Search results for: cost variance
7144 Efficient Frontier: Comparing Different Volatility Estimators
Authors: Tea Poklepović, Zdravka Aljinović, Mario Matković
Abstract:
Modern Portfolio Theory (MPT) according to Markowitz states that investors form mean-variance efficient portfolios which maximizes their utility. Markowitz proposed the standard deviation as a simple measure for portfolio risk and the lower semi-variance as the only risk measure of interest to rational investors. This paper uses a third volatility estimator based on intraday data and compares three efficient frontiers on the Croatian Stock Market. The results show that range-based volatility estimator outperforms both mean-variance and lower semi-variance model.Keywords: variance, lower semi-variance, range-based volatility, MPT
Procedia PDF Downloads 5117143 BIASS in the Estimation of Covariance Matrices and Optimality Criteria
Authors: Juan M. Rodriguez-Diaz
Abstract:
The precision of parameter estimators in the Gaussian linear model is traditionally accounted by the variance-covariance matrix of the asymptotic distribution. However, this measure can underestimate the true variance, specially for small samples. Traditionally, optimal design theory pays attention to this variance through its relationship with the model's information matrix. For this reason it seems convenient, at least in some cases, adapt the optimality criteria in order to get the best designs for the actual variance structure, otherwise the loss in efficiency of the designs obtained with the traditional approach may be very important.Keywords: correlated observations, information matrix, optimality criteria, variance-covariance matrix
Procedia PDF Downloads 4407142 Low Cost Inertial Sensors Modeling Using Allan Variance
Authors: A. A. Hussen, I. N. Jleta
Abstract:
Micro-electromechanical system (MEMS) accelerometers and gyroscopes are suitable for the inertial navigation system (INS) of many applications due to the low price, small dimensions and light weight. The main disadvantage in a comparison with classic sensors is a worse long term stability. The estimation accuracy is mostly affected by the time-dependent growth of inertial sensor errors, especially the stochastic errors. In order to eliminate negative effect of these random errors, they must be accurately modeled. Where the key is the successful implementation that depends on how well the noise statistics of the inertial sensors is selected. In this paper, the Allan variance technique will be used in modeling the stochastic errors of the inertial sensors. By performing a simple operation on the entire length of data, a characteristic curve is obtained whose inspection provides a systematic characterization of various random errors contained in the inertial-sensor output data.Keywords: Allan variance, accelerometer, gyroscope, stochastic errors
Procedia PDF Downloads 4387141 A Generalized Family of Estimators for Estimation of Unknown Population Variance in Simple Random Sampling
Authors: Saba Riaz, Syed A. Hussain
Abstract:
This paper is addressing the estimation method of the unknown population variance of the variable of interest. A new generalized class of estimators of the finite population variance has been suggested using the auxiliary information. To improve the precision of the proposed class, known population variance of the auxiliary variable has been used. Mathematical expressions for the biases and the asymptotic variances of the suggested class are derived under large sample approximation. Theoretical and numerical comparisons are made to investigate the performances of the proposed class of estimators. The empirical study reveals that the suggested class of estimators performs better than the usual estimator, classical ratio estimator, classical product estimator and classical linear regression estimator. It has also been found that the suggested class of estimators is also more efficient than some recently published estimators.Keywords: study variable, auxiliary variable, finite population variance, bias, asymptotic variance, percent relative efficiency
Procedia PDF Downloads 2227140 Distributed Energy Storage as a Potential Solution to Electrical Network Variance
Authors: V. Rao, A. Bedford
Abstract:
As the efficient performance of national grid becomes increasingly important to maintain the electrical network stability, the balance between the generation and the demand must be effectively maintained. To do this, any losses that occur in the power network must be reduced by compensating for it. In this paper, one of the main cause for the losses in the network is identified as the variance, which hinders the grid’s power carrying capacity. The reason for the variance in the grid is investigated and identified as the rise in the integration of renewable energy sources (RES) such as wind and solar power. The intermittent nature of these RES along with fluctuating demands gives rise to variance in the electrical network. The losses that occur during this process is estimated by analyzing the network’s power profiles. Whilst researchers have identified different ways to tackle this problem, little consideration is given to energy storage. This paper seeks to redress this by considering the role of energy storage systems as potential solutions to reduce variance in the network. The implementation of suitable energy storage systems based on different applications is presented in this paper as part of variance reduction method and thus contribute towards maintaining a stable and efficient grid operation.Keywords: energy storage, electrical losses, national grid, renewable energy, variance
Procedia PDF Downloads 3157139 Reliability-Based Life-Cycle Cost Model for Engineering Systems
Authors: Reza Lotfalian, Sudarshan Martins, Peter Radziszewski
Abstract:
The effect of reliability on life-cycle cost, including initial and maintenance cost of a system is studied. The failure probability of a component is used to calculate the average maintenance cost during the operation cycle of the component. The standard deviation of the life-cycle cost is also calculated as an error measure for the average life-cycle cost. As a numerical example, the model is used to study the average life cycle cost of an electric motor.Keywords: initial cost, life-cycle cost, maintenance cost, reliability
Procedia PDF Downloads 6027138 Sales-Based Dynamic Investment and Leverage Decisions: A Longitudinal Study
Authors: Rihab Belguith, Fathi Abid
Abstract:
The paper develops a system-based approach to investigate the dynamic adjustment of debt structure and investment policies of the Dow-Jones index. This approach enables the assessment of relations among sales, debt, and investment opportunities by considering the simultaneous effect of the market environmental change and future growth opportunities. We integrate the firm-specific sales variance to capture the industries' conditions in the model. Empirical results were obtained through a panel data set of firms with different sectors. The analysis support that environmental change does not affect equally the different industry since operating leverage differs among industries and so the sensitivity to sales variance. Including adjusted-specific variance, we find that there is no monotonic relation between leverage, sales, and investment. The firm may choose a low debt level in response to high sales variance but high leverage to attenuate the negative relation between sales variance and the current level of investment. We further find that while the overall effect of debt maturity on leverage is unaffected by the level of growth opportunities, the shorter the maturity of debt is, the smaller the direct effect of sales variance on investment.Keywords: dynamic panel, investment, leverage decision, sales uncertainty
Procedia PDF Downloads 2427137 Genetic Analysis of Iron, Phosphorus, Potassium and Zinc Concentration in Peanut
Authors: Ajay B. C., Meena H. N., Dagla M. C., Narendra Kumar, Makwana A. D., Bera S. K., Kalariya K. A., Singh A. L.
Abstract:
The high-energy value, protein content and minerals makes peanut a rich source of nutrition at comparatively low cost. Basic information on genetics and inheritance of these mineral elements is very scarce. Hence, in the present study inheritance (using additive-dominance model) and association of mineral elements was studied in two peanut crosses. Dominance variance (H) played an important role in the inheritance of P, K, Fe and Zn in peanut pods. Average degree of dominance for most of the traits was greater than unity indicating over dominance for these traits. Significant associations were also observed among mineral elements both in F2 and F3 generations but pod yield had no associations with mineral elements (with few exceptions). Di-allele/bi-parental mating could be followed to identify high yielding and mineral dense segregates.Keywords: correlation, dominance variance, mineral elements, peanut
Procedia PDF Downloads 4127136 Achieving Design-Stage Elemental Cost Planning Accuracy: Case Study of New Zealand
Authors: Johnson Adafin, James O. B. Rotimi, Suzanne Wilkinson, Abimbola O. Windapo
Abstract:
An aspect of client expenditure management that requires attention is the level of accuracy achievable in design-stage elemental cost planning. This has been a major concern for construction clients and practitioners in New Zealand (NZ). Pre-tender estimating inaccuracies are significantly influenced by the level of risk information available to estimators. Proper cost planning activities should ensure the production of a project’s likely construction costs (initial and final), and subsequent cost control activities should prevent unpleasant consequences of cost overruns, disputes and project abandonment. If risks were properly identified and priced at the design stage, observed variance between design-stage elemental cost plans (ECPs) and final tender sums (FTS) (initial contract sums) could be reduced. This study investigates the variations between design-stage ECPs and FTS of construction projects, with a view to identifying risk factors that are responsible for the observed variance. Data were sourced through interviews, and risk factors were identified by using thematic analysis. Access was obtained to project files from the records of study participants (consultant quantity surveyors), and document analysis was employed in complementing the responses from the interviews. Study findings revealed the discrepancies between ECPs and FTS in the region of -14% and +16%. It is opined in this study that the identified risk factors were responsible for the variability observed. The values obtained from the analysis would enable greater accuracy in the forecast of FTS by Quantity Surveyors. Further, whilst inherent risks in construction project developments are observed globally, these findings have important ramifications for construction projects by expanding existing knowledge on what is needed for reasonable budgetary performance and successful delivery of construction projects. The findings contribute significantly to the study by providing quantitative confirmation to justify the theoretical conclusions generated in the literature from around the world. This therefore adds to and consolidates existing knowledge.Keywords: accuracy, design-stage, elemental cost plan, final tender sum
Procedia PDF Downloads 2667135 A Case Study on Machine Learning-Based Project Performance Forecasting for an Urban Road Reconstruction Project
Authors: Soheila Sadeghi
Abstract:
In construction projects, predicting project performance metrics accurately is essential for effective management and successful delivery. However, conventional methods often depend on fixed baseline plans, disregarding the evolving nature of project progress and external influences. To address this issue, we introduce a distinct approach based on machine learning to forecast key performance indicators, such as cost variance and earned value, for each Work Breakdown Structure (WBS) category within an urban road reconstruction project. Our proposed model leverages time series forecasting techniques, namely Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) networks, to predict future performance by analyzing historical data and project progress. Additionally, the model incorporates external factors, including weather patterns and resource availability, as features to improve forecast accuracy. By harnessing the predictive capabilities of machine learning, our performance forecasting model enables project managers to proactively identify potential deviations from the baseline plan and take timely corrective measures. To validate the effectiveness of the proposed approach, we conduct a case study on an urban road reconstruction project, comparing the model's predictions with actual project performance data. The outcomes of this research contribute to the advancement of project management practices in the construction industry by providing a data-driven solution for enhancing project performance monitoring and control.Keywords: project performance forecasting, machine learning, time series forecasting, cost variance, schedule variance, earned value management
Procedia PDF Downloads 377134 Financial Burden of Family for the Children with Autism Spectrum Disorder
Authors: M. R. Bhuiyan, S. M. M. Hossain, M. Z. Islam
Abstract:
Autism Spectrum Disorder (ASD) is the fastest growing serious developmental disorder characterized by social deficits, communicative difficulties, and repetitive behaviors. ASD is an emerging public health issue globally which is associated with huge financial burden to the family, community and the nation. The aim of this study was to assess the financial burden of family for the children with Autism spectrum Disorder. This cross-sectional study was carried out from July 2015 to June 2016 among 154 children with ASD to assess the financial burden of family. Data were collected by face-to-face interview with semi-structured questionnaire following systematic random sampling technique. Majority (73.4%) children were male and mean (±SD) age was 6.66 ± 2.97 years. Most (88.8%) of the children were from urban areas with average monthly family income Tk. 41785.71±23936.45. Average monthly direct cost of the children was Tk.17656.49 ± 9984.35, while indirect cost was Tk. 13462.90 ± 9713.54 and total treatment cost was Tk. 23076.62 ± 15341.09. Special education cost (Tk. 4871.00), cost of therapy (Tk. 4124.07) and travel cost (Tk. 3988.31) were the major types of direct cost, while loss of income (Tk.14570.18) was the chief indirect cost incurred by the families. The study found that majority (59.8%) of the children attended special schools were incurred Tk.20001-78700 as total treatment cost, which were statistically significant (p<0.001). Again, families with higher monthly family income incurred higher treatment cost (r=0.526, p<0.05). Difference between mean direct and indirect cost was found significant (t=4.190, df=61, p<0.001). According to the analysis of variance, mean difference of father’s educational status among direct cost (F=10.337, p<0.001) and total treatment cost (F=7.841, p<0.001), which were statistically significant. The study revealed that maximum children with ASD were under five years, three-fourth were male. According to monthly family income, maximum family were in middle class. The study recommends cost effective interventions and financial safety-net measures to reduce the financial burden of families for the children with ASD.Keywords: autism spectrum disorder, financial burden, direct cost, indirect cost, special education
Procedia PDF Downloads 1357133 Effect of Cost Control and Cost Reduction Techniques in Organizational Performance
Authors: Babatunde Akeem Lawal
Abstract:
In any organization, the primary aim is to maximize profit, but the major challenges facing them is the increase in cost of operation because of this there is increase in cost of production that could lead to inevitable cost control and cost reduction scheme which make it difficult for most organizations to operate at the cost efficient frontier. The study aims to critically examine and evaluate the application of cost control and cost reduction in organization performance and also to review budget as an effective tool of cost control and cost reduction. A descriptive survey research was adopted. A total number of 40 respondent retrieved were used for the study. The analysis of data collected was undertaken by applying appropriate statistical tools. Regression analysis was used to test the hypothesis with the use of SPSS. Based on the findings; it was evident that cost control has a positive impact on organizational performance and also the style of management has a positive impact on organizational performance.Keywords: organization, cost reduction, cost control, performance, budget, profit
Procedia PDF Downloads 5997132 Methods of Variance Estimation in Two-Phase Sampling
Authors: Raghunath Arnab
Abstract:
The two-phase sampling which is also known as double sampling was introduced in 1938. In two-phase sampling, samples are selected in phases. In the first phase, a relatively large sample of size is selected by some suitable sampling design and only information on the auxiliary variable is collected. During the second phase, a sample of size is selected either from, the sample selected in the first phase or from the entire population by using a suitable sampling design and information regarding the study and auxiliary variable is collected. Evidently, two phase sampling is useful if the auxiliary information is relatively easy and cheaper to collect than the study variable as well as if the strength of the relationship between the variables and is high. If the sample is selected in more than two phases, the resulting sampling design is called a multi-phase sampling. In this article we will consider how one can use data collected at the first phase sampling at the stages of estimation of the parameter, stratification, selection of sample and their combinations in the second phase in a unified setup applicable to any sampling design and wider classes of estimators. The problem of the estimation of variance will also be considered. The variance of estimator is essential for estimating precision of the survey estimates, calculation of confidence intervals, determination of the optimal sample sizes and for testing of hypotheses amongst others. Although, the variance is a non-negative quantity but its estimators may not be non-negative. If the estimator of variance is negative, then it cannot be used for estimation of confidence intervals, testing of hypothesis or measure of sampling error. The non-negativity properties of the variance estimators will also be studied in details.Keywords: auxiliary information, two-phase sampling, varying probability sampling, unbiased estimators
Procedia PDF Downloads 5867131 The Evaluation of the Performance of Different Filtering Approaches in Tracking Problem and the Effect of Noise Variance
Authors: Mohammad Javad Mollakazemi, Farhad Asadi, Aref Ghafouri
Abstract:
Performance of different filtering approaches depends on modeling of dynamical system and algorithm structure. For modeling and smoothing the data the evaluation of posterior distribution in different filtering approach should be chosen carefully. In this paper different filtering approaches like filter KALMAN, EKF, UKF, EKS and smoother RTS is simulated in some trajectory tracking of path and accuracy and limitation of these approaches are explained. Then probability of model with different filters is compered and finally the effect of the noise variance to estimation is described with simulations results.Keywords: Gaussian approximation, Kalman smoother, parameter estimation, noise variance
Procedia PDF Downloads 4367130 A Mean–Variance–Skewness Portfolio Optimization Model
Authors: Kostas Metaxiotis
Abstract:
Portfolio optimization is one of the most important topics in finance. This paper proposes a mean–variance–skewness (MVS) portfolio optimization model. Traditionally, the portfolio optimization problem is solved by using the mean–variance (MV) framework. In this study, we formulate the proposed model as a three-objective optimization problem, where the portfolio's expected return and skewness are maximized whereas the portfolio risk is minimized. For solving the proposed three-objective portfolio optimization model we apply an adapted version of the non-dominated sorting genetic algorithm (NSGAII). Finally, we use a real dataset from FTSE-100 for validating the proposed model.Keywords: evolutionary algorithms, portfolio optimization, skewness, stock selection
Procedia PDF Downloads 1967129 An Approach to Noise Variance Estimation in Very Low Signal-to-Noise Ratio Stochastic Signals
Authors: Miljan B. Petrović, Dušan B. Petrović, Goran S. Nikolić
Abstract:
This paper describes a method for AWGN (Additive White Gaussian Noise) variance estimation in noisy stochastic signals, referred to as Multiplicative-Noising Variance Estimation (MNVE). The aim was to develop an estimation algorithm with minimal number of assumptions on the original signal structure. The provided MATLAB simulation and results analysis of the method applied on speech signals showed more accuracy than standardized AR (autoregressive) modeling noise estimation technique. In addition, great performance was observed on very low signal-to-noise ratios, which in general represents the worst case scenario for signal denoising methods. High execution time appears to be the only disadvantage of MNVE. After close examination of all the observed features of the proposed algorithm, it was concluded it is worth of exploring and that with some further adjustments and improvements can be enviably powerful.Keywords: noise, signal-to-noise ratio, stochastic signals, variance estimation
Procedia PDF Downloads 3847128 Scheduled Maintenance and Downtime Cost in Aircraft Maintenance Management
Authors: Remzi Saltoglu, Nazmia Humaira, Gokhan Inalhan
Abstract:
During aircraft maintenance scheduling, operator calculates the budget of the maintenance. Usually, this calculation includes only the costs that are directly related to the maintenance process such as cost of labor, material, and equipment. In some cases, overhead cost is also included. However, in some of those, downtime cost is neglected claiming that grounding is a natural fact of maintenance; therefore, it is not considered as part of the analytical decision-making process. Based on the normalized data, we introduce downtime cost with its monetary value and add its seasonal character. We envision that the rest of the model, which works together with the downtime cost, could be checked with the real life cases, through the review of MRO cost and airline spending in the particular and scheduled maintenance events.Keywords: aircraft maintenance, downtime, downtime cost, maintenance cost
Procedia PDF Downloads 3507127 Analysis of Diabetes Patients Using Pearson, Cost Optimization, Control Chart Methods
Authors: Devatha Kalyan Kumar, R. Poovarasan
Abstract:
In this paper, we have taken certain important factors and health parameters of diabetes patients especially among children by birth (pediatric congenital) where using the above three metrics methods we are going to assess the importance of each attributes in the dataset and thereby determining the most highly responsible and co-related attribute causing diabetics among young patients. We use cost optimization, control chart and Spearmen methodologies for the real-time application of finding the data efficiency in this diabetes dataset. The Spearmen methodology is the correlation methodologies used in software development process to identify the complexity between the various modules of the software. Identifying the complexity is important because if the complexity is higher, then there is a higher chance of occurrence of the risk in the software. With the use of control; chart mean, variance and standard deviation of data are calculated. With the use of Cost optimization model, we find to optimize the variables. Hence we choose the Spearmen, control chart and cost optimization methods to assess the data efficiency in diabetes datasets.Keywords: correlation, congenital diabetics, linear relationship, monotonic function, ranking samples, pediatric
Procedia PDF Downloads 2547126 Three-Stage Multivariate Stratified Sample Surveys with Probabilistic Cost Constraint and Random Variance
Authors: Sanam Haseen, Abdul Bari
Abstract:
In this paper a three stage multivariate programming problem with random survey cost and variances as random variables has been formulated as a non-linear stochastic programming problem. The problem has been converted into an equivalent deterministic form using chance constraint programming and modified E-modeling. An empirical study of the problem has been done at the end of the paper using R-simulation.Keywords: chance constraint programming, modified E-model, stochastic programming, stratified sample surveys, three stage sample surveys
Procedia PDF Downloads 4557125 A Comparative Analysis of Carbon Footprints of Households in Different Housing Types and Seasons
Authors: Taehyun Kim
Abstract:
As a result of rapid urbanization, energy demands for lighting, heating and cooling of households have been concentrated in metropolitan areas. The energy resources for housing in urban areas are dominantly fossil fuel whose uses contribute to increase cost of living and carbon dioxide (CO2) emission. To achieve environmentally and economically sustainable residential development, it is important to know how energy use and cost of living can be reduced by planning and design. The purpose of this study is to examine which type of building requires less energy for housing. To do so, carbon footprint (CF) quiz survey was employed which estimates the amount of carbon dioxide required to support households’ consumption of energy uses for housing. The housing carbon footprints (HCF) of 500 households of Seoul, Korea in summer and winter were estimated and compared in three major types of housing: single-family (detached), row-house and apartment. In addition, its differences of HCF were estimated between tower and flat type of apartment. The results of T-test and analysis of variance (ANOVA) provide statistical evidence that housing type is related to housing energy use. Average HCF of detached house was higher than other housing types. Between two types of apartment, tower type shows higher HCF than flat type in winter. These findings may provide new perspectives on CF application in sustainable architecture and urban design.Keywords: analysis of variance, carbon footprint, energy use, housing type
Procedia PDF Downloads 5047124 Portfolio Optimization under a Hybrid Stochastic Volatility and Constant Elasticity of Variance Model
Authors: Jai Heui Kim, Sotheara Veng
Abstract:
This paper studies the portfolio optimization problem for a pension fund under a hybrid model of stochastic volatility and constant elasticity of variance (CEV) using asymptotic analysis method. When the volatility component is fast mean-reverting, it is able to derive asymptotic approximations for the value function and the optimal strategy for general utility functions. Explicit solutions are given for the exponential and hyperbolic absolute risk aversion (HARA) utility functions. The study also shows that using the leading order optimal strategy results in the value function, not only up to the leading order, but also up to first order correction term. A practical strategy that does not depend on the unobservable volatility level is suggested. The result is an extension of the Merton's solution when stochastic volatility and elasticity of variance are considered simultaneously.Keywords: asymptotic analysis, constant elasticity of variance, portfolio optimization, stochastic optimal control, stochastic volatility
Procedia PDF Downloads 2977123 A Review of the Factors Causing Cost Overrun in Construction Projects in Malaysia
Authors: Kaleem Ullah, Abd Halid Bin Abdullah
Abstract:
This study examines previous literature on cost overrun in construction projects with the specific aim of determining the frequently observed causes of cost overruns in Malaysian construction projects. Cost overrun is one of the major problems in construction projects. Cost overrun is frequently observed in almost every construction projects. This cost overrun in construction projects occurs due to various reasons and many researchers have carried out various studies to identify the cause factors of this issue. The causes of construction cost overrun could vary from country to country because of the difference in political, economic, social and environmental conditions. Likewise, other countries construction projects in Malaysia have also the issue of cost overrun. The concept of cost overrun in construction projects has attracted much attention in recent years and researches are trying to understand the causes of these overruns and their effects to the construction industry as whole. This paper review various research studies carried out in Malaysia which surveyed the cost performance and cause factors of cost overruns in construction projects in Malaysia.Keywords: cause of cost overrun, cost overrun, construction industry in Malaysia, effects of cost overrun
Procedia PDF Downloads 2807122 The Effect of "Trait" Variance of Personality on Depression: Application of the Trait-State-Occasion Modeling
Authors: Pei-Chen Wu
Abstract:
Both preexisting cross-sectional and longitudinal studies of personality-depression relationship have suffered from one main limitation: they ignored the stability of the construct of interest (e.g., personality and depression) can be expected to influence the estimate of the association between personality and depression. To address this limitation, the Trait-State-Occasion (TSO) modeling was adopted to analyze the sources of variance of the focused constructs. A TSO modeling was operated by partitioning a state variance into time-invariant (trait) and time-variant (occasion) components. Within a TSO framework, it is possible to predict change on the part of construct that really changes (i.e., time-variant variance), when controlling the trait variances. 750 high school students were followed for 4 waves over six-month intervals. The baseline data (T1) were collected from the senior high schools (aged 14 to 15 years). Participants were given Beck Depression Inventory and Big Five Inventory at each assessment. TSO modeling revealed that 70~78% of the variance in personality (five constructs) was stable over follow-up period; however, 57~61% of the variance in depression was stable. For personality construct, there were 7.6% to 8.4% of the total variance from the autoregressive occasion factors; for depression construct there were 15.2% to 18.1% of the total variance from the autoregressive occasion factors. Additionally, results showed that when controlling initial symptom severity, the time-invariant components of all five dimensions of personality were predictive of change in depression (Extraversion: B= .32, Openness: B = -.21, Agreeableness: B = -.27, Conscientious: B = -.36, Neuroticism: B = .39). Because five dimensions of personality shared some variance, the models in which all five dimensions of personality were simultaneous to predict change in depression were investigated. The time-invariant components of five dimensions were still significant predictors for change in depression (Extraversion: B = .30, Openness: B = -.24, Agreeableness: B = -.28, Conscientious: B = -.35, Neuroticism: B = .42). In sum, the majority of the variability of personality was stable over 2 years. Individuals with the greater tendency of Extraversion and Neuroticism have higher degrees of depression; individuals with the greater tendency of Openness, Agreeableness and Conscientious have lower degrees of depression.Keywords: assessment, depression, personality, trait-state-occasion model
Procedia PDF Downloads 1737121 Finite-Sum Optimization: Adaptivity to Smoothness and Loopless Variance Reduction
Authors: Bastien Batardière, Joon Kwon
Abstract:
For finite-sum optimization, variance-reduced gradient methods (VR) compute at each iteration the gradient of a single function (or of a mini-batch), and yet achieve faster convergence than SGD thanks to a carefully crafted lower-variance stochastic gradient estimator that reuses past gradients. Another important line of research of the past decade in continuous optimization is the adaptive algorithms such as AdaGrad, that dynamically adjust the (possibly coordinate-wise) learning rate to past gradients and thereby adapt to the geometry of the objective function. Variants such as RMSprop and Adam demonstrate outstanding practical performance that have contributed to the success of deep learning. In this work, we present AdaLVR, which combines the AdaGrad algorithm with loopless variance-reduced gradient estimators such as SAGA or L-SVRG that benefits from a straightforward construction and a streamlined analysis. We assess that AdaLVR inherits both good convergence properties from VR methods and the adaptive nature of AdaGrad: in the case of L-smooth convex functions we establish a gradient complexity of O(n + (L + √ nL)/ε) without prior knowledge of L. Numerical experiments demonstrate the superiority of AdaLVR over state-of-the-art methods. Moreover, we empirically show that the RMSprop and Adam algorithm combined with variance-reduced gradients estimators achieve even faster convergence.Keywords: convex optimization, variance reduction, adaptive algorithms, loopless
Procedia PDF Downloads 687120 Construction Time - Cost Trade-Off Analysis Using Fuzzy Set Theory
Authors: V. S. S. Kumar, B. Vikram, G. C. S. Reddy
Abstract:
Time and cost are the two critical objectives of construction project management and are not independent but intricately related. Trade-off between project duration and cost are extensively discussed during project scheduling because of practical relevance. Generally when the project duration is compressed, the project calls for an increase in labor and more productive equipments, which increases the cost. Thus, the construction time-cost optimization is defined as a process to identify suitable construction activities for speeding up to attain the best possible savings in both time and cost. As there is hidden tradeoff relationship between project time and cost, it might be difficult to predict whether the total cost would increase or decrease as a result of compressing the schedule. Different combinations of duration and cost for the activities associated with the project determine the best set in the time-cost optimization. Therefore, the contractors need to select the best combination of time and cost to perform each activity, all of which will ultimately determine the project duration and cost. In this paper, the fuzzy set theory is used to model the uncertainties in the project environment for time-cost trade off analysis.Keywords: fuzzy sets, uncertainty, qualitative factors, decision making
Procedia PDF Downloads 6487119 Advance Hybrid Manufacturing Supply Chain System to Get Benefits of Push and Pull Systems
Authors: Akhtar Nawaz, Sahar Noor, Iftikhar Hussain
Abstract:
This paper considers advanced hybrid manufacturing planning both push and pull system in which each customer order has a due date by demand forecast and customer orders. We present a tool for model for tool development that requires an absolute due dates and customer orders in a manufacturing supply chain. It is vital for the manufacturing companies to face the problem of variations in demands, increase in varieties by maintaining safety stock and to minimize components obsolescence and uselessness. High inventory cost and low delivery lead time is expected in push type of system and on contrary high delivery lead time and low inventory cost is predicted in the pull type. For this tool for model we need an MRP system for the push and pull environment and control of inventories in push parts and lead time in the pull part. To retain process data quickly, completely and to improve responsiveness and minimize inventory cost, a tool is required to deal with the high product variance and short cycle parts. In practice, planning and scheduling are interrelated and should be solved simultaneously with supply chain to ensure that the due dates of customer orders are met. The proposed tool for model considers alternative process plans for job types, with precedence constraints for job operations. Such a tool for model has not been treated in the literature. To solve the model, tool was developed, so a new technique was required to deal with the issue of high product variance and short life cycles in assemble to order.Keywords: hybrid manufacturing system, supply chain system, make to order, make to stock, assemble to order
Procedia PDF Downloads 5627118 A Prediction of Electrical Cost for High-Rise Building Construction
Authors: Picha Sriprachan
Abstract:
The increase in electricity prices affects the cost of high-rise building construction. The objectives of this research are to study the electrical cost, trend of electrical cost and to forecast electrical cost of high-rise building construction. The methods of this research are: 1) to study electrical payment formats, cost data collection methods, and the factors affecting electrical cost of high-rise building construction, 2) to study the quantity and trend of cumulative percentage of the electrical cost, and 3) to forecast the electrical cost for different types of high-rise buildings. The results of this research show that the average proportion between electrical cost and the value of the construction project is 0.87 percent. The proportion of electrical cost for residential, office and commercial, and hotel buildings are closely proportional. If construction project value increases, the proportion of electrical cost and the value of the construction project will decrease. However, there is a relationship between the amount of electrical cost and the value of the construction project. During the structural construction phase, the amount of electrical cost will increase and during structural and architectural construction phase, electrical cost will be maximum. The cumulative percentage of the electrical cost is related to the cumulative percentage of the high-rise building construction cost in the same direction. The amount of service space of the building, number of floors and the duration of the construction affect the electrical cost of construction. The electrical cost of construction forecasted by using linear regression equation is close to the electrical cost forecasted by using the proportion of electrical cost and value of the project.Keywords: high-rise building construction, electrical cost, construction phase, architectural phase
Procedia PDF Downloads 3877117 Cost Overrun Causes in Public Construction Projects in Saudi Arabia
Authors: Ibrahim Mahamid, A. Al-Ghonamy, M. Aichouni
Abstract:
This study is conducted to identify causes of cost deviations in public construction projects in Saudi Arabia from contractors’ perspective. 41 factors that might affect cost estimating accuracy were identified through literature review and discussion with some construction experts. The factors were tabulated in a questionnaire form and a field survey included 51 contractors from the Northern Province of Saudi Arabia was performed. The results show that the top five important causes are: wrong estimation method, long period between design and time of implementation, cost of labor, cost of machinary and absence of construction-cost data.Keywords: cost deviation, public construction, cost estimating, Saudi Arabia, contractors
Procedia PDF Downloads 4747116 Surveillance Video Summarization Based on Histogram Differencing and Sum Conditional Variance
Authors: Nada Jasim Habeeb, Rana Saad Mohammed, Muntaha Khudair Abbass
Abstract:
For more efficient and fast video summarization, this paper presents a surveillance video summarization method. The presented method works to improve video summarization technique. This method depends on temporal differencing to extract most important data from large video stream. This method uses histogram differencing and Sum Conditional Variance which is robust against to illumination variations in order to extract motion objects. The experimental results showed that the presented method gives better output compared with temporal differencing based summarization techniques.Keywords: temporal differencing, video summarization, histogram differencing, sum conditional variance
Procedia PDF Downloads 3467115 Separating Landform from Noise in High-Resolution Digital Elevation Models through Scale-Adaptive Window-Based Regression
Authors: Anne M. Denton, Rahul Gomes, David W. Franzen
Abstract:
High-resolution elevation data are becoming increasingly available, but typical approaches for computing topographic features, like slope and curvature, still assume small sliding windows, for example, of size 3x3. That means that the digital elevation model (DEM) has to be resampled to the scale of the landform features that are of interest. Any higher resolution is lost in this resampling. When the topographic features are computed through regression that is performed at the resolution of the original data, the accuracy can be much higher, and the reported result can be adjusted to the length scale that is relevant locally. Slope and variance are calculated for overlapping windows, meaning that one regression result is computed per raster point. The number of window centers per area is the same for the output as for the original DEM. Slope and variance are computed by performing regression on the points in the surrounding window. Such an approach is computationally feasible because of the additive nature of regression parameters and variance. Any doubling of window size in each direction only takes a single pass over the data, corresponding to a logarithmic scaling of the resulting algorithm as a function of the window size. Slope and variance are stored for each aggregation step, allowing the reported slope to be selected to minimize variance. The approach thereby adjusts the effective window size to the landform features that are characteristic to the area within the DEM. Starting with a window size of 2x2, each iteration aggregates 2x2 non-overlapping windows from the previous iteration. Regression results are stored for each iteration, and the slope at minimal variance is reported in the final result. As such, the reported slope is adjusted to the length scale that is characteristic of the landform locally. The length scale itself and the variance at that length scale are also visualized to aid in interpreting the results for slope. The relevant length scale is taken to be half of the window size of the window over which the minimum variance was achieved. The resulting process was evaluated for 1-meter DEM data and for artificial data that was constructed to have defined length scales and added noise. A comparison with ESRI ArcMap was performed and showed the potential of the proposed algorithm. The resolution of the resulting output is much higher and the slope and aspect much less affected by noise. Additionally, the algorithm adjusts to the scale of interest within the region of the image. These benefits are gained without additional computational cost in comparison with resampling the DEM and computing the slope over 3x3 images in ESRI ArcMap for each resolution. In summary, the proposed approach extracts slope and aspect of DEMs at the lengths scales that are characteristic locally. The result is of higher resolution and less affected by noise than existing techniques.Keywords: high resolution digital elevation models, multi-scale analysis, slope calculation, window-based regression
Procedia PDF Downloads 124