Search results for: cylinder container
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 536

Search results for: cylinder container

296 Composition, Velocity, and Mass of Projectiles Generated from a Chain Shot Event

Authors: Eric Shannon, Mark J. McGuire, John P. Parmigiani

Abstract:

A hazard associated with the use of timber harvesters is chain shot. Harvester saw chain is subjected to large dynamic mechanical stresses which can cause it to fracture. The resulting open loop of saw chain can fracture a second time and create a projectile consisting of several saw-chain links referred to as a chain shot. Its high kinetic energy enables it to penetrate operator enclosures and be a significant hazard. Accurate data on projectile composition, mass, and speed are needed for the design of both operator enclosures resistant to projectile penetration and for saw chain resistant to fracture. The work presented here contributes to providing this data through the use of a test machine designed and built at Oregon State University. The machine’s enclosure is a standard shipping container. To safely contain any anticipated chain shot, the container was lined with both 9.5 mm AR500 steel plates and 50 mm high-density polyethylene (HDPE). During normal operation, projectiles are captured virtually undamaged in the HDPE enabling subsequent analysis. Standard harvester components are used for bar mounting and chain tensioning. Standard guide bars and saw chains are used. An electric motor with flywheel drives the system. Testing procedures follow ISO Standard 11837. Chain speed at break was approximately 45.5 m/s. Data was collected using both a 75 cm solid bar (Oregon 752HSFB149) and 90 cm solid bar (Oregon 902HSFB149). Saw chains used were 89 Drive Link .404”-18HX loops made from factory spools. Standard 16-tooth sprockets were used. Projectile speed was measured using both a high-speed camera and a chronograph. Both rotational and translational kinetic energy are calculated. For this study 50 chain shot events were executed. Results showed that projectiles consisted of a variety combinations of drive links, tie straps, and cutter links. Most common (occurring in 60% of the events) was a drive-link / tie-strap / drive-link combination having a mass of approximately 10.33 g. Projectile mass varied from a minimum of 2.99 g corresponding to a drive link only to a maximum of 18.91 g corresponding to a drive-link / tie-strap / drive-link / cutter-link / drive-link combination. Projectile translational speed was measured to be approximately 270 m/s and rotational speed of approximately 14000 r/s. The calculated translational and rotational kinetic energy magnitudes each average over 600 J. This study provides useful information for both timber harvester manufacturers and saw chain manufacturers to design products that reduce the hazards associated with timber harvesting.

Keywords: chain shot, timber harvesters, safety, testing

Procedia PDF Downloads 121
295 Nonuniformity of the Piston Motion in a Radial Aircraft Engine

Authors: K. Pietrykowski, M. Bialy, M. Duk

Abstract:

One of the main disadvantages of radial engines is non-uniformity of operating cycles of each cylinder. This paper discusses the results of the kinematic analysis of pistons motion of the ASz-62IR radial engine. The ASz-62IR engine is produced in Poland and mounted in the M-18 Dromader and the An-2. The results are shown as the courses of the motion of the pistons. The discrepancies in the courses for individual pistons can result in different masses of the charge to fill the cylinders. Besides, pistons acceleration of individual cylinders is different, which triggers an additional vibration in the engine.

Keywords: nonuniformity, kinematic analysis, piston motion, radial engine

Procedia PDF Downloads 358
294 Port Miami in the Caribbean and Mesoamerica: Data, Spatial Networks and Trends

Authors: Richard Grant, Landolf Rhode-Barbarigos, Shouraseni Sen Roy, Lucas Brittan, Change Li, Aiden Rowe

Abstract:

Ports are critical for the US economy, connecting farmers, manufacturers, retailers, consumers and an array of transport and storage operators. Port facilities vary widely in terms of their productivity, footprint, specializations, and governance. In this context, Port Miami is considered as one of the busiest ports providing both cargo and cruise services in connecting the wider region of the Caribbean and Mesoamerica to the global networks. It is considered as the “Cruise Capital of the World and Global Gateway of the Americas” and “leading container port in Florida.” Furthermore, it has also been ranked as one of the top container ports in the world and the second most efficient port in North America. In this regard, Port Miami has made significant investments in the strategic and capital infrastructure of about US$1 billion, including increasing the channel depth and other onshore infrastructural enhancements. Therefore, this study involves a detailed analysis of Port Miami’s network, using publicly available multiple years of data about marine vessel traffic, cargo, and connectivity and performance indices from 2015-2021. Through the analysis of cargo and cruise vessels to and from Port Miami and its relative performance at the global scale from 2015 to 2021, this study examines the port’s long-term resilience and future growth potential. The main results of the analyses indicate that the top category for both inbound and outbound cargo is manufactured products and textiles. In addition, there are a lot of fresh fruits, vegetables, and produce for inbound and processed food for outbound cargo. Furthermore, the top ten port connections for Port Miami are all located in the Caribbean region, the Gulf of Mexico, and the Southeast USA. About half of the inbound cargo comes from Savannah, Saint Thomas, and Puerto Plata, while outbound cargo is from Puerto Corte, Freeport, and Kingston. Additionally, for cruise vessels, a significantly large number of vessels originate from Nassau, followed by Freeport. The number of passenger's vessels pre-COVID was almost 1,000 per year, which dropped substantially in 2020 and 2021 to around 300 vessels. Finally, the resilience and competitiveness of Port Miami were also assessed in terms of its network connectivity by examining the inbound and outbound maritime vessel traffic. It is noteworthy that the most frequent port connections for Port Miami were Freeport and Savannah, followed by Kingston, Nassau, and New Orleans. However, several of these ports, Puerto Corte, Veracruz, Puerto Plata, and Santo Thomas, have low resilience and are highly vulnerable, which needs to be taken into consideration for the long-term resilience of Port Miami in the future.

Keywords: port, Miami, network, cargo, cruise

Procedia PDF Downloads 50
293 The Numerical Model of the Onset of Acoustic Oscillation in Pulse Tube Engine

Authors: Alexander I. Dovgyallo, Evgeniy A. Zinoviev, Svetlana O. Nekrasova

Abstract:

The most of works applied for the pulse tube converters contain the workflow description implemented through the use of mathematical models on stationary modes. However, the study of the thermoacoustic systems unsteady behavior in the start, stop, and acoustic load changes modes is in the particular interest. The aim of the present study was to develop a mathematical thermal excitation model of acoustic oscillations in pulse tube engine (PTE) as a small-scale scheme of pulse tube engine operating at atmospheric air. Unlike some previous works this standing wave configuration is a fully closed system. The improvements over previous mathematical models are the following: the model allows specifying any values of porosity for regenerator, takes into account the piston weight and the friction in the cylinder and piston unit, and determines the operating frequency. The numerical method is based on the relation equations between the pressure and volume velocity variables at the ends of each element of PTE which is recorded through the appropriate transformation matrix. A solution demonstrates that the PTE operation frequency is the complex value, and it depends on the piston mass and the dynamic friction due to its movement in the cylinder. On the basis of the determined frequency thermoacoustically induced heat transport and generation of acoustic power equations were solved for channel with temperature gradient on its ends. The results of numerical simulation demonstrate the features of the initialization process of oscillation and show that that generated acoustic power more than power on the steady mode in a factor of 3…4. But doesn`t mean the possibility of its further continuous utilizing due to its existence only in transient mode which lasts only for a 30-40 sec. The experiments were carried out on small-scale PTE. The results shows that the value of acoustic power is in the range of 0.7..1.05 W for the defined frequency range f = 13..18 Hz and pressure amplitudes 11..12 kPa. These experimental data are satisfactorily correlated with the numerical modeling results. The mathematical model can be straightforwardly applied for the thermoacoustic devices with variable temperatures of thermal reservoirs and variable transduction loads which are expected to occur in practical implementations of portable thermoacoustic engines.

Keywords: nonlinear processes, pulse tube engine, thermal excitation, standing wave

Procedia PDF Downloads 350
292 Hub Port Positioning and Route Planning of Feeder Lines for Regional Transportation Network

Authors: Huang Xiaoling, Liu Lufeng

Abstract:

In this paper, we seek to determine one reasonable local hub port and optimal routes for a containership fleet, performing pick-ups and deliveries, between the hub and spoke ports in a same region. The relationship between a hub port, and traffic in feeder lines is analyzed. A new network planning method is proposed, an integrated hub port location and route design, a capacitated vehicle routing problem with pick-ups, deliveries and time deadlines are formulated and solved using an improved genetic algorithm for positioning the hub port and establishing routes for a containership fleet. Results on the performance of the algorithm and the feasibility of the approach show that a relatively small fleet of containerships could provide efficient services within deadlines.

Keywords: route planning, hub port location, container feeder service, regional transportation network

Procedia PDF Downloads 418
291 Kinematics and Dynamics Analysis of Crank-Piston System of a High-Power, Nine-Cylinder Aircraft Engine

Authors: Michal Biały, Konrad Pietrykowski, Rafal Sochaczewski

Abstract:

The kinematics and dynamics analysis of crank-piston system of aircraft engine. The object of the study was the high power aircraft engine ASz 62-IR. This engine is produced by a Polish company WSK "PZL-KALISZ" S.A.". All analyzes were performed numerically using CAD and CAE environment. Three-dimensional model of the crank-piston system was developed based on real engine located in the Laboratory of Centre of Innovation and Advanced Technologies of Lublin University of Technology. During the development of the model, the technique of reverse engineering - 3D scanning was used. ASz 62-IR engine is characterized by a radial type of crank-piston system. In this system the cylinders are arranged radially around the circle. This crank-piston system consists of a main connecting rod and eight additional connecting rods. In addition, three-dimensional model consists of a piston pins, pistons and piston rings. As a result of the specific engine design, characteristics of the piston individual movement are slightly different from each other. But the model assumes that they are the same during the analysis. Three-dimensional model of the engine was implemented into the MSC Adams software. The environment of MSC Adams allows for multibody simulation of the dynamic phenomena. This determines the state parameters of the moving elements, among which the load or force distribution on each kinematic node can be distinguished. Materials and characteristic materials parameters were adopted on the basis of commonly used materials for engine parts. The mass values of individual elements were adopted on the basis of real engine parts. The piston gas forces were replaced by calculation of pressure variations recorded during engine tests on the engine test bench. The research the changes of forces acting in the individual kinematic pairs of crank-piston system. The model allows to determine the load on the crankshaft main bearings. This gives the possibility for the main supports forces analysis The model allows for testing and simulation of kinematics and dynamics of a radial aircraft engine. This is the first stage of the work, which aims to numerical simulation of vibration of multi-cylinder aircraft engine. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: aircraft engine, CAD, CAE, dynamics, kinematics, MSC Adams, numerical simulation

Procedia PDF Downloads 350
290 Evaluation of Neuroprotective Potential of Olea europaea and Malus domestica in Experimentally Induced Stroke Rat Model

Authors: Humaira M. Khan, Kanwal Asif

Abstract:

Ischemic stroke is a neurological disorder with a complex pathophysiology associated with motor, sensory and cognitive deficits. Major approaches developed to treat acute ischemic stroke fall into two categories, thrombolysis and neuroprotection. The objectives of this study were to evaluate the neuroprotective and anti-thrombolytic effects of Olea europaea (olive oil) and Malus domestica (apple cider vinegar) and their combination in rat stroke model. Furthermore, histopathological analysis was also performed to assess the severity of ischemia among treated and reference groups. Male albino rats (12 months age) weighing 300- 350gm were acclimatized and subjected to middle cerebral artery occlusion method for stroke induction. Olea europaea and Malus domestica was administered orally in dose of 0.75ml/kg and 3ml/kg and combination was administered at dose of 0.375ml/kg and 1.5ml/kg prophylactically for consecutive 21 days. Negative control group was dosed with normal saline whereas piracetam (250mg/kg) was administered as reference. Neuroprotective activity of standard piracetam, Olea europaea, Malus domestica and their combination was evaluated by performing functional outcome tests i.e. Cylinder, pasta, ladder run, pole and water maize tests. Rats were subjected to surgery after 21 days of treatment for analysis from stroke recovery. Olea europaea and Malus domestica in individual doses of 0.75ml/kg and 3ml/kg respectively showed neuroprotection by significant improvement in ladder run test (121.6± 0.92;128.2 ± 0.73) as compare to reference (125.4 ± 0.74). Both test doses showed significant neuroprotection as compare to reference (9.60 ± 0.50) in pasta test (8.40 ± 0.24;9.80 ± 0.37) whereas with cylinder test, experimental groups showed significant increase in movements (6.60 ± 0.24; 8.40 ± 0.24) in contrast to reference (7.80 ± 0.37).There was a decrease in percentage time taken f to reach the hidden maize in water maize test (56.80 ± 0.58;61.80 ± 0.66) at doses 0.75ml/kg and 3ml/kg respectively as compare to piracetam (59.40 ± 1.07). Olea europaea and Malus domestica individually showed significant reduction in duration of mobility (127.0 ± 0.44; 123.0 ± 0.44) in pole test as compare to piracetam (124.0 ± 0.70). Histopathological analysis revealed the significant extent of protection from ischemia after prophylactic treatments. Hence it is concluded that Olea europaea and Malus domestica are effective neuroprotective agents alone as compare to their combination.

Keywords: ischemia, Malus domestica, neuroprotection, Olea europaea

Procedia PDF Downloads 105
289 Effect of Storage Time on the Properties of Seeds, Oil and Biodiesel from Reutealis trisperma

Authors: Muhammad Yusuf Abduh, Syaripudin, Laksmitha Dyanie, Robert Manurung

Abstract:

The time profile of moisture content for different fractions (PT-3, PT-7, PT-14, NPT-21) of trisperma seeds (Reutealis trisperma) was determined at a relative humidity of 67% and 27°C for a four months period. The diffusion coefficient of water in the trisperma seeds was determined using an analytical solution of instationary diffusion equation and used to model the moisture content in the seeds. The total oil content of the seeds and the acid value of the extracted oil from the stored seeds were periodically measured for four months. The acid value of the extracted oil from the stored seeds increased for all conditions (1.1 to 2.8 mg KOH/g for PT-3, 1.9 to 9.9 mg KOH/g for PT-7, 3.4 to 11.6 mg KOH/g for PT-14 and 4.7 to 25.4 mg KOH/g for NPT-21). The acid value of trisperma oil and biodiesel that has been stored for four months (27°C, closed container) was also determined. Upon storage, the acid value of trisperma oil and biodiesel only slightly increased from 1.1 to 1.3 mg KOH/g and 0.4 to 0.43 mg KOH/g, respectively.

Keywords: acid value, biodiesel, moisture content, Reutealis trisperma, storage

Procedia PDF Downloads 262
288 Interfacial Instability and Mixing Behavior between Two Liquid Layers Bounded in Finite Volumes

Authors: Lei Li, Ming M. Chai, Xiao X. Lu, Jia W. Wang

Abstract:

The mixing process of two liquid layers in a cylindrical container includes the upper liquid with higher density rushing into the lower liquid with lighter density, the lower liquid rising into the upper liquid, meanwhile the two liquid layers having interactions with each other, forming vortices, spreading or dispersing in others, entraining or mixing with others. It is a complex process constituted of flow instability, turbulent mixing and other multiscale physical phenomena and having a fast evolution velocity. In order to explore the mechanism of the process and make further investigations, some experiments about the interfacial instability and mixing behavior between two liquid layers bounded in different volumes are carried out, applying the planar laser induced fluorescence (PLIF) and the high speed camera (HSC) techniques. According to the results, the evolution of interfacial instability between immiscible liquid develops faster than theoretical rate given by the Rayleigh-Taylor Instability (RTI) theory. It is reasonable to conjecture that some mechanisms except the RTI play key roles in the mixture process of two liquid layers. From the results, it is shown that the invading velocity of the upper liquid into the lower liquid does not depend on the upper liquid's volume (height). Comparing to the cases that the upper and lower containers are of identical diameter, in the case that the lower liquid volume increases to larger geometric space, the upper liquid spreads and expands into the lower liquid more quickly during the evolution of interfacial instability, indicating that the container wall has important influence on the mixing process. In the experiments of miscible liquid layers’ mixing, the diffusion time and pattern of the liquid interfacial mixing also does not depend on the upper liquid's volumes, and when the lower liquid volume increases to larger geometric space, the action of the bounded wall on the liquid falling and rising flow will decrease, and the liquid interfacial mixing effects will also attenuate. Therefore, it is also concluded that the volume weight of upper heavier liquid is not the reason of the fast interfacial instability evolution between the two liquid layers and the bounded wall action is limited to the unstable and mixing flow. The numerical simulations of the immiscible liquid layers’ interfacial instability flow using the VOF method show the typical flow pattern agree with the experiments. However the calculated instability development is much slower than the experimental measurement. The numerical simulation of the miscible liquids’ mixing, which applying Fick’s diffusion law to the components’ transport equation, shows a much faster mixing rate than the experiments on the liquids’ interface at the initial stage. It can be presumed that the interfacial tension plays an important role in the interfacial instability between the two liquid layers bounded in finite volume.

Keywords: interfacial instability and mixing, two liquid layers, Planar Laser Induced Fluorescence (PLIF), High Speed Camera (HSC), interfacial energy and tension, Cahn-Hilliard Navier-Stokes (CHNS) equations

Procedia PDF Downloads 215
287 Modeling and Simulation of Primary Atomization and Its Effects on Internal Flow Dynamics in a High Torque Low Speed Diesel Engine

Authors: Muteeb Ulhaq, Rizwan Latif, Sayed Adnan Qasim, Imran Shafi

Abstract:

Diesel engines are most efficient and reliable in terms of efficiency, reliability and adaptability. Most of the research and development up till now have been directed towards High-Speed Diesel Engine, for Commercial use. In these engines objective is to optimize maximum acceleration by reducing exhaust emission to meet international standards. In high torque low-speed engines the requirement is altogether different. These types of Engines are mostly used in Maritime Industry, Agriculture industry, Static Engines Compressors Engines etc. Unfortunately due to lack of research and development, these engines have low efficiency and high soot emissions and one of the most effective way to overcome these issues is by efficient combustion in an engine cylinder, the fuel spray atomization process plays a vital role in defining mixture formation, fuel consumption, combustion efficiency and soot emissions. Therefore, a comprehensive understanding of the fuel spray characteristics and atomization process is of a great importance. In this research, we will examine the effects of primary breakup modeling on the spray characteristics under diesel engine conditions. KH-ACT model is applied to cater the effect of aerodynamics in an engine cylinder and also cavitations and turbulence generated inside the injector. It is a modified form of most commonly used KH model, which considers only the aerodynamically induced breakup based on the Kelvin–Helmholtz instability. Our model is extensively evaluated by performing 3-D time-dependent simulations on Open FOAM, which is an open source flow solver. Spray characteristics like Spray Penetration, Liquid length, Spray cone angle and Souter mean diameter (SMD) were validated by comparing the results of Open Foam and Matlab. Including the effects of cavitation and turbulence enhances primary breakup, leading to smaller droplet sizes, decrease in liquid penetration, and increase in the radial dispersion of spray. All these properties favor early evaporation of fuel which enhances Engine efficiency.

Keywords: Kelvin–Helmholtz instability, open foam, primary breakup, souter mean diameter, turbulence

Procedia PDF Downloads 185
286 Study of Pottery And Glazed Canopic Vessels

Authors: Abdelrahman Mohamed

Abstract:

The ancient Egyptians used canopic vessels in embalming operations in order to preserve the guts of the mummified corpse. Canopic vessels were made of many materials, including pottery and glazed pottery. In this research, we study a pottery canopic vessel and a glazed pottery vessel. An analysis to find out the compounds and elements of the materials from which the container is made and the colors, and also to make some analysis for the organic materials present inside it, such as the Fourier Transform Infrared Spectroscopy analysis and the Gas chromatograph mass spectrometers analysis of the organic residue. Through the study and analysis, it was proved that some of the materials present in the pot were coniferous oil and animal fats. In the other pot, the analysis showed the presence of some plant resins (mastic) inside rolls of linen. Restoration operations were carried out, such as mechanical cleaning, strengthening, and completing the reinforcement of the pots.

Keywords: canopic jar, embalming, FTIR, GCMS, linen.

Procedia PDF Downloads 47
285 Component Lifecycle and Concurrency Model in Usage Control (UCON) System

Authors: P. Ghann, J. Shiguang, C. Zhou

Abstract:

Access control is one of the most challenging issues facing information security. Access control is defined as, the ability to permit or deny access to a particular computational resource or digital information by an unauthorized user or subject. The concept of usage control (UCON) has been introduced as a unified approach to capture a number of extensions for access control models and systems. In UCON, an access decision is determined by three factors: Authorizations, obligations and conditions. Attribute mutability and decision continuity are two distinct characteristics introduced by UCON for the first time. An observation of UCON components indicates that, the components are predefined and static. In this paper, we propose a new and flexible model of usage control for the creation and elimination of some of these components; for example new objects, subjects, attributes and integrate these with the original UCON model. We also propose a model for concurrent usage scenarios in UCON.

Keywords: access control, concurrency, digital container, usage control

Procedia PDF Downloads 298
284 The Effectivity of Lime Juice on the Cooked Rice's Shelf-Life

Authors: Novriyanti Lubis, Riska Prasetiawati, Nuriani Rahayu

Abstract:

The effectivity of lime juice on the cooked rice’s shelf-life was investigated. This research was proposed to get the optimal condition, such as concentration lime juice as the preservatives, and shelf-life cooked rice’s container to store using rice warmer. The effectivity was analysed total colony bacteriology, and physically. The variation of lime juice’s concentration that have been used were 0%, 0,46%, 0,93%, 1,40%, and 1,87%. The observation of cooked rice’s quality was done every 12 hours, including colour, smell, flavour, and total colony every 24 hours. Based on the result of the research considered from the cooked rice’s quality through observing the total of the colony bacteriology and physically, it showed the optimum concentrate which is effective preserve the cooked rise’s level concentrate was 0.93%.

Keywords: bacteriology, cooked rice's, lime juice, preservative

Procedia PDF Downloads 299
283 Real-Time Detection of Space Manipulator Self-Collision

Authors: Zhang Xiaodong, Tang Zixin, Liu Xin

Abstract:

In order to avoid self-collision of space manipulators during operation process, a real-time detection method is proposed in this paper. The manipulator is fitted into a cylinder enveloping surface, and then the detection algorithm of collision between cylinders is analyzed. The collision model of space manipulator self-links can be detected by using this algorithm in real-time detection during the operation process. To ensure security of the operation, a safety threshold is designed. The simulation and experiment results verify the effectiveness of the proposed algorithm for a 7-DOF space manipulator.

Keywords: space manipulator, collision detection, self-collision, the real-time collision detection

Procedia PDF Downloads 430
282 Small Scale Stationary and Mobile Production of Biodiesel

Authors: Muhammad Yusuf Abduh, Robert Manurung, Hero Jan Heeres

Abstract:

Biodiesel can be produced in small scale mobile units which are designed with local input and demand. Unlike the typical biodiesel production plants, mobile biodiesel unit consiss of a biodiesel production facility placed inside a standard cargo container and mounted on a truck so that it can be transported to a region near the location of raw materials. In this paper, we review the existing concept and unit for the development of community-scale and mobile production of biodiesel. This includes the main reactor technology to produce biodiesel as well as the pre-treatment prior to the reaction unit. The pre-treatment includes the oil-expeller unit to obtain oil from the oilseeds as well as the quality control of the oil before it enters the reaction unit. This paper also discusses the post-treatment after the production of biodiesel. It includes the refining and purification of biodiesel to meet the product specification set by the biodiesel industry.

Keywords: biodiesel, community scale, mobile biodiesel unit, reactor technology

Procedia PDF Downloads 208
281 The Investigation of LPG Injector Control Circuit on a Motorcycle

Authors: Bin-Wen Lan, Ying-Xin Chen, Hsueh-Cheng Yang

Abstract:

Liquefied petroleum gas is a fuel that has high octane number and low carbon number. This paper uses MSC-51 controller to investigate the effect of liquefied petroleum gas (LPG) on exhaust emissions for different engine speeds in a single cylinder, four-stroke and spark ignition engine. The results indicate that CO, CO2 and NOX exhaust emissions are lower with the use of LPG compared to the use of unleaded gasoline by using the developed controller. The open-loop in the LPG injection system was controlled by MCS-51 single chip. The results show that if a SI engine is operated with LPG fuel rather than gasoline fuel under the same conditions, significant reduction in exhaust emissions can be achieved. In summary, LPG has positive effects on main exhaust emissions such as CO, CO2 and NOX.

Keywords: LPG, control circuit, emission, MCS-51

Procedia PDF Downloads 454
280 The Effect of Biochar, Inoculated Biochar and Compost Biological Component of the Soil

Authors: Helena Dvořáčková, Mikajlo Irina, Záhora Jaroslav, Elbl Jakub

Abstract:

Biochar can be produced from the waste matter and its application has been associated with returning of carbon in large amounts into the soil. The impacts of this material on physical and chemical properties of soil have been described. The biggest part of the research work is dedicated to the hypothesis of this material’s toxic effects on the soil life regarding its effect on the soil biological component. At present, it has been worked on methods which could eliminate these undesirable properties of biochar. One of the possibilities is to mix biochar with organic material, such as compost, or focusing on the natural processes acceleration in the soil. In the experiment has been used as the addition of compost as well as the elimination of toxic substances by promoting microbial activity in aerated water environment. Biochar was aerated for 7 days in a container with a volume of 20 l. This way modified biochar had six times higher biomass production and reduce mineral nitrogen leaching. Better results have been achieved by mixing biochar with compost.

Keywords: leaching of nitrogen, soil, biochar, compost

Procedia PDF Downloads 294
279 Object-Oriented Multivariate Proportional-Integral-Derivative Control of Hydraulic Systems

Authors: J. Fernandez de Canete, S. Fernandez-Calvo, I. García-Moral

Abstract:

This paper presents and discusses the application of the object-oriented modelling software SIMSCAPE to hydraulic systems, with particular reference to multivariable proportional-integral-derivative (PID) control. As a result, a particular modelling approach of a double cylinder-piston coupled system is proposed and motivated, and the SIMULINK based PID tuning tool has also been used to select the proper controller parameters. The paper demonstrates the usefulness of the object-oriented approach when both physical modelling and control are tackled.

Keywords: object-oriented modeling, multivariable hydraulic system, multivariable PID control, computer simulation

Procedia PDF Downloads 316
278 Numerical Analyses of Dynamics of Deployment of PW-Sat2 Deorbit Sail Compared with Results of Experiment under Micro-Gravity and Low Pressure Conditions

Authors: P. Brunne, K. Ciechowska, K. Gajc, K. Gawin, M. Gawin, M. Kania, J. Kindracki, Z. Kusznierewicz, D. Pączkowska, F. Perczyński, K. Pilarski, D. Rafało, E. Ryszawa, M. Sobiecki, I. Uwarowa

Abstract:

Big amount of space debris constitutes nowadays a real thread for operating space crafts; therefore the main purpose of PW-Sat2’ team was to create a system that could help cleanse the Earth’s orbit after each small satellites’ mission. After 4 years of development, the motorless, low energy consumption and low weight system has been created. During series of tests, the system has shown high reliable efficiency. The PW-Sat2’s deorbit system is a square-shaped sail which covers an area of 4m². The sail surface is made of 6 μm aluminized Mylar film which is stretched across 4 diagonally placed arms, each consisting of two C-shaped flat springs and enveloped in Mylar sleeves. The sail is coiled using a special, custom designed folding stand that provides automation and repeatability of the sail unwinding tests and placed in a container with inner diameter of 85 mm. In the final configuration the deorbit system weights ca. 600 g and occupies 0.6U (in accordance with CubeSat standard). The sail’s releasing system requires minimal amount of power based on thermal knife that burns out the Dyneema wire, which holds the system before deployment. The Sail is being pushed out of the container within a safe distance (20 cm away) from the satellite. The energy for the deployment is completely assured by coiled C-shaped flat springs, which during the release, unfold the sail surface. To avoid dynamic effects on the satellite’s structure, there is the rotational link between the sail and satellite’s main body. To obtain complete knowledge about complex dynamics of the deployment, a number of experiments have been performed in varied environments. The numerical model of the dynamics of the Sail’s deployment has been built and is still under continuous development. Currently, the integration of the flight model and Deorbit Sail is performed. The launch is scheduled for February 2018. At the same time, in cooperation with United Nations Office for Outer Space Affairs, sail models and requested facilities are being prepared for the sail deployment experiment under micro-gravity and low pressure conditions at Bremen Drop Tower, Germany. Results of those tests will provide an ultimate and wide knowledge about deployment in space environment to which system will be exposed during its mission. Outcomes of the numerical model and tests will be compared afterwards and will help the team in building a reliable and correct model of a very complex phenomenon of deployment of 4 c-shaped flat springs with surface attached. The verified model could be used inter alia to investigate if the PW-Sat2’s sail is scalable and how far is it possible to go with enlarging when creating systems for bigger satellites.

Keywords: cubesat, deorbitation, sail, space, debris

Procedia PDF Downloads 265
277 Natural Fibers Design Attributes

Authors: Brayan S. Pabón, R. Ricardo Moreno, Edith Gonzalez

Abstract:

Inside the wide Colombian natural fiber set is the banana stem leaf, known as Calceta de Plátano, which is a material present in several regions of the country and is a fiber extracted from the pseudo stem of the banana plant (Musa paradisiaca) as a regular maintenance process. Colombia had a production of 2.8 million tons in 2007 and 2008 corresponding to 8.2% of the international production, number that is growing. This material was selected to be studied because it is not being used by farmers due to it being perceived as a waste from the banana harvest and a propagation pest agent inside the planting. In addition, the Calceta does not have industrial applications in Colombia since there is not enough concrete knowledge that informs us about the properties of the material and the possible applications it could have. Based on this situation the industrial design is used as a link between the properties of the material and the need to transform it into industrial products for the market. Therefore, the project identifies potential design attributes that the banana stem leaf can have for product development. The methodology was divided into 2 main chapters: Methodology for the material recognition: -Data Collection, inquiring the craftsmen experience and bibliography. -Knowledge in practice, with controlled experiments and validation tests. -Creation of design attributes and material profile according to the knowledge developed. Moreover, the Design methodology: -Application fields selection, exploring the use of the attributes and the relation with product functions. -Evaluating the possible fields and selection of the optimum application. -Design Process with sketching, ideation, and product development. Different protocols were elaborated to qualitatively determine some material properties of the Calceta, and if they could be designated as design attributes. Once defined, performed and analyzed the validation protocols, 25 design attributes were identified and classified into 4 attribute categories (Environmental, Functional, Aesthetics and Technical) forming the material profile. Then, 15 application fields were defined based on the relation between functions of product and the use of the Calceta attributes. Those fields were evaluated to measure how much are being used the functional attributes. After fields evaluation, a final field was defined , influenced by traditional use of the fiber for packing food. As final result, two products were designed for this application field. The first one is the Multiple Container, which works to contain small or large-thin pieces of food, like potatoes chips or small sausages; it allows the consumption of food with sauces or dressings. The second is the Chorizo container, specifically designed for this food due to the long shape and the consumption mode. Natural fiber research allows the generation of a solider and a more complete knowledge about natural fibers. In addition, the research is a way to strengthen the identity through the investigation of the proper and autochthonous, allowing the use of national resources in a sustainable and creative way. Using divergent thinking and the design as a tool, this investigation can achieve advances in the natural fiber handling.

Keywords: banana stem leaf, Calceta de Plátano, design attributes, natural fibers, product design

Procedia PDF Downloads 223
276 Contributions at the Define of the Vortex Plane Cyclic Motion

Authors: Petre Stan, Marinica Stan

Abstract:

In this paper, a new way to define the vortex plane cyclic motion is exposed, starting from the physical cause of reacting the vortex. The Navier-Stokes equations are used in cylindrical coordinates for viscous fluids in laminar motion, and are integrated in case of a infinite long revolving cylinder which rotates around a pintle in a viscous fluid that occupies the entire space up to infinite. In this way, a revolving field of velocities in fluid is obtained, having the shape of a vortex in which the intensity is obtained objectively, being given by the physical phenomenon that generates this vortex.

Keywords: cylindrical coordinates, Navier-Stokes equations, viscous fluid, vortex plane

Procedia PDF Downloads 107
275 Wastewater Treatment Using Sodom Apple Tree in Arid Regions

Authors: D. Oulhaci, M. Zehah, S. Meguellati

Abstract:

Collected by the sewerage network, the wastewater contains many polluting elements, coming from the population, commercial, industrial and agricultural activities. These waters are collected and discharged into the natural environment and pollute it. Hence the need to transport them before discharge to a treatment plant to undergo several treatment phases. The objective of this study is to highlight the purification performance of the "Sodom apple tree" which is a very common shrub in the region of Djanet and Illizi in Algeria. As material, we used small buckets filled with sand with a gravel substrate. We sowed seeds that we let grow a few weeks. The water supply is under a horizontal flow regime under-ground. The urban wastewater used is preceded by preliminary treatment. The water obtained after purification is collected using a tap in a container placed under the seal. The comparison between the inlet and the outlet waters showed that the presence of the Sodom apple tree contributes to reducing their pollutant parameters with significant rates: 81% for COD, 84%, for BOD , 95% for SM , 82% for NO⁻² , and 85% for NO⁻³ and can be released into the environment without risk of pollution

Keywords: arid zone, pollution, purification, re-use, wastewater.

Procedia PDF Downloads 50
274 An Experimental Testbed Using Virtual Containers for Distributed Systems

Authors: Parth Patel, Ying Zhu

Abstract:

Distributed systems have become ubiquitous, and they continue their growth through a range of services. With advances in resource virtualization technology such as Virtual Machines (VM) and software containers, developers no longer require high-end servers to test and develop distributed software. Even in commercial production, virtualization has streamlined the process of rapid deployment and service management. This paper introduces a distributed systems testbed that utilizes virtualization to enable distributed systems development on commodity computers. The testbed can be used to develop new services, implement theoretical distributed systems concepts for understanding, and experiment with virtual network topologies. We show its versatility through two case studies that utilize the testbed for implementing a theoretical algorithm and developing our own methodology to find high-risk edges. The results of using the testbed for these use cases have proven the effectiveness and versatility of this testbed across a range of scenarios.

Keywords: distributed systems, experimental testbed, peer-to-peer networks, virtual container technology

Procedia PDF Downloads 111
273 Modeling and Computational Validation of Dispersion Curves of Guide Waves in a Pipe Using ANSYS

Authors: A. Perdomo, J. R. Bacca, Q. E. Jabid

Abstract:

In recent years, technological and investigative progress has been achieved in the area of monitoring of equipment and installation as a result of a deeper understanding of physical phenomenon associated with the non-destructive tests (NDT). The modal analysis proposes an efficient solution to determine the dispersion curves of an arbitrary waveguide cross-sectional. Dispersion curves are essential in the discontinuity localization based on guided waves. In this work, an isotropic hollow cylinder is dynamically analyzed in ANSYS to obtain resonant frequencies and mode shapes all of them associated with the dispersion curves. The numerical results provide the relation between frequency and wavelength which is the foundation of the dispersion curves. Results of the simulation process are validated with the software GUIGW.

Keywords: ansys APDL, dispersion curves, guide waves, modal analysis

Procedia PDF Downloads 215
272 Numerical Investigation of the Effect of the Spark Plug Gap on Engine-Like Conditions

Authors: Fernanda Pinheiro Martins, Pedro Teixeira Lacava

Abstract:

The objective of this research is to analyze the effects of different spark plug conditions in engine-like conditions by applying computational fluid dynamics analysis. The 3D models applied consist of 3-Zones Extended Coherent Flame (ECFM-3Z) and Imposed Stretch Spark Ignition Model (ISSIM), respectively, for the combustion and the spark plug modelling. For this study, it was applied direct injection fuel system in a single cylinder engine operating with E0. The application of realistic operating conditions (load and speed) to the different cases studied will provide a deeper understanding of the effects of the spark plug gap, a result of parts outwearing in most of the cases, to the development of the combustion in engine-like conditions.

Keywords: engine, CFD, direct injection, combustion, spark plug

Procedia PDF Downloads 98
271 Stress Analysis of Laminated Cylinders Subject to the Thermomechanical Loads

Authors: Şafak Aksoy, Ali Kurşun, Erhan Çetin, Mustafa Reşit Haboğlu

Abstract:

In this study, thermo elastic stress analysis is performed on a cylinder made of laminated isotropic materials under thermomechanical loads. Laminated cylinders have many applications such as aerospace, automotive and nuclear plant in the industry. These cylinders generally performed under thermomechanical loads. Stress and displacement distribution of the laminated cylinders are determined using by analytical method both thermal and mechanical loads. Based on the results, materials combination plays an important role on the stresses distribution along the radius. Variation of the stresses and displacements along the radius are presented as graphs. Calculations program are prepared using MATLAB® by authors.

Keywords: isotropic materials, laminated cylinders, thermoelastic stress, thermomechanical load

Procedia PDF Downloads 382
270 Study on Connecting Method of Box Pontoons

Authors: Young-Jun You, Youn-Ju Jeong, Min-Su Park, Du-Ho Lee

Abstract:

Due to a lot of limited conditions, a large box type floating structure is inevitably constructed by connecting many pontoons. When a floating structure is made with concrete, concrete shear key with saw-teeth shape is often used to carry shear force. Match casting for the shear key and precise construction on a sea are very important for making separated two pontoons as one body but those are not easy work and may increase construction time and cost. To solve this problem, one-way shear key is studied in this paper for a connected part where there is some difference between upward and downward shear force. It has only one inclined plane and can resist shear force in one direction. Big shear force is resisted by concrete which forms an inclined plane and small shear force is resisted by steel bar. This system can reduce manufacturing cost of individual pontoon and construction time and cost for constructing a floating structure on a sea. In this paper, the feasibility study about one-way shear key system is performed by comparing with design example.

Keywords: connection, floating container terminal, pontoon, pre-stressing, shear key

Procedia PDF Downloads 298
269 Analysis of a Double Pipe Heat Exchanger Performance by Use of Porous Baffles and Nanofluids

Authors: N. Targui, H. Kahalerras

Abstract:

The present work is a numerical simulation of nanofluids flow in a double pipe heat exchanger provided with porous baffles. The hot nanofluid flows in the inner cylinder, whereas the cold nanofluid circulates in the annular gap. The Darcy-Brinkman-Forchheimer model is adopted to describe the flow in the porous regions, and the governing equations with the appropriate boundary conditions are solved by the finite volume method. The results reveal that the addition of metallic nanoparticles enhances the rate of heat transfer in comparison to conventional fluids but this augmentation is accompanied by an increase in pressure drop. The highest heat exchanger performances are obtained when nanoparticles are added only to the cold fluid.

Keywords: double pipe heat exchanger, nanofluids, nanoparticles, porous baffles

Procedia PDF Downloads 214
268 Experimental Study on the Molecular Spring Isolator

Authors: Muchun Yu, Xue Gao, Qian Chen

Abstract:

As a novel passive vibration isolation technology, molecular spring isolator (MSI) is investigated in this paper. An MSI consists of water and hydrophobic zeolites as working medium. Under periodic excitation, water molecules intrude into hydrophobic pores of zeolites when the pressure rises and water molecules extrude from hydrophobic pores when pressure drops. At the same time, energy is stored, released and dissipated. An MSI of piston-cylinder structure was designed in this work. Experiments were conducted to investigate the stiffness properties of MSI. The results show that MSI exhibits high-static-low dynamic (HSLD) stiffness. Furthermore, factors such as the quantity of zeolites, temperature, and ions in water are proved to have an influence on the stiffness properties of MSI.

Keywords: hydrophobic zeolites, molecular spring, stiffness, vibration isolation

Procedia PDF Downloads 440
267 Nonlinear Analysis of a Building Surmounted by a RC Water Tank under Hydrodynamic Load

Authors: Hocine Hammoum, Karima Bouzelha, Lounis Ziani, Lounis Hamitouche

Abstract:

In this paper, we study a complex structure which is an apartment building surmounted by a reinforced concrete water tank. The tank located on the top floor of the building is a container with capacity of 1000 m3. The building is complex in its design, its calculation and by its behavior under earthquake effect. This structure located in Algiers and aged of 53 years has been subjected to several earthquakes, but the earthquake of May 21st, 2003 with a magnitude of 6.7 on the Richter scale that struck Boumerdes region at 40 Kms East of Algiers was fatal for it. It was downgraded after an investigation study because the central core sustained serious damage. In this paper, to estimate the degree of its damages, the seismic performance of the structure will be evaluated taking into account the hydrodynamic effect, using a static equivalent nonlinear analysis called pushover.

Keywords: performance analysis, building, reinforced concrete tank, seismic analysis, nonlinear analysis, hydrodynamic, pushover

Procedia PDF Downloads 389