Search results for: bridge structures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4748

Search results for: bridge structures

4658 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches

Authors: H. Bonakdari, I. Ebtehaj

Abstract:

The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.

Keywords: adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), bridge pier, scour depth, nonlinear regression (NLR)

Procedia PDF Downloads 186
4657 Improvement of the Geometric of Dental Bridge Framework through Automatic Program

Authors: Rong-Yang Lai, Jia-Yu Wu, Chih-Han Chang, Yung-Chung Chen

Abstract:

The dental bridge is one of the clinical methods of the treatment for missing teeth. The dental bridge is generally designed for two layers, containing the inner layer of the framework(zirconia) and the outer layer of the porcelain-fused to framework restorations. The design of a conventional bridge is generally based on the antagonist tooth profile so that the framework evenly indented by an equal thickness from outer contour. All-ceramic dental bridge made of zirconia have well demonstrated remarkable potential to withstand a higher physiological occlusal load in posterior region, but it was found that there is still the risk of all-ceramic bridge failure in five years. Thus, how to reduce the incidence of failure is still a problem to be solved. Therefore, the objective of this study is to develop mechanical designs for all-ceramic dental bridges framework by reducing the stress and enhancing fracture resistance under given loading conditions by finite element method. In this study, dental design software is used to design dental bridge based on tooth CT images. After building model, Bi-directional Evolutionary Structural Optimization (BESO) Method algorithm implemented in finite element software was employed to analyze results of finite element software and determine the distribution of the materials in dental bridge; BESO searches the optimum distribution of two different materials, namely porcelain and zirconia. According to the previous calculation of the stress value of each element, when the element stress value is higher than the threshold value, the element would be replaced by the framework material; besides, the difference of maximum stress peak value is less than 0.1%, calculation is complete. After completing the design of dental bridge, the stress distribution of the whole structure is changed. BESO reduces the peak values of principle stress of 10% in outer-layer porcelain and avoids producing tensile stress failure.

Keywords: dental bridge, finite element analysis, framework, automatic program

Procedia PDF Downloads 262
4656 Human Walking Vertical Force and Vertical Vibration of Pedestrian Bridge Induced by Its Higher Components

Authors: Masahiro Yoneda

Abstract:

The purpose of this study is to identify human walking vertical force by using FFT power spectrum density from the experimental acceleration data of the human body. An experiment on human walking is carried out on a stationary floor especially paying attention to higher components of dynamic vertical walking force. Based on measured acceleration data of the human lumbar part, not only in-phase component with frequency of 2 fw, 3 fw, but also in-opposite-phase component with frequency of 0.5 fw, 1.5 fw, 2.5 fw where fw is the walking rate is observed. The vertical vibration of pedestrian bridge induced by higher components of human walking vertical force is also discussed in this paper. A full scale measurement for the existing pedestrian bridge with center span length of 33 m is carried out focusing on the resonance phenomenon due to higher components of human walking vertical force. Dynamic response characteristics excited by these vertical higher components of human walking are revealed from the dynamic design viewpoint of pedestrian bridge.

Keywords: simplified method, human walking vertical force, higher component, pedestrian bridge vibration

Procedia PDF Downloads 411
4655 Parametric Study for Optimal Design of Hybrid Bridge Joint

Authors: Bongsik Park, Jae Hyun Park, Jae-Yeol Cho

Abstract:

Mixed structure, which is a kind of hybrid system, is incorporating steel beam and prestressed concrete beam. Hybrid bridge adopting mixed structure have some merits. Main span length can be made longer by using steel as main span material. In case of cable-stayed bridge having asymmetric span length, negative reaction at side span can be restrained without extra restraining devices by using weight difference between main span material and side span material. However angle of refraction might happen because of rigidity difference between materials and stress concentration also might happen because of abnormal loading transmission at joint in the hybrid bridge. Therefore the joint might be a weak point of the structural system and it needs to pay attention to design of the joint. However, design codes and standards about the joint in the hybrid-bridge have not been established so the joint designs in most of construction cases have been very conservative or followed previous design without extra verification. In this study parametric study using finite element analysis for optimal design of hybrid bridge joint is conducted. Before parametric study, finite element analysis was conducted based on previous experimental data and it is verified that analysis result approximated experimental data. Based on the finite element analysis results, parametric study was conducted. The parameters were selected as those have influences on joint behavior. Based on the parametric study results, optimal design of hybrid bridge joint has been determined.

Keywords: parametric study, optimal design, hybrid bridge, finite element analysis

Procedia PDF Downloads 389
4654 Improvement of Brige Weigh-In-Motion Technique Considering the Driving Conditions of Vehicles

Authors: Changgil Lee, Jooyoung Park, Seunghee Park

Abstract:

In this study, bridge weigh-in-motion (BWIM) system was simulated under various driving conditions of vehicles to improve the performance of the BWIM system. Two driving conditions were considered. One was the number of the axle of the vehicles. Since the vehicles have different number of axle according to the types of the vehicle, the vehicles were modeled considering the number of the axle. The other was the speed of the vehicles because the speed of the vehicles is not consistent on the bridge. To achieve the goal, the dynamic characteristics of a bridge such as modal parameters were considered in numerical simulation by analyzing precision models. Also, the driving vehicles were modeled as mass-spring-damping systems reflecting the axle information.

Keywords: bridge weigh-in-motion (BWIM) system, driving conditions, precision analysis model, the number of axle, the speed of vehicle

Procedia PDF Downloads 439
4653 Geotechnical Design of Bridge Foundations and Approaches in Hilly Granite Formation

Authors: Q. J. Yang

Abstract:

This paper presents a case study of geotechnical design of bridge foundations and approaches in hilly granite formation in northern New South Wales of Australia. Firstly, the geological formation and existing cut slope conditions which have high risks of rock fall will be described. The bridge has three spans to be constructed using balanced cantilever method with a middle span of 150 m. After concept design option engineering, it was decided to change from pile foundation to pad footing with ground anchor system to optimize the bridge foundation design. The geotechnical design parameters were derived after two staged site investigations. The foundation design was carried out to satisfy both serviceability limit state and ultimate limit state during construction and in operation. It was found that the pad footing design was governed by serviceability limit state design loading cases. The design of bridge foundation also considered presence of weak rock layer intrusion and a layer of “no core” to ensure foundation stability. The precast mass concrete block system was considered for the retaining walls for the bridge approaches to resolve the constructability issue over hilly terrain. The design considered the retaining wall block sliding stability, while the overturning and internal stabilities are satisfied.

Keywords: pad footing, Hilly formation, stability, block works

Procedia PDF Downloads 293
4652 Technical Non-Destructive Evaluation of Burnt Bridge at CH. 57+450 Along Abuja-Abaji-Lokoja Road, Nigeria

Authors: Abraham O. Olaniyi, Oluyemi Oke, Atilade Otunla

Abstract:

The structural performance of bridges decreases progressively throughout their service life due to many contributing factors (fatigue, carbonation, fire incidents etc.). Around the world, numerous bridges have attained their estimated service life and many have approached this limit. The structural integrity assessment of the burnt composite bridge located at CH57+450, Koita village along Abuja-Abaji-Lokoja road, Nigeria, is presented as a case study and shall be forthwith referred to as the 'Koita bridge' in this paper. From the technical evaluation, the residual compressive strength of the concrete piers was found to be below 16.0 N/mm2. This value is very low compared to the expected design value of 30.0 N/mm2. The pier capping beam at pier location 1 has a very low residual compressive strength. The cover to the reinforcement of certain capping beams has an outline of reinforcement which signifies poor concrete cover and the mean compressive strength is also less than 20.0 N/mm2. The steel girder indicated black colouration as a result of the fire incident without any significant structural defect like buckling or warping of the steel section. This paper reviews the structural integrity assessment and repair methodology of the Koita bridge; a composite bridge damaged by fire, highlighting the various challenges of limited obtainable guidance documents about the bridge. The objectives are to increase the understanding of processes and versatile equipment required to test and assess a fire-damaged bridge in order to improve the quality of structural appraisal and rehabilitation; thus, eliminating the prejudice associated with current visual inspection techniques.

Keywords: assessment, bridge, rehabilitation, sustainability

Procedia PDF Downloads 338
4651 Static and Dynamic Behaviors of Sandwich Structures With Metallic Connections

Authors: Shidokht Rashiddadash, Mojtaba Sadighi, Soheil Dariushi

Abstract:

Since sandwich structures are used in many areas ranging from ships, trains, automobiles, aircrafts, bridge and building, connecting sandwich structures is necessary almost in all industries. So application of metallic joints between sandwich panels is increasing. Various joining methods are available such as mechanically fastened joints (riveting or bolting) or adhesively bonded joints and choosing one of them depends on the application. In this research, sandwich specimens were fabricated with two different types of metallic connections with dissimilar geometries. These specimens included beams and plates and were manufactured using glass-epoxy skins and aluminum honeycomb core. After construction of the specimens, bending and low velocity impact tests were executed on them and the behaviors of specimens were discussed. Numerical models were developed using LS-DYNA software and validated with test results. Finally, parametric studies were performed on the thicknesses and lengths of two connections by employing the numerical models.

Keywords: connection, honeycomb, low velocity impact, sandwich panel, static test

Procedia PDF Downloads 28
4650 Comparison of Seismic Response for Two RC Curved Bridges with Different Column Shapes

Authors: Nina N. Serdar, Jelena R. Pejović

Abstract:

This paper presents seismic risk assessment of two bridge structure, based on the probabilistic performance-based seismic assessment methodology. Both investigated bridges are tree span continuous RC curved bridges with the difference in column shapes. First bridge (type A) has a wall-type pier and second (type B) has a two-column bent with circular columns. Bridges are designed according to European standards: EN 1991-2, EN1992-1-1 and EN 1998-2. Aim of the performed analysis is to compare seismic behavior of these two structures and to detect the influence of column shapes on the seismic response. Seismic risk assessment is carried out by obtaining demand fragility curves. Non-linear model was constructed and time-history analysis was performed using thirty five pairs of horizontal ground motions selected to match site specific hazard. In performance based analysis, peak column drift ratio (CDR) was selected as engineering demand parameter (EDP). For seismic intensity measure (IM) spectral displacement was selected. Demand fragility curves that give probability of exceedance of certain value for chosen EDP were constructed and based on them conclusions were made.

Keywords: RC curved bridge, demand fragility curve, wall type column, nonlinear time-history analysis, circular column

Procedia PDF Downloads 306
4649 Pushover Analysis of a Typical Bridge Built in Central Zone of Mexico

Authors: Arturo Galvan, Jatziri Y. Moreno-Martinez, Daniel Arroyo-Montoya, Jose M. Gutierrez-Villalobos

Abstract:

Bridges are one of the most seismically vulnerable structures on highway transportation systems. The general process for assessing the seismic vulnerability of a bridge involves the evaluation of its overall capacity and demand. One of the most common procedures to obtain this capacity is by means of pushover analysis of the structure. Typically, the bridge capacity is assessed using non-linear static methods or non-linear dynamic analyses. The non-linear dynamic approaches use step by step numerical solutions for assessing the capacity with the consuming computer time inconvenience. In this study, a nonlinear static analysis (‘pushover analysis’) was performed to predict the collapse mechanism of a typical bridge built in the central zone of Mexico (Celaya, Guanajuato). The bridge superstructure consists of three simple supported spans with a total length of 76 m: 22 m of the length of extreme spans and 32 m of length of the central span. The deck width is of 14 m and the concrete slab depth is of 18 cm. The bridge is built by means of frames of five piers with hollow box-shaped sections. The dimensions of these piers are 7.05 m height and 1.20 m diameter. The numerical model was created using a commercial software considering linear and non-linear elements. In all cases, the piers were represented by frame type elements with geometrical properties obtained from the structural project and construction drawings of the bridge. The deck was modeled with a mesh of rectangular thin shell (plate bending and stretching) finite elements. The moment-curvature analysis was performed for the sections of the piers of the bridge considering in each pier the effect of confined concrete and its reinforcing steel. In this way, plastic hinges were defined on the base of the piers to carry out the pushover analysis. In addition, time history analyses were performed using 19 accelerograms of real earthquakes that have been registered in Guanajuato. In this way, the displacements produced by the bridge were determined. Finally, pushover analysis was applied through the control of displacements in the piers to obtain the overall capacity of the bridge before the failure occurs. It was concluded that the lateral deformation of the piers due to a critical earthquake occurred in this zone is almost imperceptible due to the geometry and reinforcement demanded by the current design standards and compared to its displacement capacity, they were excessive. According to the analysis, it was found that the frames built with five piers increase the rigidity in the transverse direction of the bridge. Hence it is proposed to reduce these frames of five piers to three piers, maintaining the same geometrical characteristics and the same reinforcement in each pier. Also, the mechanical properties of materials (concrete and reinforcing steel) were maintained. Once a pushover analysis was performed considering this configuration, it was concluded that the bridge would continue having a “correct” seismic behavior, at least for the 19 accelerograms considered in this study. In this way, costs in material, construction, time and labor would be reduced in this study case.

Keywords: collapse mechanism, moment-curvature analysis, overall capacity, push-over analysis

Procedia PDF Downloads 125
4648 The Rehabilitation of The Covered Bridge Leclerc (P-00249) Passing Over the Bouchard Stream in LaSarre, Quebec

Authors: Nairy Kechichian

Abstract:

The original Leclerc Bridge is a covered wooden bridge that is considered a Quebec heritage structure with an index of 60, making it a very important provincial bridge from a historical point of view. It was constructed in 1927 and is in the rural area of Abitibi-Temiscamingue. It is a “town Québécois” type of structure, which is generally rare but common for covered bridges in Abitibi-Temiscamingue. This type of structure is composed of two trusses on both sides formed with diagonals, internal bracings, uprights and top and bottom chords to allow the transmission of loads. This structure is mostly known for its solidity, lightweightness, and ease of construction. It is a single-span bridge with a length of 25.3 meters and allows the passage of one vehicle at a time with a 4.22-meter driving lane. The structure is composed of 2 trusses located at each end of the deck, two gabion foundations at both ends, uprights and top and bottom chords. WSP (Williams Sale Partnership) Canada inc. was mandated by the Transport Minister of Quebec in 2019 to increase the capacity of the bridge from 5 tons to 30.6 tons and rehabilitate it, as it has deteriorated quite significantly over the years. The bridge was damaged due to material deterioration over time, exposure to humidity, high load effects and insect infestation. To allow the passage of 3 axle trucks, as well as to keep the integrity of this heritage structure, the final design chosen to rehabilitate the bridge involved adding a new deck independent from the roof structure of the bridge. Essentially, new steel beams support the deck loads and the desired vehicle loads. The roof of the bridge is linked to the steel deck for lateral support, but it is isolated from the wooden deck. The roof is preserved for aesthetic reasons and remains intact as it is a heritage piece. Due to strict traffic management obstacles, an efficient construction method was put into place, which consisted of building a temporary bridge and moving the existing roof onto it to allow the circulation of vehicles on one side of the temporary bridge while providing a working space for the repairs of the roof on the other side to take place simultaneously. In parallel, this method allowed the demolition and reconstruction of the existing foundation, building a new steel deck, and transporting back the roof on the new bridge. One of the main criteria for the rehabilitation of the wooden bridge was to preserve, as much as possible, the existing patrimonial architectural design of the bridge. The project was completed successfully by the end of 2021.

Keywords: covered bridge, wood-steel, short span, town Québécois structure

Procedia PDF Downloads 35
4647 Aerodynamics and Aeroelastics Studies of Hanger Bridge with H-Beam Profile Using Wind Tunnel

Authors: Matza Gusto Andika, Malinda Sabrina, Syarie Fatunnisa

Abstract:

Aerodynamic and aeroelastics studies on the hanger bridge profile are important to analyze the aerodynamic phenomenon and Aeroelastics stability of hanger. Wind tunnel tests were conducted on a model of H-beam profile from hanger bridge. The purpose of this study is to investigate steady aerodynamic characteristics such as lift coefficient (Cl), drag coefficient (Cd), and moment coefficient (Cm) under the different angle of attack for preliminary prediction of aeroelastics stability problems. After investigation the steady aerodynamics characteristics from the model, dynamic testing is also conducted in wind tunnel to know the aeroelastics phenomenon which occurs at the H-beam hanger bridge profile. The studies show that the torsional vortex induced vibration occur when the wind speed is 7.32 m/s until 9.19 m/s with maximum amplitude occur when the wind speed is 8.41 m/s. The result of wind tunnel testing is matching to hanger vibration where occur in the field, so wind tunnel studies has successful to model the problem. In order that the H-beam profile is not good enough for the hanger bridge and need to be modified to minimize the Aeroelastics problem. The modification can be done with structure dynamics modification or aerodynamics modification.

Keywords: aerodynamics, aeroelastic, hanger bridge, h-beam profile, vortex induced vibration, wind tunnel

Procedia PDF Downloads 316
4646 Response of a Bridge Crane during an Earthquake

Authors: F. Fekak, A. Gravouil, M. Brun, B. Depale

Abstract:

During an earthquake, a bridge crane may be subjected to multiple impacts between crane wheels and rail. In order to model such phenomena, a time-history dynamic analysis with a multi-scale approach is performed. The high frequency aspect of the impacts between wheels and rails is taken into account by a Lagrange explicit event-capturing algorithm based on a velocity-impulse formulation to resolve contacts and impacts. An implicit temporal scheme is used for the rest of the structure. The numerical coupling between the implicit and the explicit schemes is achieved with a heterogeneous asynchronous time-integrator.

Keywords: bridge crane, earthquake, dynamic analysis, explicit, implicit, impact

Procedia PDF Downloads 274
4645 Estimating Bridge Deterioration for Small Data Sets Using Regression and Markov Models

Authors: Yina F. Muñoz, Alexander Paz, Hanns De La Fuente-Mella, Joaquin V. Fariña, Guilherme M. Sales

Abstract:

The primary approach for estimating bridge deterioration uses Markov-chain models and regression analysis. Traditional Markov models have problems in estimating the required transition probabilities when a small sample size is used. Often, reliable bridge data have not been taken over large periods, thus large data sets may not be available. This study presents an important change to the traditional approach by using the Small Data Method to estimate transition probabilities. The results illustrate that the Small Data Method and traditional approach both provide similar estimates; however, the former method provides results that are more conservative. That is, Small Data Method provided slightly lower than expected bridge condition ratings compared with the traditional approach. Considering that bridges are critical infrastructures, the Small Data Method, which uses more information and provides more conservative estimates, may be more appropriate when the available sample size is small. In addition, regression analysis was used to calculate bridge deterioration. Condition ratings were determined for bridge groups, and the best regression model was selected for each group. The results obtained were very similar to those obtained when using Markov chains; however, it is desirable to use more data for better results.

Keywords: concrete bridges, deterioration, Markov chains, probability matrix

Procedia PDF Downloads 316
4644 Condition Assessment of Reinforced Concrete Bridge Deck Using Ground Penetrating Radar

Authors: Azin Shakibabarough, Mojtaba Valinejadshoubi, Ashutosh Bagchi

Abstract:

Catastrophic bridge failure happens due to the lack of inspection, lack of design and extreme events like flooding, an earthquake. Bridge Management System (BMS) is utilized to diminish such an accident with proper design and frequent inspection. Visual inspection cannot detect any subsurface defects, so using Non-Destructive Evaluation (NDE) techniques remove these barriers as far as possible. Among all NDE techniques, Ground Penetrating Radar (GPR) has been proved as a highly effective device for detecting internal defects in a reinforced concrete bridge deck. GPR is used for detecting rebar location and rebar corrosion in the reinforced concrete deck. GPR profile is composed of hyperbola series in which sound hyperbola denotes sound rebar and blur hyperbola or signal attenuation shows corroded rebar. Interpretation of GPR images is implemented by numerical analysis or visualization. Researchers recently found that interpretation through visualization is more precise than interpretation through numerical analysis, but visualization is time-consuming and a highly subjective process. Automating the interpretation of GPR image through visualization can solve these problems. After interpretation of all scans of a bridge, condition assessment is conducted based on the generated corrosion map. However, this such a condition assessment is not objective and precise. Condition assessment based on structural integrity and strength parameters can make it more objective and precise. The main purpose of this study is to present an automated interpretation method of a reinforced concrete bridge deck through a visualization technique. In the end, the combined analysis of the structural condition in a bridge is implemented.

Keywords: bridge condition assessment, ground penetrating radar, GPR, NDE techniques, visualization

Procedia PDF Downloads 118
4643 Analyzing Bridge Response to Wind Loads and Optimizing Design for Wind Resistance and Stability

Authors: Abdul Haq

Abstract:

The goal of this research is to better understand how wind loads affect bridges and develop strategies for designing bridges that are more stable and resistant to wind. The effect of wind on bridges is essential to their safety and functionality, especially in areas that are prone to high wind speeds or violent wind conditions. The study looks at the aerodynamic forces and vibrations caused by wind and how they affect bridge construction. Part of the research method involves first understanding the underlying ideas influencing wind flow near bridges. Computational fluid dynamics (CFD) simulations are used to model and forecast the aerodynamic behaviour of bridges under different wind conditions. These models incorporate several factors, such as wind directionality, wind speed, turbulence intensity, and the influence of nearby structures or topography. The results provide significant new insights into the loads and pressures that wind places on different bridge elements, such as decks, pylons, and connections. Following the determination of the wind loads, the structural response of bridges is assessed. By simulating their dynamic behavior under wind-induced forces, Finite Element Analysis (FEA) is used to model the bridge's component parts. This work contributes to the understanding of which areas are at risk of experiencing excessive stresses, vibrations, or oscillations due to wind excitations. Because the bridge has inherent modes and frequencies, the study considers both static and dynamic responses. Various strategies are examined to maximize the design of bridges to withstand wind. It is possible to alter the bridge's geometry, add aerodynamic components, add dampers or tuned mass dampers to lessen vibrations, and boost structural rigidity. Through an analysis of several design modifications and their effectiveness, the study aims to offer guidelines and recommendations for wind-resistant bridge design. In addition to the numerical simulations and analyses, there are experimental studies. In order to assess the computational models and validate the practicality of proposed design strategies, scaled bridge models are tested in a wind tunnel. These investigations help to improve numerical models and prediction precision by providing valuable information on wind-induced forces, pressures, and flow patterns. Using a combination of numerical models, actual testing, and long-term performance evaluation, the project aims to offer practical insights and recommendations for building wind-resistant bridges that are secure, long-lasting, and comfortable for users.

Keywords: wind effects, aerodynamic forces, computational fluid dynamics, finite element analysis

Procedia PDF Downloads 35
4642 Influence of Existing Foundations on Soil-Structure Interaction of New Foundations in a Reconstruction Project

Authors: Kanagarajah Ravishankar

Abstract:

This paper describes a study performed for a project featuring an elevated steel bridge structure supported by various types of foundation systems. This project focused on rehabilitation or redesign of a portion of the bridge substructures founded on caisson foundations. The study that this paper focuses on is the evaluation of foundation and soil stiffnesses and interactions between the existing caissons and proposed foundations. The caisson foundations were founded on top of rock, where the depth to the top of rock varies from approximately 50 to 140 feet below ground surface. Based on a comprehensive investigation of the existing piers and caissons, the presence of ASR was suspected from observed whitish deposits on cracked surfaces as well as internal damages sustained through the entire depth of foundation structures. Reuse of existing piers and caissons was precluded and deemed unsuitable under the earthquake condition because of these defects on the structures. The proposed design of new foundations and substructures which was selected ultimately neglected the contribution from the existing caisson and pier columns. Due to the complicated configuration between the existing caisson and the proposed foundation system, three-dimensional finite element method (FEM) was employed to evaluate soil-structure interaction (SSI), to evaluate the effect of the existing caissons on the proposed foundations, and to compare the results with conventional group analysis. The FEM models include separate models for existing caissons, proposed foundations, and combining both.

Keywords: soil-structure interaction, foundation stiffness, finite element, seismic design

Procedia PDF Downloads 108
4641 Analysis of Silicon Controlled Rectifier-Based Electrostatic Discharge Protection Circuits with Electrical Characteristics for the 5V Power Clamp

Authors: Jun-Geol Park, Kyoung-Il Do, Min-Ju Kwon, Kyung-Hyun Park, Yong-Seo Koo

Abstract:

This paper analyzed the SCR (Silicon Controlled Rectifier)-based ESD (Electrostatic Discharge) protection circuits with the turn-on time characteristics. The structures are the LVTSCR (Low Voltage Triggered SCR), the ZTSCR (Zener Triggered SCR) and the PTSCR (P-Substrate Triggered SCR). The three structures are for the 5V power clamp. In general, the structures with the low trigger voltage structure can have the fast turn-on characteristics than other structures. All the ESD protection circuits have the low trigger voltage by using the N+ bridge region of LVTSCR, by using the zener diode structure of ZTSCR, by increasing the trigger current of PTSCR. The simulation for the comparison with the turn-on time was conducted by the Synopsys TCAD simulator. As the simulation results, the LVTSCR has the turn-on time of 2.8 ns, ZTSCR of 2.1 ns and the PTSCR of 2.4 ns. The HBM simulation results, however, show that the PTSCR is the more robust structure of 430K in HBM 8kV standard than 450K of LVTSCR and 495K of ZTSCR. Therefore the PTSCR is the most effective ESD protection circuit for the 5V power clamp.

Keywords: ESD, SCR, turn-on time, trigger voltage, power clamp

Procedia PDF Downloads 322
4640 Shape Management Method for Safety Evaluation of Bridge Based on Terrestrial Laser Scanning Using Least Squares

Authors: Gichun Cha, Dongwan Lee, Junkyeong Kim, Aoqi Zhang, Seunghee Park

Abstract:

All the world are studying the construction technology of double deck tunnel in order to respond to the increasing urban traffic demands and environmental changes. Advanced countries have the construction technology of the double deck tunnel structure. but the domestic country began research on it. Construction technologies are important. But Safety evaluation of structure is necessary to prevent possible accidents during construction. Thus, the double deck tunnel was required the shape management of middle slabs. The domestic country is preparing the construction of double deck tunnel for an alternate route and a pleasant urban environment. Shape management of double deck tunnel has been no research because it is a new attempted technology. The present, a similar study is bridge structure for the shape management. Bridge is implemented shape model using terrestrial laser scanning(TLS). Therefore, we proceed research on the bridge slabs because there is a similar structure of double deck tunnel. In the study, we develop shape management method of bridge slabs using TLS. We select the Test-bed for measurement site. This site is bridge located on Sungkyunkwan University Natural Sciences Campus. This bridge has a total length of 34m, the vertical height of 8.7m from the ground. It connects Engineering Building #1 and Engineering Building #2. Point cloud data for shape management is acquired the TLS and We utilized the Leica ScanStation C10/C5 model. We will confirm the Maximum displacement area of middle slabs using Least-Squares Fitting. We expect to raise stability for double deck tunnel through shape management for middle slabs.

Keywords: bridge slabs, least squares, safety evaluation, shape management method, terrestrial laser scanning

Procedia PDF Downloads 214
4639 Numerical Study on Pretensioned Bridge Girder Using Thermal Strain Technique

Authors: Prashant Motwani, Arghadeep Laskar

Abstract:

The transfer of prestress force from prestressing strands to the surrounding concrete is dependent on the bond between the two materials. It is essential to understand the actual bond stress distribution along the transfer length to determine the transfer zone in pre-tensioned concrete. A 3-D nonlinear finite element model has been developed to simulate the transfer of prestress force from steel to concrete in pre-tensioned bridge girders through thermal strain technique using commercially available package ABAQUS. Full-scale bridge girder has been analyzed with thermal strain approach where the damage plasticity constitutive model has been used to model concrete. Parameters such as concrete strain, effective prestress, upward camber and longitudinal stress have been compared with analytical results. The discrepancy between numerical and analytical values was within 20%. The paper also presents a convergence study on mesh density and aspect ratio of the elements to perform the finite element study.

Keywords: aspect ratio, bridge girder, centre of gravity of strand, mesh density, finite element model, pretensioned bridge girder

Procedia PDF Downloads 196
4638 Investigation of Several Parameters on Local Scour around Inclined Dual Bridge Piers

Authors: Murat Çeşme

Abstract:

For a bridge engineer to ensure a safe footing design, it is very important to estimate the maximum scour depth around the piers as accurately as possible. Many experimental studies have been performed by several investigators to obtain information about scouring mechanism. In order to examine the effect of inclination of dual bridge piers on scour depth under clear-water conditions for various uniform flow depths, an experimental research on scaled dual bridge piers has been carried over in METU Hydromechanics Lab. Dimensional and non-dimensional curves were developed and presented to show the variation of scour depth with respect to various parameters such as footing angle with the vertical, flow depth and footing dimensions. Results of the study were compared to those obtained from a similar study performed with single inclined piers to see the effect of the second pier on scour depths. Useful equations for the design engineers were developed based on multiple regression analyses to be used for predicting local scour depths around inclined piers in uniform and non-uniform sediments.

Keywords: experimental research, inclined dual bridge piers, footing safety, scour depth, clear water condition

Procedia PDF Downloads 75
4637 Analysis of a Damage-Control Target Displacement of Reinforced Concrete Bridge Pier for Seismic Design

Authors: Mohd Ritzman Abdul Karim, Zhaohui Huang

Abstract:

A current focus in seismic engineering practice is the development of seismic design approach that focuses on the performance-based design. Performance-based design aims to design the structures to achieve specified performance based on the damage limit states. This damage limit is more restrictive limit than life safety and needs to be carefully estimated to avoid damage in piers due to failure in transverse reinforcement. In this paper, a different perspective of damage limit states has been explored by integrating two damage control material limit state, concrete and reinforcement by introduced parameters such as expected yield stress of transverse reinforcement where peak tension strain prior to bar buckling is introduced in a recent study. The different perspective of damage limit states with modified yield displacement and the modified plastic-hinge length is used in order to predict damage-control target displacement for reinforced concreate (RC) bridge pier. Three-dimensional (3D) finite element (FE) model has been developed for estimating damage target displacement to validate proposed damage limit states. The result from 3D FE analysis was validated with experimental study found in the literature. The validated model then was applied to predict the damage target displacement for RC bridge pier and to validate the proposed study. The tensile strain on reinforcement and compression on concrete were used to determine the predicted damage target displacement and compared with the proposed study. The result shows that the proposed damage limit states were efficient in predicting damage-control target displacement consistent with FE simulations.

Keywords: damage-control target displacement, damage limit states, reinforced concrete bridge pier, yield displacement

Procedia PDF Downloads 123
4636 Sustainable Design of Coastal Bridge Networks in the Presence of Multiple Flood and Earthquake Risks

Authors: Riyadh Alsultani, Ali Majdi

Abstract:

It is necessary to develop a design methodology that includes the possibility of seismic events occurring in a region, the vulnerability of the civil hydraulic structure, and the effects of the occurrence hazard on society, environment, and economy in order to evaluate the flood and earthquake risks of coastal bridge networks. This paper presents a design approach for the assessment of the risk and sustainability of coastal bridge networks under time-variant flood-earthquake conditions. The social, environmental, and economic indicators of the network are used to measure its sustainability. These consist of anticipated loss, downtime, energy waste, and carbon dioxide emissions. The design process takes into account the possibility of happening in a set of flood and earthquake scenarios that represent the local seismic activity. Based on the performance of each bridge as determined by fragility assessments, network linkages are measured. The network's connections and bridges' damage statuses after an earthquake scenario determine the network's sustainability and danger. The sustainability measures' temporal volatility and the danger of structural degradation are both highlighted. The method is shown using a transportation network in Baghdad, Iraq.

Keywords: sustainability, Coastal bridge networks, flood-earthquake risk, structural design

Procedia PDF Downloads 53
4635 Design and Production of Thin-Walled UHPFRC Footbridge

Authors: P. Tej, P. Kněž, M. Blank

Abstract:

The paper presents design and production of thin-walled U-profile footbridge made of UHPFRC. The main structure of the bridge is one prefabricated shell structure made of UHPFRC with dispersed steel fibers without any conventional reinforcement. The span of the bridge structure is 10 m and the clear width of 1.5 m. The thickness of the UHPFRC shell structure oscillated in an interval of 30-45 mm. Several calculations were made during the bridge design and compared with the experiments. For the purpose of verifying the calculations, a segment of 1.5 m was first produced, followed by the whole footbridge for testing. After the load tests were done, the design was optimized to cast the final footbridge.

Keywords: footbridge, non-linear analysis, shell structure, UHPFRC, Ultra-High Performance Fibre Reinforced Concrete

Procedia PDF Downloads 196
4634 Seismic Response Control of Multi-Span Bridge Using Magnetorheological Dampers

Authors: B. Neethu, Diptesh Das

Abstract:

The present study investigates the performance of a semi-active controller using magneto-rheological dampers (MR) for seismic response reduction of a multi-span bridge. The application of structural control to the structures during earthquake excitation involves numerous challenges such as proper formulation and selection of the control strategy, mathematical modeling of the system, uncertainty in system parameters and noisy measurements. These problems, however, need to be tackled in order to design and develop controllers which will efficiently perform in such complex systems. A control algorithm, which can accommodate un-certainty and imprecision compared to all the other algorithms mentioned so far, due to its inherent robustness and ability to cope with the parameter uncertainties and imprecisions, is the sliding mode algorithm. A sliding mode control algorithm is adopted in the present study due to its inherent stability and distinguished robustness to system parameter variation and external disturbances. In general a semi-active control scheme using an MR damper requires two nested controllers: (i) an overall system controller, which derives the control force required to be applied to the structure and (ii) an MR damper voltage controller which determines the voltage required to be supplied to the damper in order to generate the desired control force. In the present study a sliding mode algorithm is used to determine the desired optimal force. The function of the voltage controller is to command the damper to produce the desired force. The clipped optimal algorithm is used to find the command voltage supplied to the MR damper which is regulated by a semi active control law based on sliding mode algorithm. The main objective of the study is to propose a robust semi active control which can effectively control the responses of the bridge under real earthquake ground motions. Lumped mass model of the bridge is developed and time history analysis is carried out by solving the governing equations of motion in the state space form. The effectiveness of MR dampers is studied by analytical simulations by subjecting the bridge to real earthquake records. In this regard, it may also be noted that the performance of controllers depends, to a great extent, on the characteristics of the input ground motions. Therefore, in order to study the robustness of the controller in the present study, the performance of the controllers have been investigated for fourteen different earthquake ground motion records. The earthquakes are chosen in such a way that all possible characteristic variations can be accommodated. Out of these fourteen earthquakes, seven are near-field and seven are far-field. Also, these earthquakes are divided into different frequency contents, viz, low-frequency, medium-frequency, and high-frequency earthquakes. The responses of the controlled bridge are compared with the responses of the corresponding uncontrolled bridge (i.e., the bridge without any control devices). The results of the numerical study show that the sliding mode based semi-active control strategy can substantially reduce the seismic responses of the bridge showing a stable and robust performance for all the earthquakes.

Keywords: bridge, semi active control, sliding mode control, MR damper

Procedia PDF Downloads 106
4633 Application of a Model-Free Artificial Neural Networks Approach for Structural Health Monitoring of the Old Lidingö Bridge

Authors: Ana Neves, John Leander, Ignacio Gonzalez, Raid Karoumi

Abstract:

Systematic monitoring and inspection are needed to assess the present state of a structure and predict its future condition. If an irregularity is noticed, repair actions may take place and the adequate intervention will most probably reduce the future costs with maintenance, minimize downtime and increase safety by avoiding the failure of the structure as a whole or of one of its structural parts. For this to be possible decisions must be made at the right time, which implies using systems that can detect abnormalities in their early stage. In this sense, Structural Health Monitoring (SHM) is seen as an effective tool for improving the safety and reliability of infrastructures. This paper explores the decision-making problem in SHM regarding the maintenance of civil engineering structures. The aim is to assess the present condition of a bridge based exclusively on measurements using the suggested method in this paper, such that action is taken coherently with the information made available by the monitoring system. Artificial Neural Networks are trained and their ability to predict structural behavior is evaluated in the light of a case study where acceleration measurements are acquired from a bridge located in Stockholm, Sweden. This relatively old bridge is presently still in operation despite experiencing obvious problems already reported in previous inspections. The prediction errors provide a measure of the accuracy of the algorithm and are subjected to further investigation, which comprises concepts like clustering analysis and statistical hypothesis testing. These enable to interpret the obtained prediction errors, draw conclusions about the state of the structure and thus support decision making regarding its maintenance.

Keywords: artificial neural networks, clustering analysis, model-free damage detection, statistical hypothesis testing, structural health monitoring

Procedia PDF Downloads 177
4632 3D Numerical Analysis of Stone Columns Reinforced with Horizontal and Vertical Geosynthetic Materials

Authors: R. Ziaie Moayed, A. Khalili

Abstract:

Improvement and reinforcement of soils with poor strength and engineering properties for constructing low height structures or structures such as liquid storage tanks, bridge columns, and heavy structures have necessitated applying particular techniques. Stone columns are among the well-known methods applied in such soils. This method provides an economically justified way for improving engineering properties of soft clay and loose sandy soils. Stone column implementation in these soils increases their bearing capacity and reduces the settlement of foundation build on them. In the present study, the finite difference based FLAC3D software was used to investigate the performance and effect of soil reinforcement through stone columns without lining and those with geosynthetic lining with different levels of stiffness in horizontal and vertical modes in clayey soils. The results showed that soil improvement using stone columns with lining in vertical and horizontal modes results in improvement of bearing capacity and foundation settlement.

Keywords: bearing capacity, FLAC3D, geosynthetic, settlement, stone column

Procedia PDF Downloads 146
4631 Seismic Performance of Isolated Bridge Configurations with Soil Structure Interaction

Authors: Davide Forcellini

Abstract:

The most recent development of earthquake engineering is based on concept of design consisting in prescribed performance rather than the more traditional prescriptive approaches. The paper aims to assess the effects of isolation devices and soil structure interaction on a benchmark bridge adopting a Performance-Based Earthquake Engineering methodology. Several isolated configurations of abutments and pier connections are compared performing the most representative isolation devices. Isolation systems suitability depends on many factors, mainly connected with ground effects. In this regard, the second purpose of this paper is to assess the effects of soil-structure interaction (SSI) on the studied bridge configurations. Contributions of isolation technique and soil structure interaction are assessed evaluating the resistance effects applied to Peak Ground Acceleration (PGA) levels in terms of cost and time repair quantities.

Keywords: base isolation, bridge, earthquake engineering, non linearity, PBEE methodology, seismic assessment, soil structure interaction

Procedia PDF Downloads 395
4630 Early Evaluation of Long-Span Suspension Bridges Using Smartphone Accelerometers

Authors: Ekin Ozer, Maria Q. Feng, Rupa Purasinghe

Abstract:

Structural deterioration of bridge systems possesses an ongoing threat to the transportation networks. Besides, landmark bridges’ integrity and safety are more than sole functionality, since they provide a strong presence for the society and nations. Therefore, an innovative and sustainable method to inspect landmark bridges is essential to ensure their resiliency in the long run. In this paper, a recently introduced concept, smartphone-based modal frequency estimation is addressed, and this paper targets to authenticate the fidelity of smartphone-based vibration measurements gathered from three landmark suspension bridges. Firstly, smartphones located at the bridge mid-span are adopted as portable and standalone vibration measurement devices. Then, their embedded accelerometers are utilized to gather vibration response under operational loads, and eventually frequency domain characteristics are deduced. The preliminary analysis results are compared with the reference publications and high-quality monitoring data to validate the usability of smartphones on long-span landmark suspension bridges. If the technical challenges such as high period of vibration, low amplitude excitation, embedded smartphone sensor features, sampling, and citizen engagement are tackled, smartphones can provide a novel and cost-free crowdsourcing tool for maintenance of these landmark structures. This study presents the early phase findings from three signature structures located in the United States.

Keywords: smart and mobile sensing, structural health monitoring, suspension bridges, vibration analysis

Procedia PDF Downloads 252
4629 Time-Domain Expressions for Bridge Self-Excited Aerodynamic Forces by Modified Particle Swarm Optimizer

Authors: Hao-Su Liu, Jun-Qing Lei

Abstract:

This study introduces the theory of modified particle swarm optimizer and its application in time-domain expressions for bridge self-excited aerodynamic forces. Based on the indicial function expression and the rational function expression in time-domain expression for bridge self-excited aerodynamic forces, the characteristics of the two methods, i.e. the modified particle swarm optimizer and conventional search method, are compared in flutter derivatives’ fitting process. Theoretical analysis and numerical results indicate that adopting whether the indicial function expression or the rational function expression, the fitting flutter derivatives obtained by modified particle swarm optimizer have better goodness of fit with ones obtained from experiment. As to the flutter derivatives which have higher nonlinearity, the self-excited aerodynamic forces, using the flutter derivatives obtained through modified particle swarm optimizer fitting process, are much closer to the ones simulated by the experimental. The modified particle swarm optimizer was used to recognize the parameters of time-domain expressions for flutter derivatives of an actual long-span highway-railway truss bridge with double decks at the wind attack angle of 0°, -3° and +3°. It was found that this method could solve the bounded problems of attenuation coefficient effectively in conventional search method, and had the ability of searching in unboundedly area. Accordingly, this study provides a method for engineering industry to frequently and efficiently obtain the time-domain expressions for bridge self-excited aerodynamic forces.

Keywords: time-domain expressions, bridge self-excited aerodynamic forces, modified particle swarm optimizer, long-span highway-railway truss bridge

Procedia PDF Downloads 289