Search results for: communication satellite payload
4869 Reliability and Cost Focused Optimization Approach for a Communication Satellite Payload Redundancy Allocation Problem
Authors: Mehmet Nefes, Selman Demirel, Hasan H. Ertok, Cenk Sen
Abstract:
A typical reliability engineering problem regarding communication satellites has been considered to determine redundancy allocation scheme of power amplifiers within payload transponder module, whose dominant function is to amplify power levels of the received signals from the Earth, through maximizing reliability against mass, power, and other technical limitations. Adding each redundant power amplifier component increases not only reliability but also hardware, testing, and launch cost of a satellite. This study investigates a multi-objective approach used in order to solve Redundancy Allocation Problem (RAP) for a communication satellite payload transponder, focusing on design cost due to redundancy and reliability factors. The main purpose is to find the optimum power amplifier redundancy configuration satisfying reliability and capacity thresholds simultaneously instead of analyzing respectively or independently. A mathematical model and calculation approach are instituted including objective function definitions, and then, the problem is solved analytically with different input parameters in MATLAB environment. Example results showed that payload capacity and failure rate of power amplifiers have remarkable effects on the solution and also processing time.Keywords: communication satellite payload, multi-objective optimization, redundancy allocation problem, reliability, transponder
Procedia PDF Downloads 2604868 An Agent-Based Modelling Simulation Approach to Calculate Processing Delay of GEO Satellite Payload
Authors: V. Vicente E. Mujica, Gustavo Gonzalez
Abstract:
The global coverage of broadband multimedia and internet-based services in terrestrial-satellite networks demand particular interests for satellite providers in order to enhance services with low latencies and high signal quality to diverse users. In particular, the delay of on-board processing is an inherent source of latency in a satellite communication that sometimes is discarded for the end-to-end delay of the satellite link. The frame work for this paper includes modelling of an on-orbit satellite payload using an agent model that can reproduce the properties of processing delays. In essence, a comparison of different spatial interpolation methods is carried out to evaluate physical data obtained by an GEO satellite in order to define a discretization function for determining that delay. Furthermore, the performance of the proposed agent and the development of a delay discretization function are together validated by simulating an hybrid satellite and terrestrial network. Simulation results show high accuracy according to the characteristics of initial data points of processing delay for Ku bands.Keywords: terrestrial-satellite networks, latency, on-orbit satellite payload, simulation
Procedia PDF Downloads 2704867 Preliminary Design Considerations for Achieving Stabilized Orbit, Telemetary, Command, and Ranging for HTS Communication Satellite
Authors: Ibrahim Isa Ali (Pantami), Abdu Jaafaru Bambale, Abimbola Alale, Danjuma Ibrahim Ndihgihdah, Muhammad Alkali, Adamu Idris Umar, Samson Olufunmilayo Abodunrin, Muhammad Dokko Zubairu, Moshood Kareem
Abstract:
This paper discusses the consideration and trade-offs used for the implementation of robust systems for orbit stability; Telemetry, Command and Ranging (TC& R) for Nigcomsat-1R and applicability for planned NigComSat-2 satellites. NigComSat-1R satellite was built by China Academy of Space Technology (CAST). The Satellite designed with quad-band payload (L, C, Ku, and Ka) was launched on the 20th of December 2011. The functionality of all satellite is driven by robust systems including Attitude & Orbit Control System (AOCS) and TC&R. The planned Nigcomsat-2 is a high throughput Satellite expected to function with better AOCS and TC&R.Keywords: AOCS, CAST, Nigcomsat-1R, TC&R
Procedia PDF Downloads 1154866 Investigation of TEC Using YOUTHSAT RaBIT Payload Data for Low Latitude Regions
Authors: Perumalla Naveen Kumar
Abstract:
Global Positioning System (GPS) is used for civilian and military user positioning applications. The accuracy of GPS is degrading mainly because of ionospheric error. It is very important to analyze the effects of ionosphere on the performance of satellite systems especially in the low latitude regions. These variations depend on the Total Electron Content (TEC) in the ionosphere. To investigate the variations in the atmosphere, a mini satellite known as YOUTHSAT is launched by India. This is the outcome of the collaboration between India and USSR. One of the YOUTHSAT Indian payload is RaBIT (Radio Beacon for Ionospheric Tomography). In this paper, YOUTHSAT RaBIT payload data for the three typical days of 2011 are considered. The analysis is carried out for four Indian stations. The variations of Slant TEC, elevation angle and azimuth angles are analyzed with respect to local time. The obtained results are encouraging.Keywords: Global Positioning System (GPS), Total Electron Content (TEC), YOUTHSAT, Radio Beacon for Ionospheric Tomography (RaBIT)
Procedia PDF Downloads 3834865 A New Method to Reduce 5G Application Layer Payload Size
Authors: Gui Yang Wu, Bo Wang, Xin Wang
Abstract:
Nowadays, 5G service-based interface architecture uses text-based payload like JSON to transfer business data between network functions, which has obvious advantages as internet services but causes unnecessarily larger traffic. In this paper, a new 5G application payload size reduction method is presented to provides the mechanism to negotiate about new capability between network functions when network communication starts up and how 5G application data are reduced according to negotiated information with peer network function. Without losing the advantages of 5G text-based payload, this method demonstrates an excellent result on application payload size reduction and does not increase the usage quota of computing resource. Implementation of this method does not impact any standards or specifications and not change any encoding or decoding functionality too. In a real 5G network, this method will contribute to network efficiency and eventually save considerable computing resources.Keywords: 5G, JSON, payload size, service-based interface
Procedia PDF Downloads 1804864 Authorization of Commercial Communication Satellite Grounds for Promoting Turkish Data Relay System
Authors: Celal Dudak, Aslı Utku, Burak Yağlioğlu
Abstract:
Uninterrupted and continuous satellite communication through the whole orbit time is becoming more indispensable every day. Data relay systems are developed and built for various high/low data rate information exchanges like TDRSS of USA and EDRSS of Europe. In these missions, a couple of task-dedicated communication satellites exist. In this regard, for Turkey a data relay system is attempted to be defined exchanging low data rate information (i.e. TTC) for Earth-observing LEO satellites appointing commercial GEO communication satellites all over the world. First, justification of this attempt is given, demonstrating duration enhancements in the link. Discussion of preference of RF communication is, also, given instead of laser communication. Then, preferred communication GEOs – including TURKSAT4A already belonging to Turkey- are given, together with the coverage enhancements through STK simulations and the corresponding link budget. Also, a block diagram of the communication system is given on the LEO satellite.Keywords: communication, GEO satellite, data relay system, coverage
Procedia PDF Downloads 4404863 Performance Assessment of GSO Satellites before and after Enhancing the Pointing Effect
Authors: Amr Emam, Joseph Victor, Mohamed Abd Elghany
Abstract:
The paper presents the effect of the orbit inclination on the pointing error of the satellite antenna and consequently on its footprint on earth for a typical Ku- band payload system. The performance assessment is examined both theoretically and by means of practical measurements, taking also into account all additional sources of pointing errors, such as East-West station keeping, orbit eccentricity and actual attitude control performance. An implementation and computation of the sinusoidal biases in satellite roll and pitch used to compensate the pointing error of the satellite antenna coverage is studied and evaluated before and after the pointing corrections performed. A method for evaluation of the performance of the implemented biases has been introduced through measuring satellite received level from a tracking 11m and fixed 4.8m transmitting antenna before and after the implementation of the pointing corrections.Keywords: satellite, inclined orbit, pointing errors, coverage optimization
Procedia PDF Downloads 4014862 Processing Studies and Challenges Faced in Development of High-Pressure Titanium Alloy Cryogenic Gas Bottles
Authors: Bhanu Pant, Sanjay H. Upadhyay
Abstract:
Frequently, the upper stage of high-performance launch vehicles utilizes cryogenic tank-submerged pressurization gas bottles with high volume-to-weight efficiency to achieve a direct gain in the satellite payload. Titanium alloys, owing to their high specific strength coupled with excellent compatibility with various fluids, are the materials of choice for these applications. Amongst the Titanium alloys, there are two alloys suitable for cryogenic applications, namely Ti6Al4V-ELI and Ti5Al2.5Sn-ELI. The two-phase alpha-beta alloy Ti6Al4V-ELI is usable up to LOX temperature of 90K, while the single-phase alpha alloy Ti5Al2.5Sn-ELI can be used down to LHe temperature of 4 K. The high-pressure gas bottles submerged in the LH2 (20K) can store more amount of gas in as compared to those submerged in LOX (90K) bottles the same volume. Thus, the use of these alpha alloy gas bottles stored at 20K gives a distinct advantage with respect to the need for a lesser number of gas bottles to store the same amount of high-pressure gas, which in turn leads to a one-to-one advantage in the payload in the satellite. The cost advantage to the tune of 15000$/ kg of weight is saved in the upper stages, and, thereby, the satellite payload gain is expected by this change. However, the processing of alpha Ti5Al2.5Sn-ELI alloy gas bottles poses challenges due to the lower forgeability of the alloy and mode of qualification for the critical severe application environment. The present paper describes the processing and challenges/ solutions during the development of these advanced gas bottles for LH2 (20K) applications.Keywords: titanium alloys, cryogenic gas bottles, alpha titanium alloy, alpha-beta titanium alloy
Procedia PDF Downloads 554861 Routing in IP/LEO Satellite Communication Systems: Past, Present and Future
Authors: Mohammed Hussein, Abualseoud Hanani
Abstract:
In Low Earth Orbit (LEO) satellite constellation system, routing data from the source all the way to the destination constitutes a daunting challenge because LEO satellite constellation resources are spare and the high speed movement of LEO satellites results in a highly dynamic network topology. This situation limits the applicability of traditional routing approaches that rely on exchanging topology information upon change or setup of a connection. Consequently, in recent years, many routing algorithms and implementation strategies for satellite constellation networks with Inter Satellite Links (ISLs) have been proposed. In this article, we summarize and classify some of the most representative solutions according to their objectives, and discuss their advantages and disadvantages. Finally, with a look into the future, we present some of the new challenges and opportunities for LEO satellite constellations in general and routing protocols in particular.Keywords: LEO satellite constellations, dynamic topology, IP routing, inter-satellite-links
Procedia PDF Downloads 3814860 Thermal Vacuum Chamber Test Result for CubeSat Transmitter
Authors: Fitri D. Jaswar, Tharek A. Rahman, Yasser A. Ahmad
Abstract:
CubeSat in low earth orbit (LEO) mainly uses ultra high frequency (UHF) transmitter with fixed radio frequency (RF) output power to download the telemetry and the payload data. The transmitter consumes large amount of electrical energy during the transmission considering the limited satellite size of a CubeSat. A transmitter with power control ability is designed to achieve optimize the signal to noise ratio (SNR) and efficient power consumption. In this paper, the thermal vacuum chamber (TVAC) test is performed to validate the performance of the UHF band transmitter with power control capability. The TVAC is used to simulate the satellite condition in the outer space environment. The TVAC test was conducted at the Laboratory of Spacecraft Environment Interaction Engineering, Kyushu Institute of Technology, Japan. The TVAC test used 4 thermal cycles starting from +60°C to -20°C for the temperature setting. The pressure condition inside chamber was less than 10-5Pa. During the test, the UHF transmitter is integrated in a CubeSat configuration with other CubeSat subsystem such as on board computer (OBC), power module, and satellite structure. The system is validated and verified through its performance in terms of its frequency stability and the RF output power. The UHF band transmitter output power is tested from 0.5W to 2W according the satellite mode of operations and the satellite power limitations. The frequency stability is measured and the performance obtained is less than 2 ppm in the tested operating temperature range. The test demonstrates the RF output power is adjustable in a thermal vacuum condition.Keywords: communication system, CubeSat, SNR, UHF transmitter
Procedia PDF Downloads 2634859 Quantitative Risk Analysis for Major Subsystems and Project Success of a Highthrouput Satellite
Authors: Ibrahim Isa Ali (Pantami), Abdu Jaafaru Bambale, Abimbola Alale, Danjuma Ibrahim Ndihgihdah, Muhammad Alkali, Adamu Idris Umar, Babadoko Dantala Mohammed, Moshood Kareem Olawole
Abstract:
This paper dwells on the risk management required for High throughput Satellite (HTS) project, and major subsystems that pertains to the improved performance and reliability of the spacecraft. The paper gives a clear picture of high‐throughput satellites (HTS) and the associated technologies with performances as they align and differ with the traditional geostationary orbit or Geosynchronous Equatorial Orbit (GEO) Communication Satellites. The paper also highlights critical subsystems and processes in project conceptualization and execution. The paper discusses the configuration of the payload. The need for optimization of resources for the HTS project and successful integration of critical subsystems for spacecraft requires implementation of risk analysis and mitigation from the preliminary design stage; Assembly, Integration and Test (AIT); Launch and in-orbit- Management stage.Keywords: AIT, HTS, in-orbit management, optimization
Procedia PDF Downloads 1024858 Next-Generation Laser-Based Transponder and 3D Switch for Free Space Optics in Nanosatellite
Authors: Nadir Atayev, Mehman Hasanov
Abstract:
Future spacecraft will require a structural change in the way data is transmitted due to the increase in the volume of data required for space communication. Current radio frequency communication systems are already facing a bottleneck in the volume of data sent to the ground segment due to their technological and regulatory characteristics. To overcome these issues, free space optics communication plays an important role in the integrated terrestrial space network due to its advantages such as significantly improved data rate compared to traditional RF technology, low cost, improved security, and inter-satellite free space communication, as well as uses a laser beam, which is an optical signal carrier to establish satellite-ground & ground-to-satellite links. In this approach, there is a need for high-speed and energy-efficient systems as a base platform for sending high-volume video & audio data. Nano Satellite and its branch CubeSat platforms have more technical functionality than large satellites, wheres cover an important part of the space sector, with their Low-Earth-Orbit application area with low-cost design and technical functionality for building networks using different communication topologies. Along the research theme developed in this regard, the output parameter indicators for the FSO of the optical communication transceiver subsystem on the existing CubeSat platforms, and in the direction of improving the mentioned parameters of this communication methodology, 3D optical switch and laser beam controlled optical transponder with 2U CubeSat structural subsystems and application in the Low Earth Orbit satellite network topology, as well as its functional performance and structural parameters, has been studied accordingly.Keywords: cubesat, free space optics, nano satellite, optical laser communication.
Procedia PDF Downloads 884857 Design of a Commercial Off-the-Shelf Patch Antenna with Wide Half Power Beam Width for Global Navigation Satellite Systems Application
Authors: Mannahel Iftikhar, Sara Saeed, Iqra Faryad, Muhammad Subhan
Abstract:
This paper describes the design of a low-cost dual-band stacked rhombus-shaped slot patch antenna. The antenna is designed on L-band with a GPS (L2) bandwidth of 0.08 GHz centered at 1.207 GHz and a GPS (L1) bandwidth of 0.23 GHz centered at 1.575 GHz. The antenna’s dimensions are 8.02×8.02 cm². The antenna has a 3 dB beamwidth of 100° at 1.204 GHz and 117° at 1.575 GHz. The gain of this antenna is 6.5 dBi at 1.575 GHz and 6.43 dBi at 1.207 GHz. The antenna is designed using commercial off-the-shelf components and can be used in any global navigation satellite system receiver covering L1 and L2 communication bands.Keywords: circular polarization, enhanced beamwidth, stacked patches, GNSS, satellite communication
Procedia PDF Downloads 1184856 Design and Simulation of an Inter-Satellite Optical Wireless Communication System Using Diversity Techniques
Authors: Sridhar Rapuru, D. Mallikarjunreddy, Rajanarendra Sai
Abstract:
In this reign of the internet, the access of any multimedia file to the users at any time with a superior quality is needed. To achieve this goal, it is very important to have a good network without any interruptions between the satellites along with various earth stations. For that purpose, a high speed inter-satellite optical wireless communication system (IsOWC) is designed with space and polarization diversity techniques. IsOWC offers a high bandwidth, small size, less power requirement and affordable when compared with the present microwave satellite systems. To improve the efficiency and to reduce the propagation delay, inter-satellite link is established between the satellites. High accurate tracking systems are required to establish the reliable connection between the satellites as they have their own orbits. The only disadvantage of this IsOWC system is laser beam width is narrower than the RF because of this highly accurate tracking system to meet this requirement. The satellite uses the 'ephemerides data' for rough pointing and tracking system for fine pointing to the other satellite. In this proposed IsOWC system, laser light is used as a wireless connectedness between the source and destination and free space acts as the channel to carry the message. The proposed system will be designed, simulated and analyzed for 6000km with an improvement of data rate over previously existing systems. The performance parameters of the system are Q-factor, eye opening, bit error rate, etc., The proposed system for Inter-satellite Optical Wireless Communication System Design Using Diversity Techniques finds huge scope of applications in future generation communication purposes.Keywords: inter-satellite optical wireless system, space and polarization diversity techniques, line of sight, bit error rate, Q-factor
Procedia PDF Downloads 2684855 Research on the Strategy of Orbital Avoidance for Optical Remote Sensing Satellite
Authors: Zheng DianXun, Cheng Bo, Lin Hetong
Abstract:
This paper focuses on the orbit avoidance strategies of optical remote sensing satellite. The optical remote sensing satellite, moving along the Sun-synchronous orbit, is equipped with laser warning equipment to alert CCD camera from laser attacks. There are three ways to protect the CCD camera: closing the camera cover, satellite attitude maneuver and satellite orbit avoidance. In order to enhance the safety of optical remote sensing satellite in orbit, this paper explores the strategy of satellite avoidance. The avoidance strategy is expressed as the evasion of pre-determined target points in the orbital coordinates of virtual satellite. The so-called virtual satellite is a passive vehicle which superposes the satellite at the initial stage of avoidance. The target points share the consistent cycle time and the same semi-major axis with the virtual satellite, which ensures the properties of the satellite’s Sun-synchronous orbit remain unchanged. Moreover, to further strengthen the avoidance capability of satellite, it can perform multi-target-points avoid maneuvers. On occasions of fulfilling the satellite orbit tasks, the orbit can be restored back to virtual satellite through orbit maneuvers. Thereinto, the avoid maneuvers adopts pulse guidance. And the fuel consumption is also optimized. The avoidance strategy discussed in this article is applicable to optical remote sensing satellite when it is encountered with hostile attack of space-based laser anti-satellite.Keywords: optical remote sensing satellite, satellite avoidance, virtual satellite, avoid target-point, avoid maneuver
Procedia PDF Downloads 4034854 Cross-Dipole Right-Hand Circularly Polarized UHF/VHF Yagi-Uda Antenna for Satellite Applications
Authors: Shativel S., Chandana B. R., Kavya B. C., Obli B. Vikram, Suganthi J., Nagendra Rao G.
Abstract:
Satellite communication plays a pivotal role in modern global communication networks, serving as a vital link between terrestrial infrastructure and remote regions. The demand for reliable satellite reception systems, especially in UHF (Ultra High Frequency) and VHF (Very High Frequency) bands, has grown significantly over the years. This research paper presents the design and optimization of a high-gain, dual-band crossed Yagi-Uda antenna in CST Studio Suite, specifically tailored for satellite reception. The proposed antenna system incorporates a circularly polarized (Right-Hand Circular Polarization - RHCP) design to reduce Faraday loss. Our aim was to use fewer elements and achieve gain, so the antenna is constructed using 6x2 elements arranged in cross dipole and supported with a boom. We have achieved 10.67dBi at 146MHz and 9.28dBi at 437.5MHz.The process includes parameter optimization and fine-tuning of the Yagi-Uda array’s elements, such as the length and spacing of directors and reflectors, to achieve high gain and desirable radiation patterns. Furthermore, the optimization process considers the requirements for UHF and VHF frequency bands, ensuring broad frequency coverage for satellite reception. The results of this research are anticipated to significantly contribute to the advancement of satellite reception systems, enhancing their capabilities to reliably connect remote and underserved areas to the global communication network. Through innovative antenna design and simulation techniques, this study seeks to provide a foundation for the development of next-generation satellite communication infrastructure.Keywords: Yagi-Uda antenna, RHCP, gain, UHF antenna, VHF antenna, CST, radiation pattern.
Procedia PDF Downloads 604853 The Strategy of Orbit Avoidance for Optical Remote Sensing Satellite
Authors: Dianxun Zheng, Wuxing Jing, Lin Hetong
Abstract:
Optical remote sensing satellite, always running on the Sun-synchronous orbit, equipped laser warning equipment to alert CCD camera from laser attack. There have three ways to protect the CCD camera, closing the camera cover satellite attitude maneuver and satellite orbit avoidance. In order to enhance the safety of optical remote sensing satellite in orbit, this paper explores the strategy of satellite avoidance. The avoidance strategy is expressed as the evasion of pre-determined target points in the orbital coordinates of virtual satellite. The so-called virtual satellite is a passive vehicle which superposes a satellite at the initial stage of avoidance. The target points share the consistent cycle time and the same semi-major axis with the virtual satellite, which ensures the properties of the Sun-synchronous orbit remain unchanged. Moreover, to further strengthen the avoidance capability of satellite, it can perform multi-object avoid maneuvers. On occasions of fulfilling the orbit tasks of the satellite, the orbit can be restored back to virtual satellite through orbit maneuvers. There into, the avoid maneuvers adopts pulse guidance. and the fuel consumption is also optimized. The avoidance strategy discussed in this article is applicable to avoidance for optical remote sensing satellite when encounter the laser hostile attacks.Keywords: optical remote sensing satellite, always running on the sun-synchronous
Procedia PDF Downloads 3994852 Argos System: Improvements and Future of the Constellation
Authors: Sophie Baudel, Aline Duplaa, Jean Muller, Stephan Lauriol, Yann Bernard
Abstract:
Argos is the main satellite telemetry system used by the wildlife research community, since its creation in 1978, for animal tracking and scientific data collection all around the world, to analyze and understand animal migrations and behavior. The marine mammals' biology is one of the major disciplines which had benefited from Argos telemetry, and conversely, marine mammals biologists’ community has contributed a lot to the growth and development of Argos use cases. The Argos constellation with 6 satellites in orbit in 2017 (Argos 2 payload on NOAA 15, NOAA 18, Argos 3 payload on NOAA 19, SARAL, METOP A and METOP B) is being extended in the following years with Argos 3 payload on METOP C (launch in October 2018), and Argos 4 payloads on Oceansat 3 (launch in 2019), CDARS in December 2021 (to be confirmed), METOP SG B1 in December 2022, and METOP-SG-B2 in 2029. Argos 4 will allow more frequency bands (600 kHz for Argos4NG, instead of 110 kHz for Argos 3), new modulation dedicated to animal (sea turtle) tracking allowing very low transmission power transmitters (50 to 100mW), with very low data rates (124 bps), enhancement of high data rates (1200-4800 bps), and downlink performance, at the whole contribution to enhance the system capacity (50,000 active beacons per month instead of 20,000 today). In parallel of this ‘institutional Argos’ constellation, in the context of a miniaturization trend in the spatial industry in order to reduce the costs and multiply the satellites to serve more and more societal needs, the French Space Agency CNES, which designs the Argos payloads, is innovating and launching the Argos ANGELS project (Argos NEO Generic Economic Light Satellites). ANGELS will lead to a nanosatellite prototype with an Argos NEO instrument (30 cm x 30 cm x 20cm) that will be launched in 2019. In the meantime, the design of the renewal of the Argos constellation, called Argos For Next Generations (Argos4NG), is on track and will be operational in 2022. Based on Argos 4 and benefitting of the feedback from ANGELS project, this constellation will allow revisiting time of fewer than 20 minutes in average between two satellite passes, and will also bring more frequency bands to improve the overall capacity of the system. The presentation will then be an overview of the Argos system, present and future and new capacities coming with it. On top of that, use cases of two Argos hardware modules will be presented: the goniometer pathfinder allowing recovering Argos beacons at sea or on the ground in a 100 km radius horizon-free circle around the beacon location and the new Argos 4 chipset called ‘Artic’, already available and tested by several manufacturers.Keywords: Argos satellite telemetry, marine protected areas, oceanography, maritime services
Procedia PDF Downloads 1804851 Capacity Building on Small Automatic Tracking Antenna Development for Thailand Space Sustainability
Authors: Warinthorn Kiadtikornthaweeyot Evans, Nawattakorn Kaikaew
Abstract:
The communication system between the ground station and the satellite is very important to guarantee contact between both sides. Thailand, led by Geo-Informatics and Space Technology Development Agency (GISTDA), has received satellite images from other nation's satellites for a number of years. In 2008, Thailand Earth Observation Satellite (THEOS) was the first Earth observation satellite owned by Thailand. The mission was monitoring our country with affordable access to space-based Earth imagery. At this time, the control ground station was initially used to control the THEOS satellite by our Thai engineers. The Tele-commands were sent to the satellite according to requests from government and private sectors. Since then, GISTDA's engineers have gained their skill and experience to operate the satellite. Recently the desire to use satellite data is increasing rapidly due to space technology moving fast and giving us more benefits. It is essential to ensure that Thailand remains competitive in space technology. Thai Engineers have started to improve the performance of the control ground station in many different sections, also developing skills and knowledge in areas of satellite communication. Human resource skills are being enforced with development projects through capacity building. This paper focuses on the hands-on capacity building of GISTDA's engineers to develop a small automatic tracking antenna. The final achievement of the project is the first phase prototype of a small automatic tracking antenna to support the new technology of the satellites. There are two main subsystems that have been developed and tested; the tracking system and the monitoring and control software. The prototype first phase functions testing has been performed with Two Line Element (TLE) and the mission planning plan (MPP) file calculated from THEOS satellite by GISTDA.Keywords: capacity building, small tracking antenna, automatic tracking system, project development procedure
Procedia PDF Downloads 734850 A Blueprint for Responsible Launch of Small Satellites from a Debris Perspective
Authors: Jeroen Rotteveel, Zeger De Groot
Abstract:
The small satellite community is more and more aware of the need to start operating responsibly and sustainably in order to secure the use of outer space in the long run. On the technical side, many debris mitigation techniques have been investigated and demonstrated on board small satellites, showing that technically, a lot of things can be done to curb the growth of space debris and operate more responsible. However, in the absence of strict laws and constraints, one cannot help but wonder what the incentive is to incur significant costs (paying for debris mitigation systems and the launch mass of these systems) and to lose performance onboard resource limited small satellites (mass, volume, power)? Many small satellite developers are operating under tight budgets, either from their sponsors (in case of academic and research projects) or from their investors (in case of startups). As long as it is not mandatory to act more responsibly, we might need to consider the implementation of incentives to stimulate developers to accommodate deorbiting modules, etc. ISISPACE joined the NetZeroSpace initiative in 2021 with the aim to play its role in secure the use of low earth orbit for the next decades by facilitating more sustainable use of space. The company is in a good position as both a satellite builder, a rideshare launch provider, and a technology development company. ISISPACE operates under one of the stricter space laws in the world in terms of maximum orbital lifetime and has been active in various debris mitigation and debris removal in-orbit demonstration missions in the past 10 years. ISISPACE proposes to introduce together with launch partners and regulators an incentive scheme for CubeSat developers to baseline debris mitigation systems on board their CubeSats in such a way that is does not impose too many additional costs to the project. Much like incentives to switch to electric cars or install solar panels on your house, such an incentive can help to increase market uptake of behavior or solutions prior to legislation or bans of certain practices. This can be achieved by: Introducing an extended launch volume in CubeSat deployers to accommodate debris mitigation systems without compromising available payload space for the payload of the main mission Not charging the fee for the launch mass for the additional debris mitigation module Whenever possible, find ways to further co-fund the purchase price, or otherwise reduce the cost of flying debris mitigation modules onboard the CubeSats. The paper will outline the framework of such an incentive scheme and provides ISISPACE’s way forward to make this happen in the near future.Keywords: netZerospace, cubesats, debris mitigation, small satellite community
Procedia PDF Downloads 1534849 Ultra-Wideband (45-50 GHz) mm-Wave Substrate Integrated Waveguide Cavity Slots Antenna for Future Satellite Communications
Authors: Najib Al-Fadhali, Huda Majid
Abstract:
In this article, a substrate integrated waveguide cavity slot antenna was designed using a computer simulation technology software tool to address the specific design challenges for millimeter-wave communications posed by future satellite communications. Due to the symmetrical structure, a high-order mode is generated in SIW, which yields high gain and high efficiency with a compact feed structure. The antenna has dimensions of 20 mm x 20 mm x 1.34 mm. The proposed antenna bandwidth ranges from 45 GHz to 50 GHz, covering a Q-band application such as satellite communication. Antenna efficiency is above 80% over the operational frequency range. The gain of the antenna is above 9 dB with a peak value of 9.4 dB at 47.5 GHz. The proposed antenna is suitable for various millimeter-wave applications such as sensing, body imaging, indoor scenarios, new generations of wireless networks, and future satellite communications. The simulated results show that the SIW antenna resonates throughout the bands of 45 to 50 GHz, making this new antenna cover all applications within this range. The reflection coefficients are below 10 dB in most ranges from 45 to 50 GHz. The compactness, integrity, reliability, and performance at various operating frequencies make the proposed antenna a good candidate for future satellite communications.Keywords: ultra-wideband, Q-band, SIW, mm-wave, satellite communications
Procedia PDF Downloads 834848 Empirical Prediction of the Effect of Rain Drops on Dbs System Operating in Ku-Band (Case Study of Abuja)
Authors: Tonga Agadi Danladi, Ajao Wasiu Bamidele, Terdue Dyeko
Abstract:
Recent advancement in microwave communications technologies especially in telecommunications and broadcasting have resulted in congestion on the frequencies below 10GHz. This has forced microwave designers to look for high frequencies. Unfortunately for frequencies greater than 10GHz rain becomes one of the main factors of attenuation in signal strength. At frequencies from 10GHz upwards, rain drop sizes leads to outages that compromises the availability and quality of service this making it a critical factor in satellite link budget design. Rain rate and rain attenuation predictions are vital steps to be considered when designing microwave satellite communication link operating at Ku-band frequencies (112-18GHz). Unreliable rain rates data in the tropical regions of the world like Nigeria from radio communication group of the international Telecommunication Union (ITU-R) makes it difficult for microwave engineers to determine a realistic rain margin that needs to be accommodated in satellite link budget design in such region. This work presents an empirical tool for predicting the amount of signal due to rain on DBS signal operating at the Ku-band.Keywords: attenuation, Ku-Band, microwave communication, rain rates
Procedia PDF Downloads 4844847 Modular Power Bus for Space Vehicles (MPBus)
Authors: Eduardo Remirez, Luis Moreno
Abstract:
The rapid growth of the private satellite launchers sector is leading the space race. Hence, with the privatization of the sector, all the companies are racing for a more efficient and reliant way to set satellites in orbit. Having detected the current needs for power management in the launcher vehicle industry, the Modular Power Bus is proposed as a technology to revolutionize power management in current and future Launcher Vehicles. The MPBus Project is committed to develop a new power bus architecture combining ejectable batteries with the main bus through intelligent nodes. These nodes are able to communicate between them and a battery controller using an improved, data over DC line technology, expected to reduce the total weight in two main areas: improving the use of the batteries and reducing the total weight due to harness. This would result in less weight for each launch stage increasing the operational satellite payload and reducing cost. These features make the system suitable for a number of launchers.Keywords: modular power bus, Launcher vehicles, ejectable batteries, intelligent nodes
Procedia PDF Downloads 4794846 Mitigation of Interference in Satellite Communications Systems via a Cross-Layer Coding Technique
Authors: Mario A. Blanco, Nicholas Burkhardt
Abstract:
An important problem in satellite communication systems which operate in the Ka and EHF frequency bands consists of the overall degradation in link performance of mobile terminals due to various types of degradations in the link/channel, such as fading, blockage of the link to the satellite (especially in urban environments), intentional as well as other types of interference, etc. In this paper, we focus primarily on the interference problem, and we develop a very efficient and cost-effective solution based on the use of fountain codes. We first introduce a satellite communications (SATCOM) terminal uplink interference channel model that is classically used against communication systems that use spread-spectrum waveforms. We then consider the use of fountain codes, with focus on Raptor codes, as our main mitigation technique to combat the degradation in link/receiver performance due to the interference signal. The performance of the receiver is obtained in terms of average probability of bit and message error rate as a function of bit energy-to-noise density ratio, Eb/N0, and other parameters of interest, via a combination of analysis and computer simulations, and we show that the use of fountain codes is extremely effective in overcoming the effects of intentional interference on the performance of the receiver and associated communication links. We then show this technique can be extended to mitigate other types of SATCOM channel degradations, such as those caused by channel fading, shadowing, and hard-blockage of the uplink signal.Keywords: SATCOM, interference mitigation, fountain codes, turbo codes, cross-layer
Procedia PDF Downloads 3604845 A Simple Thermal Control Technique for the First Egyptian Pico Satellite
Authors: Maged Assem Soliman Mossallam
Abstract:
One of the main prospectives on the demand of space exploration is to reduce the costs and efforts for satellite design. Concerning this issue satellite down scaling attracts space scientists and engineers. Picosatellite is the smallest category of satellites. The overall mass is less than 1 kg and dimensions are 10x10x3 cm3. Thermal control target is to keep the Pico-satellite board temperature within the permissible limits of temperature. Thermal design is completely passive which relies mainly on the enhancement of the thermo-optical properties of aluminum using anodization. Transient analysis is given for two different orbits, ISS orbit and 600 km altitude orbit. Results show that board temperature lies within 3 oC to 22 oC using black anodization which is a permissible limit for the satellite internal electronic board.Keywords: satellite thermal control, small satellites, thermooptical properties , transient orbit analysis
Procedia PDF Downloads 1144844 Wireless Network and Its Application
Authors: Henok Mezemr Besfat, Haftom Gebreslassie Gebregwergs
Abstract:
wireless network is one of the most important mediums of transmission of information from one device to another devices. Wireless communication has a broad range of applications, including mobile communications through cell phones and satellites, Internet of Things (IoT) connecting several devices, wireless sensor networks for traffic management and environmental monitoring, satellite communication for weather forecasting and TV without requiring any cable or wire or other electronic conductors, by using electromagnetic waves like IR, RF, satellite, etc. This paper summarizes different wireless network technologies, applications of different wireless technologies and different types of wireless networks. Generally, wireless technology will further enhance operations and experiences across sectors with continued innovation. This paper suggests different strategies that can improve wireless networks and technologies.Keywords: wireless senser, wireless technology, wireless network, internet of things
Procedia PDF Downloads 514843 Development of Star Tracker for Satellite
Authors: S. Yelubayev, V. Ten, B. Albazarov, E. Sarsenbayev, К. Аlipbayev, A. Shamro, Т. Bopeyev, А. Sukhenko
Abstract:
Currently in Kazakhstan much attention is paid to the development of space branch. Successful launch of two Earth remote sensing satellite is carried out, projects on development of components for satellite are being carried out. In particular, the project on development of star tracker experimental model is completed. In the future it is planned to use this experimental model for development of star tracker prototype. Main stages of star tracker experimental model development are considered in this article.Keywords: development, prototype, satellite, star tracker
Procedia PDF Downloads 4764842 Miniature Fast Steering Mirrors for Space Optical Communication on NanoSats and CubeSats
Authors: Sylvain Chardon, Timotéo Payre, Hugo Grardel, Yann Quentel, Mathieu Thomachot, Gérald Aigouy, Frank Claeyssen
Abstract:
With the increasing digitalization of society, access to data has become vital and strategic for individuals and nations. In this context, the number of satellite constellation projects is growing drastically worldwide and is a next-generation challenge of the New Space industry. So far, existing satellite constellations have been using radio frequencies (RF) for satellite-to-ground communications, inter-satellite communications, and feeder link communication. However, RF has several limitations, such as limited bandwidth and low protection level. To address these limitations, space optical communication will be the new trend, addressing both very high-speed and secured encrypted communication. Fast Steering Mirrors (FSM) are key components used in optical communication as well as space imagery and for a large field of functions such as Point Ahead Mechanisms (PAM), Raster Scanning, Beam Steering Mirrors (BSM), Fine Pointing Mechanisms (FPM) and Line of Sight stabilization (LOS). The main challenges of space FSM development for optical communication are to propose both a technology and a supply chain relevant for high quantities New Space approach, which requires secured connectivity for high-speed internet, Earth planet observation and monitoring, and mobility applications. CTEC proposes a mini-FSM technology offering a stroke of +/-6 mrad and a resonant frequency of 1700 Hz, with a mass of 50 gr. This FSM mechanism is a good candidate for giant constellations and all applications on board NanoSats and CubeSats, featuring a very high level of miniaturization and optimized for New Space high quantities cost efficiency. The use of piezo actuators offers a high resonance frequency for optimal control, with almost zero power consumption in step and stay pointing, and with very high-reliability figures > 0,995 demonstrated over years of recurrent manufacturing for Optronics applications at CTEC.Keywords: fast steering mirror, feeder link, line of sight stabilization, optical communication, pointing ahead mechanism, raster scan
Procedia PDF Downloads 794841 Application of PSK Modulation in ADS-B 1090 Extended Squitter Authentication
Authors: A-Q. Nguyen. A. Amrhar, J. Zambrano, G. Brown, O.A. Yeste-Ojeda, R. Jr. Landry
Abstract:
Since the presence of Next Generation Air Transportation System (NextGen), Automatic Dependent Surveillance-Broadcast (ADS-B) has raised specific concerns related to the privacy and security, due to its vulnerable, low-level of security and limited payload. In this paper, the authors introduce and analyze the combination of Pulse Amplitude Modulation (PAM) and Phase Shift Keying (PSK) Modulation in conventional ADS-B, forming Secure ADS-B (SADS-B) avionics. In order to demonstrate the potential of this combination, Hardware-in-the-loop (HIL) simulation was used. The tests' results show that, on the one hand, SADS-B can offer five times the payload as its predecessor. This additional payload of SADS-B can be used in various applications, therefore enhancing the ability and efficiency of the current ADS-B. On the other hand, by using the extra phase modulated bits as a digital signature to authenticate ADS-B messages, SADS-B can increase the security of ADS-B, thus ensure a more secure aviation as well. More importantly, SADS-B is compatible with the current ADS-B In and Out. Hence, no significant modifications will be needed to implement this idea. As a result, SADS-B can be considered the most promising approach to enhance the capability and security of ADS-B.Keywords: ADS-B authentication, ADS-B security, NextGen ADS-B, PSK signature, secure ADS-B
Procedia PDF Downloads 3184840 Comparative Study of Accuracy of Land Cover/Land Use Mapping Using Medium Resolution Satellite Imagery: A Case Study
Authors: M. C. Paliwal, A. K. Jain, S. K. Katiyar
Abstract:
Classification of satellite imagery is very important for the assessment of its accuracy. In order to determine the accuracy of the classified image, usually the assumed-true data are derived from ground truth data using Global Positioning System. The data collected from satellite imagery and ground truth data is then compared to find out the accuracy of data and error matrices are prepared. Overall and individual accuracies are calculated using different methods. The study illustrates advanced classification and accuracy assessment of land use/land cover mapping using satellite imagery. IRS-1C-LISS IV data were used for classification of satellite imagery. The satellite image was classified using the software in fourteen classes namely water bodies, agricultural fields, forest land, urban settlement, barren land and unclassified area etc. Classification of satellite imagery and calculation of accuracy was done by using ERDAS-Imagine software to find out the best method. This study is based on the data collected for Bhopal city boundaries of Madhya Pradesh State of India.Keywords: resolution, accuracy assessment, land use mapping, satellite imagery, ground truth data, error matrices
Procedia PDF Downloads 505