Nash equilibrium, as some parameters of the model are varied, gives rise to complex dynamics such as cycles of higher order and chaos. On this basis, we discover that an increase of adjustment speed of bounded rational player can make Bertrand market sink into the chaotic state. Finally, the complex dynamics, bifurcations and chaos are displayed by numerical simulation.

Keywords: Bertrand duopoly model, discrete dynamical system, heterogeneous expectations, nash equilibrium

Procedia PDF Downloads 381
9395 Real-Time Image Encryption Using a 3D Discrete Dual Chaotic Cipher

Authors: M. F. Haroun, T. A. Gulliver

Abstract:

In this paper, an encryption algorithm is proposed for real-time image encryption. The scheme employs a dual chaotic generator based on a three dimensional (3D) discrete Lorenz attractor. Encryption is achieved using non-autonomous modulation where the data is injected into the dynamics of the master chaotic generator. The second generator is used to permute the dynamics of the master generator using the same approach. Since the data stream can be regarded as a random source, the resulting permutations of the generator dynamics greatly increase the security of the transmitted signal. In addition, a technique is proposed to mitigate the error propagation due to the finite precision arithmetic of digital hardware. In particular, truncation and rounding errors are eliminated by employing an integer representation of the data which can easily be implemented. The simple hardware architecture of the algorithm makes it suitable for secure real-time applications.

Keywords: chaotic systems, image encryption, non-autonomous modulation, FPGA

Procedia PDF Downloads 483
9394 Stability of Solutions of Semidiscrete Stochastic Systems

Authors: Ramazan Kadiev, Arkadi Ponossov

Abstract:

Semidiscrete systems contain both continuous and discrete components. This means that the dynamics is mostly continuous, but at certain instants, it is exposed to abrupt influences. Such systems naturally appear in applications, for example, in biological and ecological models as well as in the control theory. Therefore, the study of semidiscrete systems has recently attracted the attention of many specialists. Stochastic effects are an important part of any realistic approach to modeling. For example, stochasticity arises in the population dynamics, demographic and ecological due to a change in time of factors external to the system affecting the survival of the population. In control theory, random coefficients can simulate inaccuracies in measurements. It will be shown in the presentation how to incorporate such effects into semidiscrete systems. Stability analysis is an essential part of modeling real-world problems. In the presentation, it will be explained how sufficient conditions for the moment stability of solutions in terms of the coefficients for linear semidiscrete stochastic equations can be derived using non-Lyapunov technique.

Keywords: abrupt changes, exponential stability, regularization, stochastic noises

Procedia PDF Downloads 142
9393 Continuous-Time and Discrete-Time Singular Value Decomposition of an Impulse Response Function

Authors: Rogelio Luck, Yucheng Liu

Abstract:

This paper proposes the continuous-time singular value decomposition (SVD) for the impulse response function, a special kind of Green’s functions e⁻⁽ᵗ⁻ ᵀ⁾, in order to find a set of singular functions and singular values so that the convolutions of such function with the set of singular functions on a specified domain are the solutions to the inhomogeneous differential equations for those singular functions. A numerical example was illustrated to verify the proposed method. Besides the continuous-time SVD, a discrete-time SVD is also presented for the impulse response function, which is modeled using a Toeplitz matrix in the discrete system. The proposed method has broad applications in signal processing, dynamic system analysis, acoustic analysis, thermal analysis, as well as macroeconomic modeling.

Keywords: singular value decomposition, impulse response function, Green’s function , Toeplitz matrix , Hankel matrix

Procedia PDF Downloads 123
9392 Discrete Swarm with Passive Congregation for Cost Minimization of the Multiple Vehicle Routing Problem

Authors: Tarek Aboueldahab, Hanan Farag

Abstract:

Cost minimization of Multiple Vehicle Routing Problem becomes a critical issue in the field of transportation because it is NP-hard optimization problem and the search space is complex. Many researches use the hybridization of artificial intelligence (AI) models to solve this problem; however, it can not guarantee to reach the best solution due to the difficulty of searching the whole search space. To overcome this problem, we introduce the hybrid model of Discrete Particle Swarm Optimization (DPSO) with a passive congregation which enable searching the whole search space to compromise between both local and global search. The practical experiment shows that our model obviously outperforms other hybrid models in cost minimization.

Keywords: cost minimization, multi-vehicle routing problem, passive congregation, discrete swarm, passive congregation

Procedia PDF Downloads 66
9391 Discrete Breeding Swarm for Cost Minimization of Parallel Job Shop Scheduling Problem

Authors: Tarek Aboueldahab, Hanan Farag

Abstract:

Parallel Job Shop Scheduling Problem (JSP) is a multi-objective and multi constrains NP- optimization problem. Traditional Artificial Intelligence techniques have been widely used; however, they could be trapped into the local minimum without reaching the optimum solution, so we propose a hybrid Artificial Intelligence model (AI) with Discrete Breeding Swarm (DBS) added to traditional Artificial Intelligence to avoid this trapping. This model is applied in the cost minimization of the Car Sequencing and Operator Allocation (CSOA) problem. The practical experiment shows that our model outperforms other techniques in cost minimization.

Keywords: parallel job shop scheduling problem, artificial intelligence, discrete breeding swarm, car sequencing and operator allocation, cost minimization

Procedia PDF Downloads 151
9390 Synchronization of a Perturbed Satellite Attitude Motion

Authors: Sadaoui Djaouida

Abstract:

In this paper, the predictive control method is proposed to control the synchronization of two perturbed satellites attitude motion. Based on delayed feedback control of continuous-time systems combines with the prediction-based method of discrete-time systems, this approach only needs a single controller to realize synchronization, which has considerable significance in reducing the cost and complexity for controller implementation.

Keywords: predictive control, synchronization, satellite attitude, control engineering

Procedia PDF Downloads 529
9389 Inverse Scattering for a Second-Order Discrete System via Transmission Eigenvalues

Authors: Abdon Choque-Rivero

Abstract:

The Jacobi system with the Dirichlet boundary condition is considered on a half-line lattice when the coefficients are real valued. The inverse problem of recovery of the coefficients from various data sets containing the so-called transmission eigenvalues is analyzed. The Marchenko method is utilized to solve the corresponding inverse problem.

Keywords: inverse scattering, discrete system, transmission eigenvalues, Marchenko method

Procedia PDF Downloads 115
9388 Petri Net Modeling and Simulation of a Call-Taxi System

Authors: T. Godwin

Abstract:

A call-taxi system is a type of taxi service where a taxi could be requested through a phone call or mobile app. A schematic functioning of a call-taxi system is modeled using Petri net, which provides the necessary conditions for a taxi to be assigned by a dispatcher to pick a customer as well as the conditions for the taxi to be released by the customer. A Petri net is a graphical modeling tool used to understand sequences, concurrences, and confluences of activities in the working of discrete event systems. It uses tokens on a directed bipartite multi-graph to simulate the activities of a system. The Petri net model is translated into a simulation model and a call-taxi system is simulated. The simulation model helps in evaluating the operation of a call-taxi system based on the fleet size as well as the operating policies for call-taxi assignment and empty call-taxi repositioning. The developed Petri net based simulation model can be used to decide the fleet size as well as the call-taxi assignment policies for a call-taxi system.

Keywords: call-taxi, discrete event system, petri net, simulation modeling

Procedia PDF Downloads 399
9387 Fault Diagnosis in Induction Motors Using the Discrete Wavelet Transform

Authors: Khaled Yahia

Abstract:

This paper deals with the problem of stator faults diagnosis in induction motors. Using the discrete wavelet transform (DWT) for the current Park’s vector modulus (CPVM) analysis, the inter-turn short-circuit faults diagnosis can be achieved. This method is based on the decomposition of the CPVM signal, where wavelet approximation and detail coefficients of this signal have been extracted. The energy evaluation of a known bandwidth detail permits to define a fault severity factor (FSF). This method has been tested through the simulation of an induction motor using a mathematical model based on the winding-function approach. Simulation, as well as experimental, results show the effectiveness of the used method.

Keywords: induction motors (IMs), inter-turn short-circuits diagnosis, discrete wavelet transform (DWT), current park’s vector modulus (CPVM)

Procedia PDF Downloads 536
9386 Fault Diagnosis in Induction Motors Using Discrete Wavelet Transform

Authors: K. Yahia, A. Titaouine, A. Ghoggal, S. E. Zouzou, F. Benchabane

Abstract:

This paper deals with the problem of stator faults diagnosis in induction motors. Using the discrete wavelet transform (DWT) for the current Park’s vector modulus (CPVM) analysis, the inter-turn short-circuit faults diagnosis can be achieved. This method is based on the decomposition of the CPVM signal, where wavelet approximation and detail coefficients of this signal have been extracted. The energy evaluation of a known bandwidth detail permits to define a fault severity factor (FSF). This method has been tested through the simulation of an induction motor using a mathematical model based on the winding-function approach. Simulation, as well as experimental, results show the effectiveness of the used method.

Keywords: Induction Motors (IMs), inter-turn short-circuits diagnosis, Discrete Wavelet Transform (DWT), Current Park’s Vector Modulus (CPVM)

Procedia PDF Downloads 522
9385 Morphology Operation and Discrete Wavelet Transform for Blood Vessels Segmentation in Retina Fundus

Authors: Rita Magdalena, N. K. Caecar Pratiwi, Yunendah Nur Fuadah, Sofia Saidah, Bima Sakti

Abstract:

Vessel segmentation of retinal fundus is important for biomedical sciences in diagnosing ailments related to the eye. Segmentation can simplify medical experts in diagnosing retinal fundus image state. Therefore, in this study, we designed a software using MATLAB which enables the segmentation of the retinal blood vessels on retinal fundus images. There are two main steps in the process of segmentation. The first step is image preprocessing that aims to improve the quality of the image to be optimum segmented. The second step is the image segmentation in order to perform the extraction process to retrieve the retina’s blood vessel from the eye fundus image. The image segmentation methods that will be analyzed in this study are Morphology Operation, Discrete Wavelet Transform and combination of both. The amount of data that used in this project is 40 for the retinal image and 40 for manually segmentation image. After doing some testing scenarios, the average accuracy for Morphology Operation method is 88.46 % while for Discrete Wavelet Transform is 89.28 %. By combining the two methods mentioned in later, the average accuracy was increased to 89.53 %. The result of this study is an image processing system that can segment the blood vessels in retinal fundus with high accuracy and low computation time.

Keywords: discrete wavelet transform, fundus retina, morphology operation, segmentation, vessel

Procedia PDF Downloads 168
9384 Optimal Linear Quadratic Digital Tracker for the Discrete-Time Proper System with an Unknown Disturbance

Authors: Jason Sheng-Hong Tsai, Faezeh Ebrahimzadeh, Min-Ching Chung, Shu-Mei Guo, Leang-San Shieh, Tzong-Jiy Tsai, Li Wang

Abstract:

In this paper, we first construct a new state and disturbance estimator using discrete-time proportional plus integral observer to estimate the system state and the unknown external disturbance for the discrete-time system with an input-to-output direct-feedthrough term. Then, the generalized optimal linear quadratic digital tracker design is applied to construct a proportional plus integral observer-based tracker for the system with an unknown external disturbance to have a desired tracking performance. Finally, a numerical simulation is given to demonstrate the effectiveness of the new application of our proposed approach.

Keywords: non-minimum phase system, optimal linear quadratic tracker, proportional plus integral observer, state and disturbance estimator

Procedia PDF Downloads 480
9383 Simulations in Structural Masonry Walls with Chases Horizontal Through Models in State Deformation Plan (2D)

Authors: Raquel Zydeck, Karina Azzolin, Luis Kosteski, Alisson Milani

Abstract:

This work presents numerical models in plane deformations (2D), using the Discrete Element Method formedbybars (LDEM) andtheFiniteElementMethod (FEM), in structuralmasonrywallswith horizontal chasesof 20%, 30%, and 50% deep, located in the central part and 1/3 oftheupperpartofthewall, withcenteredandeccentricloading. Differentcombinationsofboundaryconditionsandinteractionsbetweenthemethodswerestudied.

Keywords: chases in structural masonry walls, discrete element method formed by bars, finite element method, numerical models, boundary condition

Procedia PDF Downloads 135
9382 Critically Sampled Hybrid Trigonometry Generalized Discrete Fourier Transform for Multistandard Receiver Platform

Authors: Temidayo Otunniyi

Abstract:

This paper presents a low computational channelization algorithm for the multi-standards platform using poly phase implementation of a critically sampled hybrid Trigonometry generalized Discrete Fourier Transform, (HGDFT). An HGDFT channelization algorithm exploits the orthogonality of two trigonometry Fourier functions, together with the properties of Quadrature Mirror Filter Bank (QMFB) and Exponential Modulated filter Bank (EMFB), respectively. HGDFT shows improvement in its implementation in terms of high reconfigurability, lower filter length, parallelism, and medium computational activities. Type 1 and type 111 poly phase structures are derived for real-valued HGDFT modulation. The design specifications are decimated critically and over-sampled for both single and multi standards receiver platforms. Evaluating the performance of oversampled single standard receiver channels, the HGDFT algorithm achieved 40% complexity reduction, compared to 34% and 38% reduction in the Discrete Fourier Transform (DFT) and tree quadrature mirror filter (TQMF) algorithm. The parallel generalized discrete Fourier transform (PGDFT) and recombined generalized discrete Fourier transform (RGDFT) had 41% complexity reduction and HGDFT had a 46% reduction in oversampling multi-standards mode. While in the critically sampled multi-standard receiver channels, HGDFT had complexity reduction of 70% while both PGDFT and RGDFT had a 34% reduction.

Keywords: software defined radio, channelization, critical sample rate, over-sample rate

Procedia PDF Downloads 95
9381 3-D Visualization and Optimization for SISO Linear Systems Using Parametrization of Two-Stage Compensator Design

Authors: Kazuyoshi Mori, Keisuke Hashimoto

Abstract:

In this paper, we consider the two-stage compensator designs of SISO plants. As an investigation of the characteristics of the two-stage compensator designs, which is not well investigated yet, of SISO plants, we implement three dimensional visualization systems of output signals and optimization system for SISO plants by the parametrization of stabilizing controllers based on the two-stage compensator design. The system runs on Mathematica by using “Three Dimensional Surface Plots,” so that the visualization can be interactively manipulated by users. In this paper, we use the discrete-time LTI system model. Even so, our approach is the factorization approach, so that the result can be applied to many linear models.

Keywords: linear systems, visualization, optimization, Mathematica

Procedia PDF Downloads 270
9380 Bridging Stress Modeling of Composite Materials Reinforced by Fiber Using Discrete Element Method

Authors: Chong Wang, Kellem M. Soares, Luis E. Kosteski

Abstract:

The problem of toughening in brittle materials reinforced by fibers is complex, involving all the mechanical properties of fibers, matrix, the fiber/matrix interface, as well as the geometry of the fiber. An appropriate method applicable to the simulation and analysis of toughening is essential. In this work, we performed simulations and analysis of toughening in brittle matrix reinforced by randomly distributed fibers by means of the discrete elements method. At first, we put forward a mechanical model of the contribution of random fibers to the toughening of composite. Then with numerical programming, we investigated the stress, damage and bridging force in the composite material when a crack appeared in the brittle matrix. From the results obtained, we conclude that: (i) fibers with high strength and low elasticity modulus benefit toughening; (ii) fibers with relatively high elastic modulus compared to the matrix may result in considerable matrix damage (spalling effect); (iii) employment of high-strength synthetic fiber is a good option. The present work makes it possible to optimize the parameters in order to produce advanced ceramic with desired performance. We believe combination of the discrete element method (DEM) with the finite element method (FEM) can increase the versatility and efficiency of the software developed.

Keywords: bridging stress, discrete element method, fiber reinforced composites, toughening

Procedia PDF Downloads 416
9379 Distributed Control Strategy for Dispersed Energy Storage Units in the DC Microgrid Based on Discrete Consensus

Authors: Hanqing Yang, Xiang Meng, Qi Li, Weirong Chen

Abstract:

The SOC (state of charge) based droop control has limitations on the load power sharing among different energy storage units, due to the line impedance. In this paper, a distributed control strategy for dispersed energy storage units in the DC microgrid based on discrete consensus is proposed. Firstly, a sparse information communication network is built. Thus, local controllers can communicate with its neighbors using voltage, current and SOC information. An average voltage of grid can be evaluated to compensate voltage offset by droop control, and an objective virtual resistance fulfilling above requirement can be dynamically calculated to distribute load power according to the SOC of the energy storage units. Then, the stability of the whole system and influence of communication delay are analyzed. It can be concluded that this control strategy can improve the robustness and flexibility, because of having no center controller. Finally, a model of DC microgrid with dispersed energy storage units and loads is built, the discrete distributed algorithm is established and communication protocol is developed. The co-simulation between Matlab/Simulink and JADE (Java agent development framework) has verified the effectiveness of proposed control strategy.

Keywords: dispersed energy storage units, discrete consensus algorithm, state of charge, communication delay

Procedia PDF Downloads 249
9378 Speech Intelligibility Improvement Using Variable Level Decomposition DWT

Authors: Samba Raju, Chiluveru, Manoj Tripathy

Abstract:

Intelligibility is an essential characteristic of a speech signal, which is used to help in the understanding of information in speech signal. Background noise in the environment can deteriorate the intelligibility of a recorded speech. In this paper, we presented a simple variance subtracted - variable level discrete wavelet transform, which improve the intelligibility of speech. The proposed algorithm does not require an explicit estimation of noise, i.e., prior knowledge of the noise; hence, it is easy to implement, and it reduces the computational burden. The proposed algorithm decides a separate decomposition level for each frame based on signal dominant and dominant noise criteria. The performance of the proposed algorithm is evaluated with speech intelligibility measure (STOI), and results obtained are compared with Universal Discrete Wavelet Transform (DWT) thresholding and Minimum Mean Square Error (MMSE) methods. The experimental results revealed that the proposed scheme outperformed competing methods

Keywords: discrete wavelet transform, speech intelligibility, STOI, standard deviation

Procedia PDF Downloads 114