Search results for: discharge coefficients
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1746

Search results for: discharge coefficients

1536 Statistical Correlation between Ply Mechanical Properties of Composite and Its Effect on Structure Reliability

Authors: S. Zhang, L. Zhang, X. Chen

Abstract:

Due to the large uncertainty on the mechanical properties of FRP (fibre reinforced plastic), the reliability evaluation of FRP structures are currently receiving much attention in industry. However, possible statistical correlation between ply mechanical properties has been so far overlooked, and they are mostly assumed to be independent random variables. In this study, the statistical correlation between ply mechanical properties of uni-directional and plain weave composite is firstly analyzed by a combination of Monte-Carlo simulation and finite element modeling of the FRP unit cell. Large linear correlation coefficients between the in-plane mechanical properties are observed, and the correlation coefficients are heavily dependent on the uncertainty of the fibre volume ratio. It is also observed that the correlation coefficients related to Poisson’s ratio are negative while others are positive. To experimentally achieve the statistical correlation coefficients between in-plane mechanical properties of FRP, all concerned in-plane mechanical properties of the same specimen needs to be known. In-plane shear modulus of FRP is experimentally derived by the approach suggested in the ASTM standard D5379M. Tensile tests are conducted using the same specimens used for the shear test, and due to non-uniform tensile deformation a modification factor is derived by a finite element modeling. Digital image correlation is adopted to characterize the specimen non-uniform deformation. The preliminary experimental results show a good agreement with the numerical analysis on the statistical correlation. Then, failure probability of laminate plates is calculated in cases considering and not considering the statistical correlation, using the Monte-Carlo and Markov Chain Monte-Carlo methods, respectively. The results highlight the importance of accounting for the statistical correlation between ply mechanical properties to achieve accurate failure probability of laminate plates. Furthermore, it is found that for the multi-layer laminate plate, the statistical correlation between the ply elastic properties significantly affects the laminate reliability while the effect of statistical correlation between the ply strength is minimal.

Keywords: failure probability, FRP, reliability, statistical correlation

Procedia PDF Downloads 127
1535 Application of Hydrologic Engineering Centers and River Analysis System Model for Hydrodynamic Analysis of Arial Khan River

Authors: Najeeb Hassan, Mahmudur Rahman

Abstract:

Arial Khan River is one of the main south-eastward outlets of the River Padma. This river maintains a meander channel through its course and is erosional in nature. The specific objective of the research is to study and evaluate the hydrological characteristics in the form of assessing changes of cross-sections, discharge, water level and velocity profile in different stations and to create a hydrodynamic model of the Arial Khan River. Necessary data have been collected from Bangladesh Water Development Board (BWDB) and Center for Environment and Geographic Information Services (CEGIS). Satellite images have been observed from Google earth. In this study, hydrodynamic model of Arial Khan River has been developed using well known steady open channel flow code Hydrologic Engineering Centers and River Analysis System (HEC-RAS) using field surveyed geometric data. Cross-section properties at 22 locations of River Arial Khan for the years 2011, 2013 and 2015 were also analysed. 1-D HEC-RAS model has been developed using the cross sectional data of 2015 and appropriate boundary condition is being used to run the model. This Arial Khan River model is calibrated using the pick discharge of 2015. The applicable value of Mannings roughness coefficient (n) is adjusted through the process of calibration. The value of water level which ties with the observed data to an acceptable accuracy is taken as calibrated model. The 1-D HEC-RAS model then validated by using the pick discharges from 2009-2018. Variation in observed water level in the model and collected water level data is being compared to validate the model. It is observed that due to seasonal variation, discharge of the river changes rapidly and Mannings roughness coefficient (n) also changes due to the vegetation growth along the river banks. This river model may act as a tool to measure flood area in future. By considering the past pick flow discharge, it is strongly recommended to improve the carrying capacity of Arial Khan River to protect the surrounding areas from flash flood.

Keywords: BWDB, CEGIS, HEC-RAS

Procedia PDF Downloads 148
1534 Challenges in the Material and Action-Resistance Factor Design for Embedded Retaining Wall Limit State Analysis

Authors: Kreso Ivandic, Filip Dodigovic, Damir Stuhec

Abstract:

The paper deals with the proposed 'Material' and 'Action-resistance factor' design methods in designing the embedded retaining walls. The parametric analysis of evaluating the differences of the output values mutually and compared with classic approach computation was performed. There is a challenge with the criteria for choosing the proposed calculation design methods in Eurocode 7 with respect to current technical regulations and regular engineering practice. The basic criterion for applying a particular design method is to ensure minimum an equal degree of reliability in relation to the current practice. The procedure of combining the relevant partial coefficients according to design methods was carried out. The use of mentioned partial coefficients should result in the same level of safety, regardless of load combinations, material characteristics and problem geometry. This proposed approach of the partial coefficients related to the material and/or action-resistance should aimed at building a bridge between calculations used so far and pure probability analysis. The measure to compare the results was to determine an equivalent safety factor for each analysis. The results show a visible wide span of equivalent values of the classic safety factors.

Keywords: action-resistance factor design, classic approach, embedded retaining wall, Eurocode 7, limit states, material factor design

Procedia PDF Downloads 208
1533 On Confidence Intervals for the Difference between Inverse of Normal Means with Known Coefficients of Variation

Authors: Arunee Wongkhao, Suparat Niwitpong, Sa-aat Niwitpong

Abstract:

In this paper, we propose two new confidence intervals for the difference between the inverse of normal means with known coefficients of variation. One of these two confidence intervals for this problem is constructed based on the generalized confidence interval and the other confidence interval is constructed based on the closed form method of variance estimation. We examine the performance of these confidence intervals in terms of coverage probabilities and expected lengths via Monte Carlo simulation.

Keywords: coverage probability, expected length, inverse of normal mean, coefficient of variation, generalized confidence interval, closed form method of variance estimation

Procedia PDF Downloads 278
1532 A Statistical Model for the Dynamics of Single Cathode Spot in Vacuum Cylindrical Cathode

Authors: Po-Wen Chen, Jin-Yu Wu, Md. Manirul Ali, Yang Peng, Chen-Te Chang, Der-Jun Jan

Abstract:

Dynamics of cathode spot has become a major part of vacuum arc discharge with its high academic interest and wide application potential. In this article, using a three-dimensional statistical model, we simulate the distribution of the ignition probability of a new cathode spot occurring in different magnetic pressure on old cathode spot surface and at different arcing time. This model for the ignition probability of a new cathode spot was proposed in two typical situations, one by the pure isotropic random walk in the absence of an external magnetic field, other by the retrograde motion in external magnetic field, in parallel with the cathode surface. We mainly focus on developed relationship between the ignition probability density distribution of a new cathode spot and the external magnetic field.

Keywords: cathode spot, vacuum arc discharge, transverse magnetic field, random walk

Procedia PDF Downloads 408
1531 RF Plasma Discharge Equipment for Conservation Treatments of Paper Supports

Authors: Emil Ghiocel Ioanid, Viorica Frunză, Dorina Rusu, Ana Maria Vlad, Catalin Tanase, Simona Dunca

Abstract:

The application of cold radio-frequency (RF) plasma in the conservation of cultural heritage became important in the last decades due to the positive results obtained in decontamination treatments. This paper presents an equipment especially designed for RF cold plasma application on paper documents, developed within a research project. The equipment allows the application of decontamination and cleaning treatments on any type of paper support, as well as the coating with a protective polymer. The equipment consists in a Pyrex vessel, inside which are placed two plane-parallel electrodes, capacitively coupled to a radio-frequency generator. The operating parameters of the equipment are: 1.2 MHz frequency, 50V/cm electric field intensity, current intensity in the discharge 100 mA, 40 W power in the discharge, the pressure varying from 5∙10-1 mbar to 5.5∙10-1 mbar, depending on the fragility of the material, operating in gaseous nitrogen. In order to optimize the equipment treatments in nitrogen plasma have been performed on samples infested with microorganisms, then the decontamination and the changes in surface properties (color, pH) were assessed. The analyses results presented in the table revealed only minor modifications of surface pH the colorimetric analysis showing a slight change to yellow. The equipment offers the possibility of performing decontamination, cleaning and protective coating of paper-based documents in successive stages, thus avoiding the recontamination with harmful biological agents.

Keywords: nitrogen plasma, cultural heritage, paper support, radio-frequency

Procedia PDF Downloads 500
1530 Effect of Needle Height on Discharge Coefficient and Cavitation Number

Authors: Mohammadreza Nezamirad, Sepideh Amirahmadian, Nasim Sabetpour, Azadeh Yazdi, Amirmasoud Hamedi

Abstract:

Cavitation inside diesel injector nozzle is investigated using Reynolds-Stress-Navier Stokes equations. Schnerr-Sauer cavitation model is used for modeling cavitation inside diesel injector nozzle. The carrying fluid utilized in the current study is diesel fuel. The flow is verified at the beginning by comparing with the previous experimental data, and it was found that K-Epsilon turbulent model could lead to a better accuracy comparing to K-Omega turbulent model. Moreover, the mass flow rate obtained numerically is compared with the experimental value, and the discrepancy was found to be less than 5 percent which shows the accuracy of the current results. Finally, a real-size four-hole nozzle is investigated, and the flow inside it is visualized based on velocity profile, discharge coefficient, and cavitation number. It was found that the mesh density could be reduced significantly by utilizing periodic boundary conditions. Velocity contour at the mid nozzle showed that the maximum value of velocity occurs at the end of the needle before entering the orifice area. Last but not least, at the same boundary conditions, when different needle heights were utilized, it was found that as needle height increases with an increase in cavitation number, discharge coefficient increases, while the mentioned increases are more tangible at smaller values of needle heights.

Keywords: cavitation, diesel fuel, CFD, real size nozzle, mass flow rate

Procedia PDF Downloads 118
1529 EHD Effect on the Dynamic Characteristics of a Journal Bearing Lubricated with Couple Stress Fluids

Authors: B. Chetti, W. A. Crosby

Abstract:

This paper presents a numerical analysis for the dynamic performance of a finite journal bearing lubricated with couple stress fluid taking into account the effect of the deformation of the bearing liner. The modified Reynolds equation has been solved by using finite difference technique. The dynamic characteristics in terms of stiffness coefficients, damping coefficients, critical mass and whirl ratio are evaluated for different values of eccentricity ratio and elastic coefficient for a journal bearing lubricated with a couple stress fluids and a Newtonian fluid. The results show that the dynamic characteristics of journal bearings lubricated with couple stress fluids are improved compared to journal bearings lubricated with Newtonian fluids.

Keywords: journal bearing, elastohydrodynamic, stability, couple stress

Procedia PDF Downloads 336
1528 Analysis of Reflection of Elastic Waves in Three Dimensional Model Comprised with Viscoelastic Anisotropic Medium

Authors: Amares Chattopadhyay, Akanksha Srivastava

Abstract:

A unified approach to study the reflection of a plane wave in three-dimensional model comprised of the triclinic viscoelastic medium. The phase velocities of reflected qP, qSV and qSH wave have been calculated for the concerned medium by using the eigenvalue approach. The generalized method has been implemented to compute the complex form of amplitude ratios. Further, we discussed the nature of reflection coefficients of qP, qSV and qSH wave. The viscoelastic parameter, polar angle and azimuthal angle are found to be strongly influenced by amplitude ratios. The research article is particularly focused to study the effect of viscoelasticity associated with highly anisotropic media which exhibits the notable information about the reflection coefficients of qP, qSV, and qSH wave. The outcomes may further useful to the better exploration of all types of hydrocarbon reservoir and advancement in the field of reflection seismology.

Keywords: amplitude ratios, three dimensional, triclinic, viscoelastic

Procedia PDF Downloads 204
1527 Asthma Nurse Specialist Improves the Management of Acute Asthma in a University Teaching Hospital: A Quality Improvement Project

Authors: T. Suleiman, C. Mchugh, H. Ranu

Abstract:

Background; Asthma continues to be associated with poor patient outcomes, including mortality. An audit of the management of acute asthma admissions in our hospital in 2020 found poor compliance with National Asthma and COPD Audit Project (NACAP) standards which set out to improve inpatient asthma care. Clinical nurse specialists have been shown to improve patient care across a range of specialties. In September 2021, an asthma Nurse Specialist (ANS) was employed in our hospital. Aim; To re-audit management of acute asthma admissions using NACAP standards and assess for quality improvement post-employment of an ANS. Methodology; NACAP standards are wide-reaching; therefore, we focused on ‘specific elements of good practice’ in addition to the provision of inhaled corticosteroids (ICS) on discharge. Medical notes were retrospectively requested from the hospital coding department and selected as per NACAP inclusion criteria. Data collection and entry into the NACAP database were carried out. As this was a clinical audit, ethics approval was not required. Results; Cycle 1 (pre-ANS) and 2 (post-ANS) of the audit included 20 and 32 patients, respectively, with comparable baseline demographics. No patients had a discharge bundle completed on discharge in cycle 1 vs. 84% of cases in cycle 2. Regarding specific components of the bundle, 25% of patients in cycle 1 had their inhaler technique checked vs. 91% in cycle 2. Furthermore, 80% of patients had maintenance medications reviewed in cycle 1 vs. 97% in cycle 2. Medication adherence was addressed in 20% of cases in cycle 1 vs. 88% of cases in cycle 2. Personalized asthma action plans were not issued or reviewed in any cases in cycle 1 as compared with 84% of cases in cycle 2. Triggers were discussed in 30% of cases in cycle 1 vs. 88% of cases in cycle 2. Tobacco dependence was addressed in 44% of cases in cycle 1 vs. 100% of cases in cycle 2. No patients in cycle 1 had community follow-up requested within 2 days vs. 81% of the patients in cycle 2. Similarly, 20% of the patients in cycle 1 vs. 88% of the patients in cycle 2 had a 4-week asthma clinic follow-up requested. 75% of patients in cycle 1 were the recipient of ICS on discharge compared with 94% of patients in cycle 2. Conclusion; Our quality improvement project demonstrates the utility of an ANS in improving performance in the management of acute asthma admissions, evidenced here through concordance with NACAP standards. Asthma is a complex condition with biological, psychological, and sociological components; therefore, ANS is a suitable intervention to improve concordance with guidelines. ANS likely impacted performance directly, for example, by checking inhaler technique, and indirectly as a safety net ensuring doctors included ICS on discharge.

Keywords: asthma, nurse specialist, clinical audit, quality improvement

Procedia PDF Downloads 353
1526 Differentiation of the Functional in an Optimization Problem for Coefficients of Elliptic Equations with Unbounded Nonlinearity

Authors: Aigul Manapova

Abstract:

We consider an optimal control problem in the higher coefficient of nonlinear equations with a divergent elliptic operator and unbounded nonlinearity, and the Dirichlet boundary condition. The conditions imposed on the coefficients of the state equation are assumed to hold only in a small neighborhood of the exact solution to the original problem. This assumption suggests that the state equation involves nonlinearities of unlimited growth and considerably expands the class of admissible functions as solutions of the state equation. We obtain formulas for the first partial derivatives of the objective functional with respect to the control functions. To calculate the gradients the numerical solutions of the state and adjoint problems are used. We also prove that the gradient of the cost function is Lipchitz continuous.

Keywords: cost functional, differentiability, divergent elliptic operator, optimal control, unbounded nonlinearity

Procedia PDF Downloads 140
1525 Numerical Simulation of the Dynamic Behavior of a LaNi5 Water Pumping System

Authors: Miled Amel, Ben Maad Hatem, Askri Faouzi, Ben Nasrallah Sassi

Abstract:

Metal hydride water pumping system uses hydrogen as working fluid to pump water for low head and high discharge. The principal operation of this pump is based on the desorption of hydrogen at high pressure and its absorption at low pressure by a metal hydride. This work is devoted to study a concept of the dynamic behavior of a metal hydride pump using unsteady model and LaNi5 as hydriding alloy. This study shows that with MHP, it is possible to pump 340l/kg-cycle of water in 15 000s using 1 Kg of LaNi5 at a desorption temperature of 360 K, a pumping head equal to 5 m and a desorption gear ratio equal to 33. This study reveals also that the error given by the steady model, using LaNi5 is about 2%.A dimensional mathematical model and the governing equations of the pump were presented to predict the coupled heat and mass transfer within the MHP. Then, a numerical simulation is carried out to present the time evolution of the specific water discharge and to test the effect of different parameters (desorption temperature, absorption temperature, desorption gear ratio) on the performance of the water pumping system (specific water discharge, pumping efficiency and pumping time). In addition, a comparison between results obtained with steady and unsteady model is performed with different hydride mass. Finally, a geometric configuration of the reactor is simulated to optimize the pumping time.

Keywords: dynamic behavior, LaNi5, performance of water pumping system, unsteady model

Procedia PDF Downloads 173
1524 Current Status of 5A Lab6 Hollow Cathode Life Tests in Lanzhou Institute of Physics, China

Authors: Yanhui Jia, Ning Guo, Juan Li, Yunkui Sun, Wei Yang, Tianping Zhang, Lin Ma, Wei Meng, Hai Geng

Abstract:

The current statuses of lifetime test of LaB6 hollow cathode at the Lanzhou institute of physics (LIP), China, was described. 5A LaB6 hollow cathode was designed for LIPS-200 40mN Xenon ion thruster and it could be used for LHT-100 80 mN Hall thruster, too. Life test of the discharge and neutralizer modes of LHC-5 hollow cathode were stared in October 2011, and cumulative operation time reached 17,300 and 16,100 hours in April 2015, respectively. The life of cathode was designed more than 11,000 hours. Parameters of discharge and key structure dimensions were monitored in different stage of life test indicated that cathodes were health enough. The test will continue until the cathode cannot work or operation parameter is not in normally. The result of the endurance test of cathode demonstrated that the LaB6 hollow cathode is satisfied for the required of thruster in life and performance.

Keywords: LaB6, hollow cathode, thruster, lifetime test, electric propulsion

Procedia PDF Downloads 565
1523 Characterization of Brewery Wastewater Composition

Authors: Abimbola M. Enitan, Josiah Adeyemo, Sheena Kumari, Feroz M. Swalaha, Faizal Bux

Abstract:

With the competing demand on water resources and water reuse, discharge of industrial effluents into the aquatic environment has become an important issue. Much attention has been placed on the impact of industrial wastewater on water bodies worldwide due to the accumulation of organic and inorganic matter in the receiving water bodies. The scope of the present work is to assess the physic-chemical composition of the wastewater produced from one of the brewery industry in South Africa. This is to estimate the environmental impact of its discharge into the receiving water bodies or the municipal treatment plant. The parameters monitored for the quantitative analysis of brewery wastewater include biological oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids, volatile suspended solids, ammonia, total oxidized nitrogen, nitrate, nitrite, phosphorus, and alkalinity content. In average, the COD concentration of the brewery effluent was 5340.97 mg/l with average pH values of 4.0 to 6.7. The BOD and the solids content of the wastewater from the brewery industry were high. This means that the effluent is very rich in organic content and its discharge into the water bodies or the municipal treatment plant could cause environmental pollution or damage the treatment plant. In addition, there were variations in the wastewater composition throughout the monitoring period. This might be as a result of different activities that take place during the production process, as well as the effects of the peak period of beer production on the water usage.

Keywords: Brewery wastewater, environmental pollution, industrial effluents, physic-chemical composition

Procedia PDF Downloads 411
1522 An Approach Based on Statistics and Multi-Resolution Representation to Classify Mammograms

Authors: Nebi Gedik

Abstract:

One of the significant and continual public health problems in the world is breast cancer. Early detection is very important to fight the disease, and mammography has been one of the most common and reliable methods to detect the disease in the early stages. However, it is a difficult task, and computer-aided diagnosis (CAD) systems are needed to assist radiologists in providing both accurate and uniform evaluation for mass in mammograms. In this study, a multiresolution statistical method to classify mammograms as normal and abnormal in digitized mammograms is used to construct a CAD system. The mammogram images are represented by wave atom transform, and this representation is made by certain groups of coefficients, independently. The CAD system is designed by calculating some statistical features using each group of coefficients. The classification is performed by using support vector machine (SVM).

Keywords: wave atom transform, statistical features, multi-resolution representation, mammogram

Procedia PDF Downloads 194
1521 Effects of Water Content on Dielectric Properties of Mineral Transformer Oil

Authors: Suwarno, M. Helmi Prakoso

Abstract:

Mineral oil is commonly used for high voltage transformer insulation. The insulation quality of mineral oil is affecting the operation process of high voltage transformer. There are many contaminations which could decrease the insulation quality of mineral oil. One of them is water. This research talks about the effect of water content on dielectric properties, physic properties, and partial discharge pattern on mineral oil. Samples were varied with 10 varieties of water content value. And then all samples were tested to measure the dielectric properties, physic properties, and partial discharge pattern. The result of this research showed that an increment of water content value would decrease the insulation quality of mineral oil.

Keywords: dielectric properties, high voltage transformer, mineral oil, water content

Procedia PDF Downloads 372
1520 Microstructure and Electrochemical Properties of LiNi1/3Co1/3Mn1/3-xAlxO2 Cathode Material for Lithium Ion Batteries

Authors: Wei-Bo Hua, Zhuo Zheng, Xiao-Dong Guo, Ben-He Zhong

Abstract:

The layered structure LiNi1/3Co1/3Mn1/3-xAlxO2 (x = 0 ~ 0.04) series cathode materials were synthesized by a carbonate co-precipitation method, followed by a high temperature calcination process. The influence of Al substitution on the microstructure and electrochemical performances of the prepared materials was investigated by X-Ray diffraction (XRD), scanning electron microscopy (SEM), and galvanostatic charge/discharge test. The results show that the LiNi1/3Co1/3Mn1/3-xAlxO2 has a well-ordered hexagonal "α" -NaFeO2 structure. Although the discharge capacity of Al-doped samples decreases as x increases, LiNi1/3Co1/3Mn1/3-0.02Al0.02O2 exhibits superior capacity retention at high voltage (4.6 V). Therefore, LiNi1/3Co1/3Mn1/3-0.02Al0.02O2 is a promising material for “green” vehicles.

Keywords: lithium ion battery, carbonate co-precipitation, doping, microstructure, electrochemical properties

Procedia PDF Downloads 304
1519 Study The Role Effect of Poly Pyrrole on LiFePO4 as Positive Electrode

Authors: Atef Youssef, Marwa Mostafa Moharam

Abstract:

The effects of poly pyrrole (PP) addition on LiFePO4 have been studied by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic measurements. PP was prepared with LiFePO₄ in different ways, such as chemically dispersion, insinuation polymerization, and electrochemically polymerization. The EIS results showed that the charge transfer resistance (Rct) of LiFePO₄ was decreased by adding 10% PP polymerized in a situation to 153 vs. 1660  for bare LiFePO₄. The CV curves show that 10% PP added LiFePO₄ had higher electrochemical reactivity for lithium insertion and extraction than the un-doped material. The mean redox potential is E1/2 = 3.45 V vs. Li+/Li. The first discharge curve of the 10% poly pyrrole doped LiFePO₄ showed a mainly flat voltage plateau over the 3.45–3.5 V range, indicating the lithium extraction and insertion reactions between LiFePO₄ and FePO₄. A specific discharge capacity of cells prepared from in-situ 10% PP added LiFePO4to was about 210 vs. 65 mAhg-1 for bare LiFePO₄.

Keywords: liFePO₄, poly pyrrole addition, positive electrode, lithium battery

Procedia PDF Downloads 158
1518 Study on Relevance Between Electrical Tree Growth and Partial Discharges in Epoxy Resin Materials

Authors: Chien-Kuo Chang, You-Syuan Wu, Min-Chiu Wu, Chun-Wei Wang

Abstract:

Epoxy resin is widely used in the insulation of high-voltage equipment such as transformers and insulating bushings due to its good electrical insulation properties. However, manufacturing defects will cause unpredictable accidents. Therefore, it is an important issue to determine the insulation state of equipment by measuring partial discharges. In this study, the needle-plane electrode structure was used to test the epoxy resin electrical treeing insulation deterioration phenomenon. During the test, we measured the partial discharge signal and then used the signal as the input data of the insulation status assessment system, which was developed in the past research. The experimental samples were made of transparent epoxy resin to facilitate the observation of changes, and were made in the distance of 1 cm and 1.5 cm of 5 sets. During the experiment, a magnifying glass with a total magnification of 2 times is set up to enlarge the picture and a time-lapse camera is used to record the changes of the experimental samples. In the experiment, we found that the electrical treeing phenomenon of the epoxy resin insulation deterioration process can be divided into several stages: initial dark tree, filamentary tree, reverse tree, and insulation breakdown, and simply observed each stage of electrical treeing. After substituting the partial discharge signal into the insulation status assessment system, it can be found that most experimental samples were assessed into the attention period in the middle of the test and into the risky period in the middle and late of the test. Compared to the attention period signal to the recorded film, there was no obvious correlation currently, but compared to the risky period signal, we can see that the experimental sample deformed due to the temperature rise caused by the larger and more frequent discharge. Besides, we also try to collect data about different types of PD by mixing high dielectric constant materials and changing the interior constitution of the sample. Recording data like PDIV、PDEV、RPDIV, the data that recorded can improve performance of various algorithm models.

Keywords: partial discharge, insulation deterioration, epoxy resin, electrical treeing

Procedia PDF Downloads 23
1517 Design of Wide-Range Variable Fractional-Delay FIR Digital Filters

Authors: Jong-Jy Shyu, Soo-Chang Pei, Yun-Da Huang

Abstract:

In this paper, design of wide-range variable fractional-delay (WR-VFD) finite impulse response (FIR) digital filters is proposed. With respect to the conventional VFD filter which is designed such that its delay is adjustable within one unit, the proposed VFD FIR filter is designed such that its delay can be tunable within a wider range. By the traces of coefficients of the fractional-delay FIR filter, it is found that the conventional method of polynomial substitution for filter coefficients no longer satisfies the design demand, and the circuits perform the sinc function (sinc converter) are added to overcome this problem. In this paper, least-squares method is adopted to design WR-VFD FIR filter. Throughout this paper, several examples will be proposed to demonstrate the effectiveness of the presented methods.

Keywords: digital filter, FIR filter, variable fractional-delay (VFD) filter, least-squares approximation

Procedia PDF Downloads 463
1516 Noise Mitigation Techniques to Minimize Electromagnetic Interference/Electrostatic Discharge Effects for the Lunar Mission Spacecraft

Authors: Vabya Kumar Pandit, Mudit Mittal, N. Prahlad Rao, Ramnath Babu

Abstract:

TeamIndus is the only Indian team competing for the Google Lunar XPRIZE(GLXP). The GLXP is a global competition to challenge the private entities to soft land a rover on the moon, travel minimum 500 meters and transmit high definition images and videos to Earth. Towards this goal, the TeamIndus strategy is to design and developed lunar lander that will deliver a rover onto the surface of the moon which will accomplish GLXP mission objectives. This paper showcases the various system level noise control techniques adopted by Electrical Distribution System (EDS), to achieve the required Electromagnetic Compatibility (EMC) of the spacecraft. The design guidelines followed to control Electromagnetic Interference by proper electronic package design, grounding, shielding, filtering, and cable routing within the stipulated mass budget, are explained. The paper also deals with the challenges of achieving Electromagnetic Cleanliness in presence of various Commercial Off-The-Shelf (COTS) and In-House developed components. The methods of minimizing Electrostatic Discharge (ESD) by identifying the potential noise sources, susceptible areas for charge accumulation and the methodology to prevent arcing inside spacecraft are explained. The paper then provides the EMC requirements matrix derived from the mission requirements to meet the overall Electromagnetic compatibility of the Spacecraft.

Keywords: electromagnetic compatibility, electrostatic discharge, electrical distribution systems, grounding schemes, light weight harnessing

Procedia PDF Downloads 270
1515 Optimization of Electrical Discharge Machining Parameters in Machining AISI D3 Tool Steel by Grey Relational Analysis

Authors: Othman Mohamed Altheni, Abdurrahman Abusaada

Abstract:

This study presents optimization of multiple performance characteristics [material removal rate (MRR), surface roughness (Ra), and overcut (OC)] of hardened AISI D3 tool steel in electrical discharge machining (EDM) using Taguchi method and Grey relational analysis. Machining process parameters selected were pulsed current Ip, pulse-on time Ton, pulse-off time Toff and gap voltage Vg. Based on ANOVA, pulse current is found to be the most significant factor affecting EDM process. Optimized process parameters are simultaneously leading to a higher MRR, lower Ra, and lower OC are then verified through a confirmation experiment. Validation experiment shows an improved MRR, Ra and OC when Taguchi method and grey relational analysis were used

Keywords: edm parameters, grey relational analysis, Taguchi method, ANOVA

Procedia PDF Downloads 268
1514 Robust and Transparent Spread Spectrum Audio Watermarking

Authors: Ali Akbar Attari, Ali Asghar Beheshti Shirazi

Abstract:

In this paper, we propose a blind and robust audio watermarking scheme based on spread spectrum in Discrete Wavelet Transform (DWT) domain. Watermarks are embedded in the low-frequency coefficients, which is less audible. The key idea is dividing the audio signal into small frames, and magnitude of the 6th level of DWT approximation coefficients is modifying based upon the Direct Sequence Spread Spectrum (DSSS) technique. Also, the psychoacoustic model for enhancing in imperceptibility, as well as Savitsky-Golay filter for increasing accuracy in extraction, is used. The experimental results illustrate high robustness against most common attacks, i.e. Gaussian noise addition, Low pass filter, Resampling, Requantizing, MP3 compression, without significant perceptual distortion (ODG is higher than -1). The proposed scheme has about 83 bps data payload.

Keywords: audio watermarking, spread spectrum, discrete wavelet transform, psychoacoustic, Savitsky-Golay filter

Procedia PDF Downloads 172
1513 The Relationship between Basic Human Needs and Opportunity Based on Social Progress Index

Authors: Ebru Ozgur Guler, Huseyin Guler, Sera Sanli

Abstract:

Social Progress Index (SPI) whose fundamentals have been thrown in the World Economy Forum is an index which aims to form a systematic basis for guiding strategy for inclusive growth which requires achieving both economic and social progress. In this research, it has been aimed to determine the relations among “Basic Human Needs” (BHN) (including four variables of ‘Nutrition and Basic Medical Care’, ‘Water and Sanitation’, ‘Shelter’ and ‘Personal Safety’) and “Opportunity” (OPT) (that is composed of ‘Personal Rights’, ‘Personal Freedom and Choice’, ‘Tolerance and Inclusion’, and ‘Access to Advanced Education’ components) dimensions of 2016 SPI for 138 countries which take place in the website of Social Progress Imperative by carrying out canonical correlation analysis (CCA) which is a data reduction technique that operates in a way to maximize the correlation between two variable sets. In the interpretation of results, the first pair of canonical variates pointing to the highest canonical correlation has been taken into account. The first canonical correlation coefficient has been found as 0.880 indicating to the high relationship between BHN and OPT variable sets. Wilk’s Lambda statistic has revealed that an overall effect of 0.809 is highly large for the full model in order to be counted as statistically significant (with a p-value of 0.000). According to the standardized canonical coefficients, the largest contribution to BHN set of variables has come from ‘shelter’ variable. The most effective variable in OPT set has been detected to be ‘access to advanced education’. Findings based on canonical loadings have also confirmed these results with respect to the contributions to the first canonical variates. When canonical cross loadings (structure coefficients) are examined, for the first pair of canonical variates, the largest contributions have been provided by ‘shelter’ and ‘access to advanced education’ variables. Since the signs for structure coefficients have been found to be negative for all variables; all OPT set of variables are positively related to all of the BHN set of variables. In case canonical communality coefficients which are the sum of the squares of structure coefficients across all interpretable functions are taken as the basis; amongst all variables, ‘personal rights’ and ‘tolerance and inclusion’ variables can be said not to be useful in the model with 0.318721 and 0.341722 coefficients respectively. On the other hand, while redundancy index for BHN set has been found to be 0.615; OPT set has a lower redundancy index with 0.475. High redundancy implies high ability for predictability. The proportion of the total variation in BHN set of variables that is explained by all of the opposite canonical variates has been calculated as 63% and finally, the proportion of the total variation in OPT set that is explained by all of the canonical variables in BHN set has been determined as 50.4% and a large part of this proportion belongs to the first pair. The results suggest that there is a high and statistically significant relationship between BHN and OPT. This relationship is generally accounted by ‘shelter’ and ‘access to advanced education’.

Keywords: canonical communality coefficient, canonical correlation analysis, redundancy index, social progress index

Procedia PDF Downloads 196
1512 Estimation of Coefficients of Ridge and Principal Components Regressions with Multicollinear Data

Authors: Rajeshwar Singh

Abstract:

The presence of multicollinearity is common in handling with several explanatory variables simultaneously due to exhibiting a linear relationship among them. A great problem arises in understanding the impact of explanatory variables on the dependent variable. Thus, the method of least squares estimation gives inexact estimates. In this case, it is advised to detect its presence first before proceeding further. Using the ridge regression degree of its occurrence is reduced but principal components regression gives good estimates in this situation. This paper discusses well-known techniques of the ridge and principal components regressions and applies to get the estimates of coefficients by both techniques. In addition to it, this paper also discusses the conflicting claim on the discovery of the method of ridge regression based on available documents.

Keywords: conflicting claim on credit of discovery of ridge regression, multicollinearity, principal components and ridge regressions, variance inflation factor

Procedia PDF Downloads 375
1511 Effect of Discharge Pressure Conditions on Flow Characteristics in Axial Piston Pump

Authors: Jonghyuk Yoon, Jongil Yoon, Seong-Gyo Chung

Abstract:

In many kinds of industries which usually need a large amount of power, an axial piston pump has been widely used as a main power source of a hydraulic system. The axial piston pump is a type of positive displacement pump that has several pistons in a circular array within a cylinder block. As the cylinder block and pistons start to rotate, since the exposed ends of the pistons are constrained to follow the surface of the swashed plate, the pistons are driven to reciprocate axially and then a hydraulic power is produced. In the present study, a numerical simulation which has three dimensional full model of the axial piston pump was carried out using a commercial CFD code (Ansys CFX 14.5). In order to take into consideration motion of compression and extension by the reciprocating pistons, the moving boundary conditions were applied as a function of the rotation angle to that region. In addition, this pump using hydraulic oil as working fluid is intentionally designed as a small amount of oil leaks out in order to lubricate moving parts. Since leakage could directly affect the pump efficiency, evaluation of effect of oil-leakage is very important. In order to predict the effect of the oil leakage on the pump efficiency, we considered the leakage between piston-shoe and swash-plate by modeling cylindrical shaped-feature at the end of the cylinder. In order to validate the numerical method used in this study, the numerical results of the flow rate at the discharge port are compared with the experimental data, and good agreement between them was shown. Using the validated numerical method, the effect of the discharge pressure was also investigated. The result of the present study can be useful information of small axial piston pump used in many different manufacturing industries. Acknowledgement: This research was financially supported by the “Next-generation construction machinery component specialization complex development program” through the Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT).

Keywords: axial piston pump, CFD, discharge pressure, hydraulic system, moving boundary condition, oil leaks

Procedia PDF Downloads 225
1510 Development of Beeswax-Discharge Writing Material for Visually Impaired Persons

Authors: K. Doi, T. Nishimura, H. Fujimoto, T. Tanaka

Abstract:

It has been known that visually impaired persons have some problems in getting visual information. Therefore, information accessibility for the visually impaired persons is very important in a current information society. Some application software with read-aloud function for using personal computer and smartphone are getting more and more popular among visually impaired persons in the world. On the other hand, it is also very important for being able to learn how to read and write characters such as Braille and Visual character. Braille typewriter has been widely used in learning Braille. And also raised-line drawing kits as writing material has been used for decades for especially acquired visually impaired persons. However, there are some drawbacks such as the drawn line cannot be erased. Moreover, visibility of drawing lines is not so good for visually impaired with low vision. We had significant number of requests for developing new writing material for especially acquired visually impaired persons instead of raised-line drawing kits. For conducting development research of novel writing material, we could receive a research grant from ministry of health, labor and welfare in Japanese government. In this research, we developed writing material typed pens and pencils with Beeswax-discharge instead of conventional raised-line drawing kits. This writing material was equipped with cartridge heater for melting beeswax and its heat controller. When this pen users held down the pen tip on the regular paper such as fine paper and so on, the melted beeswax could be discharged from pen tip with valve structure. The beeswax was discharged at 100 gf of holding down force based on results of our previous trial study. The shape of pen tip was semispherical for becoming low friction between pen tip and surface of paper. We conducted one basic experiment to evaluate influence of the curvature of pen tip on ease to write. Concretely, the conditions of curvature was 0.15, 0.35, 0.50, 1.00 mm. The following four interval scales were used as indexes of subjective assessment during writing such as feeling of smooth motion of pen, feeling of comfortable writing, sense of security and feeling of writing fatigue. Ten subjects were asked to participate in this experiment. The results reveal that subjects could draw easily when the radius of the pen tip was 1.00 mm, and lines drawn with beeswax-discharge writing material were easy to perceive.

Keywords: beeswax-discharge writing material, raised-line drawing kits, visually impaired persons, pen tip

Procedia PDF Downloads 282
1509 Least Squares Method Identification of Corona Current-Voltage Characteristics and Electromagnetic Field in Electrostatic Precipitator

Authors: H. Nouri, I. E. Achouri, A. Grimes, H. Ait Said, M. Aissou, Y. Zebboudj

Abstract:

This paper aims to analysis the behaviour of DC corona discharge in wire-to-plate electrostatic precipitators (ESP). Current-voltage curves are particularly analysed. Experimental results show that discharge current is strongly affected by the applied voltage. The proposed method of current identification is to use the method of least squares. Least squares problems that of into two categories: linear or ordinary least squares and non-linear least squares, depending on whether or not the residuals are linear in all unknowns. The linear least-squares problem occurs in statistical regression analysis; it has a closed-form solution. A closed-form solution (or closed form expression) is any formula that can be evaluated in a finite number of standard operations. The non-linear problem has no closed-form solution and is usually solved by iterative.

Keywords: electrostatic precipitator, current-voltage characteristics, least squares method, electric field, magnetic field

Procedia PDF Downloads 403
1508 Effect of Li-excess on Electrochemical Performance of Ni-rich LiNi₀.₉Co₀.₀₉Mn₀.₀₉O₂ Cathode Materials for Li-ion Batteries

Authors: Eyob Belew Abebe

Abstract:

Nickel-rich layered oxide cathode materials having a Ni content of ≥ 90% have great potential for use in next-generation lithium-ion batteries (LIBs), due to their high energy densities and relatively low cost. They suffer, however, from poor cycling performance and rate capability, significantly hampering their widespread applicability. In this study we synthesized a Ni-rich precursor through a co-precipitation method and added different amounts of Li-excess on the precursors using a solid-state method to obtain sintered Li1+x(Ni0.9Co0.05Mn0.05)1–xO2 (denoted as L1+x-NCM; x = 0.00, 0.02, 0.04, 0.06, and 0.08) transition metal (TM) oxide cathode materials. The L1+x-NCM cathode having a Li-excess of 4% exhibited a discharge capacity of ca. 216.17 mAh g–1 at 2.7–4.3 V, 0.1C and retained 95.7% of its initial discharge capacity (ca. 181.39 mAh g–1) after 100 cycles of 1C charge/discharge which is the best performance as compared with stoichiometric Li1+x(Ni0.9Co0.05Mn0.05)1-xO2 (i.e. x=0, Li:TM = 1:1). Furthermore, a high-rate capability of ca. 162.92 mAh g–1 at a rate of 10C, led to the 4% Li-excess optimizing the electrochemical performance, relative to the other Li-excess samples. Ex/in-situ X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy revealed that the 4% Li-excess in the Ni-rich NCM90 cathode material: (i). decreased the Li+/Ni2+ disorder by increasing the content of Ni3+ in the TM slab, (ii). increased the crystallinity, and (iii). accelerated Li+ ion transport by widening the Li-slab. Furthermore, electrochemical impedance spectroscopy and cyclic voltammetry confirmed that the appropriate Li-excess lowered the electrochemical impedance and improved the reversibility of the electrochemical reaction. Therefore, our results revealed that NCM90 cathode materials featuring an optimal Li-excess are potential candidates for use in next-generation Li-ion batteries.

Keywords: LiNi₀.₉Co₀.₀₉Mn₀.₀₉O₂, li-excess, cation mixing, structure change, cycle stability, electrochemical properties

Procedia PDF Downloads 121
1507 Characteristics of Plasma Synthetic Jet Actuator in Repetitive Working Mode

Authors: Haohua Zong, Marios Kotsonis

Abstract:

Plasma synthetic jet actuator (PSJA) is a new concept of zero net mass flow actuator which utilizes pulsed arc/spark discharge to rapidly pressurize gas in a small cavity under constant-volume conditions. The unique combination of high exit jet velocity (>400 m/s) and high actuation frequency (>5 kHz) provides a promising solution for high-speed high-Reynolds-number flow control. This paper focuses on the performance of PSJA in repetitive working mode which is more relevant to future flow control applications. A two-electrodes PSJA (cavity volume: 424 mm3, orifice diameter: 2 mm) together with a capacitive discharge circuit (discharge energy: 50 mJ-110 mJ) is designed to enable repetitive operation. Time-Resolved Particle Imaging Velocimetry (TR-PIV) system working at 10 kHz is exploited to investigate the influence of discharge frequency on performance of PSJA. In total, seven cases are tested, covering a wide range of discharge frequencies (20 Hz-560 Hz). The pertinent flow features (shock wave, vortex ring and jet) remain the same for single shot mode and repetitive working mode. Shock wave is issued prior to jet eruption. Two distinct vortex rings are formed in one cycle. The first one is produced by the starting jet whereas the second one is related with the shock wave reflection in cavity. A sudden pressure rise is induced at the throat inlet by the reflection of primary shock wave, promoting the shedding of second vortex ring. In one cycle, jet exit velocity first increases sharply, then decreases almost linearly. Afterwards, an alternate occurrence of multiple jet stages and refresh stages is observed. By monitoring the dynamic evolution of exit velocity in one cycle, some integral performance parameters of PSJA can be deduced. As frequency increases, the jet intensity in steady phase decreases monotonically. In the investigated frequency range, jet duration time drops from 250 µs to 210 µs and peak jet velocity decreases from 53 m/s to approximately 39 m/s. The jet impulse and the expelled gas mass (0.69 µN∙s and 0.027 mg at 20 Hz) decline by 48% and 40%, respectively. However, the electro-mechanical efficiency of PSJA defined by the ratio of jet mechanical energy to capacitor energy doesn’t show significant difference (o(0.01%)). Fourier transformation of the temporal exit velocity signal indicates two dominant frequencies. One corresponds to the discharge frequency, while the other accounts for the alternation frequency of jet stage and refresh stage in one cycle. The alternation period (300 µs approximately) is independent of discharge frequency, and possibly determined intrinsically by the actuator geometry. A simple analytical model is established to interpret the alternation of jet stage and refresh stage. Results show that the dynamic response of exit velocity to a small-scale disturbance (jump in cavity pressure) can be treated as a second-order under-damping system. Oscillation frequency of the exit velocity, namely alternation frequency, is positively proportional to exit area, but inversely proportional to cavity volume and throat length. Theoretical value of alternation period (305 µs) agrees well with the experimental value.

Keywords: plasma, synthetic jet, actuator, frequency effect

Procedia PDF Downloads 225