Search results for: batteries balancing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 622

Search results for: batteries balancing

442 Balancing Act: Political Dynamics of Economic and Climatological Security in the Politics of the Middle East

Authors: Zahra Bakhtiari

Abstract:

Middle East countries confront a multitude of main environmental challenges which are inevitable. The unstable economic and political structure which dominates numerous middle East countries makes it difficult to react effectively to unfavorable climate change impacts. This study applies a qualitative methodology and relies on secondary literature aimed to investigate how countries in the Middle East are balancing economic security and climatic security in terms of budgeting, infrastructure investment, political engagement (domestically through discourses or internationally in terms of participation in international organizations or bargaining, etc.) There has been provided an outline of innovative measures in both economic and environmental fields that are in progress in the Middle East countries and what capacity they have for economic development and environmental adaptation, as well as what has already been performed. The primary outcome is that countries that rely more on infrastructure investment such as negative emissions technologies (NET) through green social capital enterprises and political engagement, especially nationally determined contributions (NDCs) commitments and United Nations Framework Convention on Climate Change (UNFCCC), experience more economic and climatological security balance in the Middle East. Since implementing these measures is not the same in all countries in the region, we see different levels of balance between climate security and economic security. The overall suggestion is that the collaboration of both the bottom-up and top-down approaches helps create strategic environmental strategies which are in line with the economic circumstances of each country and creates the desired balance.

Keywords: climate change, economic growth, sustainability, the Middle East, green economy, renewable energy

Procedia PDF Downloads 48
441 Design and Performance Analysis of Resource Management Algorithms in Response to Emergency and Disaster Situations

Authors: Volkan Uygun, H. Birkan Yilmaz, Tuna Tugcu

Abstract:

This study focuses on the development and use of algorithms that address the issue of resource management in response to emergency and disaster situations. The presented system, named Disaster Management Platform (DMP), takes the data from the data sources of service providers and distributes the incoming requests accordingly both to manage load balancing and minimize service time, which results in improved user satisfaction. Three different resource management algorithms, which give different levels of importance to load balancing and service time, are proposed for the study. The first one is the Minimum Distance algorithm, which assigns the request to the closest resource. The second one is the Minimum Load algorithm, which assigns the request to the resource with the minimum load. Finally, the last one is the Hybrid algorithm, which combines the previous two approaches. The performance of the proposed algorithms is evaluated with respect to waiting time, success ratio, and maximum load ratio. The metrics are monitored from simulations, to find the optimal scheme for different loads. Two different simulations are performed in the study, one is time-based and the other is lambda-based. The results indicate that, the Minimum Load algorithm is generally the best in all metrics whereas the Minimum Distance algorithm is the worst in all cases and in all metrics. The leading position in performance is switched between the Minimum Distance and the Hybrid algorithms, as lambda values change.

Keywords: emergency and disaster response, resource management algorithm, disaster situations, disaster management platform

Procedia PDF Downloads 312
440 Superordinated Control for Increasing Feed-in Capacity and Improving Power Quality in Low Voltage Distribution Grids

Authors: Markus Meyer, Bastian Maucher, Rolf Witzmann

Abstract:

The ever increasing amount of distributed generation in low voltage distribution grids (mainly PV and micro-CHP) can lead to reverse load flows from low to medium/high voltage levels at times of high feed-in. Reverse load flow leads to rising voltages that may even exceed the limits specified in the grid codes. Furthermore, the share of electrical loads connected to low voltage distribution grids via switched power supplies continuously increases. In combination with inverter-based feed-in, this results in high harmonic levels reducing overall power quality. Especially high levels of third-order harmonic currents can lead to neutral conductor overload, which is even more critical if lines with reduced neutral conductor section areas are used. This paper illustrates a possible concept for smart grids in order to increase the feed-in capacity, improve power quality and to ensure safe operation of low voltage distribution grids at all times. The key feature of the concept is a hierarchically structured control strategy that is run on a superordinated controller, which is connected to several distributed grid analyzers and inverters via broad band powerline (BPL). The strategy is devised to ensure both quick response time as well as the technically and economically reasonable use of the available inverters in the grid (PV-inverters, batteries, stepless line voltage regulators). These inverters are provided with standard features for voltage control, e.g. voltage dependent reactive power control. In addition they can receive reactive power set points transmitted by the superordinated controller. To further improve power quality, the inverters are capable of active harmonic filtering, as well as voltage balancing, whereas the latter is primarily done by the stepless line voltage regulators. By additionally connecting the superordinated controller to the control center of the grid operator, supervisory control and data acquisition capabilities for the low voltage distribution grid are enabled, which allows easy monitoring and manual input. Such a low voltage distribution grid can also be used as a virtual power plant.

Keywords: distributed generation, distribution grid, power quality, smart grid, virtual power plant, voltage control

Procedia PDF Downloads 243
439 Hybrid Renewable Energy Systems for Electricity and Hydrogen Production in an Urban Environment

Authors: Same Noel Ngando, Yakub Abdulfatai Olatunji

Abstract:

Renewable energy micro-grids, such as those powered by solar or wind energy, are often intermittent in nature. This means that the amount of energy generated by these systems can vary depending on weather conditions or other factors, which can make it difficult to ensure a steady supply of power. To address this issue, energy storage systems have been developed to increase the reliability of renewable energy micro-grids. Battery systems have been the dominant energy storage technology for renewable energy micro-grids. Batteries can store large amounts of energy in a relatively small and compact package, making them easy to install and maintain in a micro-grid setting. Additionally, batteries can be quickly charged and discharged, allowing them to respond quickly to changes in energy demand. However, the process involved in recycling batteries is quite costly and difficult. An alternative energy storage system that is gaining popularity is hydrogen storage. Hydrogen is a versatile energy carrier that can be produced from renewable energy sources such as solar or wind. It can be stored in large quantities at low cost, making it suitable for long-distance mass storage. Unlike batteries, hydrogen does not degrade over time, so it can be stored for extended periods without the need for frequent maintenance or replacement, allowing it to be used as a backup power source when the micro-grid is not generating enough energy to meet demand. When hydrogen is needed, it can be converted back into electricity through a fuel cell. Energy consumption data is got from a particular residential area in Daegu, South Korea, and the data is processed and analyzed. From the analysis, the total energy demand is calculated, and different hybrid energy system configurations are designed using HOMER Pro (Hybrid Optimization for Multiple Energy Resources) and MATLAB software. A techno-economic and environmental comparison and life cycle assessment (LCA) of the different configurations using battery and hydrogen as storage systems are carried out. The various scenarios included PV-hydrogen-grid system, PV-hydrogen-grid-wind, PV-hydrogen-grid-biomass, PV-hydrogen-wind, PV-hydrogen-biomass, biomass-hydrogen, wind-hydrogen, PV-battery-grid-wind, PV- battery -grid-biomass, PV- battery -wind, PV- battery -biomass, and biomass- battery. From the analysis, the least cost system for the location was the PV-hydrogen-grid system, with a net present cost of about USD 9,529,161. Even though all scenarios were environmentally friendly, taking into account the recycling cost and pollution involved in battery systems, all systems with hydrogen as a storage system produced better results. In conclusion, hydrogen is becoming a very prominent energy storage solution for renewable energy micro-grids. It is easier to store compared with electric power, so it is suitable for long-distance mass storage. Hydrogen storage systems have several advantages over battery systems, including flexibility, long-term stability, and low environmental impact. The cost of hydrogen storage is still relatively high, but it is expected to decrease as more hydrogen production, and storage infrastructure is built. With the growing focus on renewable energy and the need to reduce greenhouse gas emissions, hydrogen is expected to play an increasingly important role in the energy storage landscape.

Keywords: renewable energy systems, microgrid, hydrogen production, energy storage systems

Procedia PDF Downloads 56
438 Li-Ion Batteries vs. Synthetic Natural Gas: A Life Cycle Analysis Study on Sustainable Mobility

Authors: Guido Lorenzi, Massimo Santarelli, Carlos Augusto Santos Silva

Abstract:

The growth of non-dispatchable renewable energy sources in the European electricity generation mix is promoting the research of technically feasible and cost-effective solutions to make use of the excess energy, produced when the demand is low. The increasing intermittent renewable capacity is becoming a challenge to face especially in Europe, where some countries have shares of wind and solar on the total electricity produced in 2015 higher than 20%, with Denmark around 40%. However, other consumption sectors (mainly transportation) are still considerably relying on fossil fuels, with a slow transition to other forms of energy. Among the opportunities for different mobility concepts, electric (EV) and biofuel-powered vehicles (BPV) are the options that currently appear more promising. The EVs are targeting mainly the light duty users because of their zero (Full electric) or reduced (Hybrid) local emissions, while the BPVs encourage the use of alternative resources with the same technologies (thermal engines) used so far. The batteries which are applied to EVs are based on ions of Lithium because of their overall good performance in energy density, safety, cost and temperature performance. Biofuels, instead, can be various and the major difference is in their physical state (liquid or gaseous). In this study gaseous biofuels are considered and, more specifically, Synthetic Natural Gas (SNG) produced through a process of Power-to-Gas consisting in an electrochemical upgrade (with Solid Oxide Electrolyzers) of biogas with CO2 recycling. The latter process combines a first stage of electrolysis, where syngas is produced, and a second stage of methanation in which the product gas is turned into methane and then made available for consumption. A techno-economic comparison between the two alternatives is possible, but it does not capture all the different aspects involved in the two routes for the promotion of a more sustainable mobility. For this reason, a more comprehensive methodology, i.e. Life Cycle Assessment, is adopted to describe the environmental implications of using excess electricity (directly or indirectly) for new vehicle fleets. The functional unit of the study is 1 km and the two options are compared in terms of overall CO2 emissions, both considering Cradle to Gate and Cradle to Grave boundaries. Showing how production and disposal of materials affect the environmental performance of the analyzed routes is useful to broaden the perspective on the impacts that different technologies produce, in addition to what is emitted during the operational life. In particular, this applies to batteries for which the decommissioning phase has a larger impact on the environmental balance compared to electrolyzers. The lower (more than one order of magnitude) energy density of Li-ion batteries compared to SNG implies that for the same amount of energy used, more material resources are needed to obtain the same effect. The comparison is performed in an energy system that simulates the Western European one, in order to assess which of the two solutions is more suitable to lead the de-fossilization of the transport sector with the least resource depletion and the mildest consequences for the ecosystem.

Keywords: electrical energy storage, electric vehicles, power-to-gas, life cycle assessment

Procedia PDF Downloads 145
437 Limits of the Dot Counting Test: A Culturally Responsive Approach to Neuropsychological Evaluations and Treatment

Authors: Erin Curtis, Avraham Schwiger

Abstract:

Neuropsychological testing and evaluation is a crucial step in providing patients with effective diagnoses and treatment while in clinical care. The variety of batteries used in these evaluations can help clinicians better understand the nuanced declivities in a patient’s cognitive, behavioral, or emotional functioning, consequently equipping clinicians with the insights to make intentional choices about a patient’s care. Despite the knowledge these batteries can yield, some aspects of neuropsychological testing remain largely inaccessible to certain patient groups as a result of fundamental cultural, educational, or social differences. One such battery includes the Dot Counting Test (DCT), during which patients are required to count a series of dots on a page as rapidly and accurately as possible. As the battery progresses, the dots appear in clusters that are designed to be easily multiplied. This task evaluates a patient’s cognitive functioning, attention, and level of effort exerted on the evaluation as a whole. However, there is evidence to suggest that certain social groups, particularly Latinx groups, may perform worse on this task as a result of cultural or educational differences, not reduced cognitive functioning or effort. As such, this battery fails to account for baseline differences among patient groups, thus creating questions surrounding the accuracy, generalizability, and value of its results. Accessibility and cultural sensitivity are critical considerations in the testing and treatment of marginalized groups, yet have been largely ignored in the literature and in clinical settings to date. Implications and improvements to applications are discussed.

Keywords: culture, latino, neuropsychological assessment, neuropsychology, accessibility

Procedia PDF Downloads 78
436 Access to the Forest Ecosystem Services: Understanding the Interaction between Livelihood Capitals and Access

Authors: Abu S. M. G. Kibria, Alison M. Behie, Robert Costanza, Colin Groves, Tracy Farrell

Abstract:

This study is aimed to understand the level of access and the influence of livelihood capitals in maintaining access and control of ecosystem services (ESS) in the Sundarbans, Bangladesh. Besides the villagers, we consider other stakeholders including the forest department, coast guard, police, merchants, pirates and villagers who ‘controlled’ or ‘maintained’ access to ESS (crab catching, shrimp fry, honey, shrimp, mixed fish, fuel wood) in this region. Villagers used human, physical, natural and social capitals to gain access to ESS. The highest level of access was observed in crab catching and the lowest was found in honey collection, both of which were done when balancing the costs and benefits of accessing one ESS against another. The outcomes of these ongoing access negotiations were determined by livelihood capitals of the households. In addition, it was often found that the certain variables could have a positive effect on one ESS and a negative effect on another. For instance, human, social and natural capitals (eldest daughter’s education and No. of livelihood group membership and) had significant positive effects on honey collection while two components of human and social capitals including ‘eldest son’s education’ and ‘severity of pirate problem’ had exactly the opposite impact. These complex interactions were also observed in access to other ESS. It thus seems that access to ESS is not anything which is provided, but rather it is achieved by using livelihood capitals. Protecting any ecosystem from over exploitation and improve wellbeing can be achieved by properly balancing the livelihood capital-access nexus.

Keywords: provisioning services, access level, livelihood capital, interaction, access gain

Procedia PDF Downloads 248
435 Challenges in the Characterization of Black Mass in the Recovery of Graphite from Spent Lithium Ion Batteries

Authors: Anna Vanderbruggen, Kai Bachmann, Martin Rudolph, Rodrigo Serna

Abstract:

Recycling of lithium-ion batteries has attracted a lot of attention in recent years and focuses primarily on valuable metals such as cobalt, nickel, and lithium. Despite the growth in graphite consumption and the fact that it is classified as a critical raw material in the European Union, USA, and Australia, there is little work focusing on graphite recycling. Thus, graphite is usually considered waste in recycling treatments, where graphite particles are concentrated in the “black mass”, a fine fraction below 1mm, which also contains the foils and the active cathode particles such as LiCoO2 or LiNiMnCoO2. To characterize the material, various analytical methods are applied, including X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Atomic Absorption Spectrometry (AAS), and SEM-based automated mineralogy. The latter consists of the combination of a scanning electron microscopy (SEM) image analysis and energy-dispersive X-ray spectroscopy (EDS). It is a powerful and well-known method for primary material characterization; however, it has not yet been applied to secondary material such as black mass, which is a challenging material to analyze due to fine alloy particles and to the lack of an existing dedicated database. The aim of this research is to characterize the black mass depending on the metals recycling process in order to understand the liberation mechanisms of the active particles from the foils and their effect on the graphite particle surfaces and to understand their impact on the subsequent graphite flotation. Three industrial processes were taken into account: purely mechanical, pyrolysis-mechanical, and mechanical-hydrometallurgy. In summary, this article explores various and common challenges for graphite and secondary material characterization.

Keywords: automated mineralogy, characterization, graphite, lithium ion battery, recycling

Procedia PDF Downloads 207
434 Distributed Cost-Based Scheduling in Cloud Computing Environment

Authors: Rupali, Anil Kumar Jaiswal

Abstract:

Cloud computing can be defined as one of the prominent technologies that lets a user change, configure and access the services online. it can be said that this is a prototype of computing that helps in saving cost and time of a user practically the use of cloud computing can be found in various fields like education, health, banking etc.  Cloud computing is an internet dependent technology thus it is the major responsibility of Cloud Service Providers(CSPs) to care of data stored by user at data centers. Scheduling in cloud computing environment plays a vital role as to achieve maximum utilization and user satisfaction cloud providers need to schedule resources effectively.  Job scheduling for cloud computing is analyzed in the following work. To complete, recreate the task calculation, and conveyed scheduling methods CloudSim3.0.3 is utilized. This research work discusses the job scheduling for circulated processing condition also by exploring on this issue we find it works with minimum time and less cost. In this work two load balancing techniques have been employed: ‘Throttled stack adjustment policy’ and ‘Active VM load balancing policy’ with two brokerage services ‘Advanced Response Time’ and ‘Reconfigure Dynamically’ to evaluate the VM_Cost, DC_Cost, Response Time, and Data Processing Time. The proposed techniques are compared with Round Robin scheduling policy.

Keywords: physical machines, virtual machines, support for repetition, self-healing, highly scalable programming model

Procedia PDF Downloads 132
433 On the Added Value of Probabilistic Forecasts Applied to the Optimal Scheduling of a PV Power Plant with Batteries in French Guiana

Authors: Rafael Alvarenga, Hubert Herbaux, Laurent Linguet

Abstract:

The uncertainty concerning the power production of intermittent renewable energy is one of the main barriers to the integration of such assets into the power grid. Efforts have thus been made to develop methods to quantify this uncertainty, allowing producers to ensure more reliable and profitable engagements related to their future power delivery. Even though a diversity of probabilistic approaches was proposed in the literature giving promising results, the added value of adopting such methods for scheduling intermittent power plants is still unclear. In this study, the profits obtained by a decision-making model used to optimally schedule an existing PV power plant connected to batteries are compared when the model is fed with deterministic and probabilistic forecasts generated with two of the most recent methods proposed in the literature. Moreover, deterministic forecasts with different accuracy levels were used in the experiments, testing the utility and the capability of probabilistic methods of modeling the progressively increasing uncertainty. Even though probabilistic approaches are unquestionably developed in the recent literature, the results obtained through a study case show that deterministic forecasts still provide the best performance if accurate, ensuring a gain of 14% on final profits compared to the average performance of probabilistic models conditioned to the same forecasts. When the accuracy of deterministic forecasts progressively decreases, probabilistic approaches start to become competitive options until they completely outperform deterministic forecasts when these are very inaccurate, generating 73% more profits in the case considered compared to the deterministic approach.

Keywords: PV power forecasting, uncertainty quantification, optimal scheduling, power systems

Procedia PDF Downloads 44
432 Solar PV System for Automatic Guideway Transit (AGT) System in BPSU Main Campus

Authors: Nelson S. Andres, Robert O. Aguilar, Mar O. Tapia, Meeko C. Masangcap, John Denver Catapang, Greg C. Mallari

Abstract:

This study focuses on exploring the possibility of using solar PV as an alternative for generating electricity to electrify the AGT System installed in BPSU Main Campus instead of using the power grid. The output of this study gives BPSU the option to invest on solar PV system to pro-actively respond to one of UN’s Sustainable Development Goals of having reliable, sustainable and modern energy sources to reduce energy pollution and climate change impact in the long run. Thus, this study covers the technical as well as the financial studies, which BPSU can also be used to outsource funding from different government agencies. For this study, the electrical design and requirements of the on-going DOST AGT system project are carefully considered. In the proposed design, the AGT station has installed with a rechargeable battery system where the energy harnessed by the solar PV panels installed on the rooftop of the station/NCEA building shall be directed to. The solar energy is then directly supplied to the electric double-layer capacitors (EDLC's) batteries and thus transmitted to other types of equipment in need. When the AGT is not in use, the harnessed energy may be used by NCEA building, thus, lessening the energy consumption of the building from the grid. The use of solar PV system with EDLC is compared with the use of an electric grid for the purpose of electrifying the AGT or the NCEA building (when AGT is not in use). This is to figure how much solar energy are accumulated by the solar PV to accommodate the need for coaches’ motors, lighting, air-conditioning units, door sensor, panel display, etc. The proposed PV Solar design, as well as the data regarding the charging and discharging of batteries and the power consumption of all AGT components, are simulated for optimization, analysis and validation through the use of PVSyst software.

Keywords: AGT, Solar PV, railway, EDLC

Procedia PDF Downloads 51
431 Usage of Cyanobacteria in Battery: Saving Money, Enhancing the Storage Capacity, Making Portable, and Supporting the Ecology

Authors: Saddam Husain Dhobi, Bikrant Karki

Abstract:

The main objective of this paper is save money, balance ecosystem of the terrestrial organism, control global warming, and enhancing the storage capacity of the battery with requiring weight and thinness by using Cyanobacteria in the battery. To fulfill this purpose of paper we can use different methods: Analysis, Biological, Chemistry, theoretical and Physics with some engineering design. Using this different method, we can produce the special type of battery that has the long life, high storage capacity, and clean environment, save money so on and by using the byproduct of Cyanobacteria i.e. glucose. Cyanobacteria are a special type of bacteria that produces different types of extracellular glucoses and oxygen with the help of little sunlight, water, and carbon dioxide and can survive in freshwater, marine and in the land as well. In this process, O₂ is more in the comparison to plant due to rapid growth rate of Cyanobacteria. The required materials are easily available in this process to produce glucose with the help of Cyanobacteria. Since CO₂, is greenhouse gas that causes the global warming? We can utilize this gas and save our ecological balance and the byproduct (glucose) C₆H₁₂O₆ can be utilized for raw material for the battery where as O₂ escape is utilized by living organism. The glucose produce by Cyanobateria goes on Krebs's Cycle or Citric Acid Cycle, in which glucose is complete, oxidizes and all the available energy from glucose molecule has been release in the form of electron and proton as energy. If we use a suitable anodes and cathodes, we can capture these electrons and protons to produce require electricity current with the help of byproduct of Cyanobacteria. According to "Virginia Tech Bio-battery" and "Sony" 13 enzymes and the air is used to produce nearly 24 electrons from a single glucose unit. In this output power of 0.8 mW/cm, current density of 6 mA/cm, and energy storage density of 596 Ah/kg. This last figure is impressive, at roughly 10 times the energy density of the lithium-ion batteries in your mobile devices. When we use Cyanobacteria in battery, we are able to reduce Carbon dioxide, Stop global warming, and enhancing the storage capacity of battery more than 10 times that of lithium battery, saving money, balancing ecology. In this way, we can produce energy from the Cyanobacteria and use it in battery for different benefits. In addition, due to the mass, size and easy cultivation, they are better to maintain the size of battery. Hence, we can use Cyanobacteria for the battery having suitable size, enhancing the storing capacity of battery, helping the environment, portability and so on.

Keywords: anode, byproduct, cathode, cyanobacteri, glucose, storage capacity

Procedia PDF Downloads 313
430 A Strategic Sustainability Analysis of Electric Vehicles in EU Today and Towards 2050

Authors: Sven Borén, Henrik Ny

Abstract:

Ambitions within the EU for moving towards sustainable transport include major emission reductions for fossil fuel road vehicles, especially for buses, trucks, and cars. The electric driveline seems to be an attractive solution for such development. This study first applied the Framework for Strategic Sustainable Development to compare sustainability effects of today’s fossil fuel vehicles with electric vehicles that have batteries or hydrogen fuel cells. The study then addressed a scenario were electric vehicles might be in majority in Europe by 2050. The methodology called Strategic Lifecycle Assessment was first used, were each life cycle phase was assessed for violations against sustainability principles. This indicates where further analysis could be done in order to quantify the magnitude of each violation, and later to create alternative strategies and actions that lead towards sustainability. A Life Cycle Assessment of combustion engine cars, plug-in hybrid cars, battery electric cars and hydrogen fuel cell cars was then conducted to compare and quantify environmental impacts. The authors found major violations of sustainability principles like use of fossil fuels, which contribute to the increase of emission related impacts such as climate change, acidification, eutrophication, ozone depletion, and particulate matters. Other violations were found, such as use of scarce materials for batteries and fuel cells, and also for most life cycle phases for all vehicles when using fossil fuel vehicles for mining, production and transport. Still, the studied current battery and hydrogen fuel cell cars have less severe violations than fossil fuel cars. The life cycle assessment revealed that fossil fuel cars have overall considerably higher environmental impacts compared to electric cars as long as the latter are powered by renewable electricity. By 2050, there will likely be even more sustainable alternatives than the studied electric vehicles when the EU electricity mix mainly should stem from renewable sources, batteries should be recycled, fuel cells should be a mature technology for use in vehicles (containing no scarce materials), and electric drivelines should have replaced combustion engines in other sectors. An uncertainty for fuel cells in 2050 is whether the production of hydrogen will have had time to switch to renewable resources. If so, that would contribute even more to a sustainable development. Except for being adopted in the GreenCharge roadmap, the authors suggest that the results can contribute to planning in the upcoming decades for a sustainable increase of EVs in Europe, and potentially serve as an inspiration for other smaller or larger regions. Further studies could map the environmental effects in LCA further, and include other road vehicles to get a more precise perception of how much they could affect sustainable development.

Keywords: strategic, electric vehicles, sustainability, LCA

Procedia PDF Downloads 346
429 Solar Collectors for Northern Countries

Authors: Ilze Pelece, Imants Ziemelis, Henriks Putans

Abstract:

Traditionally the solar energy has been used in southern countries, but it has been used also in northern ones. Most popular kind of use of solar energy in Latvia is solar collector for water heating. Traditionally flat-plate solar collectors are used because of simplicity of manufacturing. However, some peculiarities in use of solar energy in northern countries must be taken into account. In northern countries, there is lower irradiance, but longer day and longer path of the sun during summer. Therefore traditional flat-plate solar collectors are not appropriate enough in northern countries, but new forms must be developed. There are two forms of solar collectors - cylindrical and semi-spherical – proposed in this work. Such collectors can be made both for water or air heating. Theoretical calculations and measurements of energy gain from those two collectors have been done. Results show that daily energy sum received by the semi-spherical collector from the sun at the middle of summer is 1.43 times more than that of the flat one, but for the cylindrical collector, it is 1.74 times more than that of the flat one or equal to that of the tracking to sun flat-plate collector. The resulting difference in energy gain from collector will be not so large because of the difference in heat loses. Heat can be decreased by switching off the water circulation pump when the sun is covered by clouds. For this purpose solar batteries, powered pump can be used instead of complicated and expensive automatics. Even more important than overall energy gain is the fact that semi-spherical and cylindrical collectors work all day (17 hours in the middle of summer at 57 northern latitudes), while flat-plate collector only about 11 hours. Yearly energy sum received by the collector from the sun is 1.5 and 1.9 times larger for the semi-spherical and cylindrical collector respectively as for the flat one. The cylindrical solar collector is easier to manufacture, but semi-spherical one is more aesthetical and durable against the impact of the wind. Although solar collectors for water and air heating are studied in this article, main ideas are applicable also for solar batteries.

Keywords: cylindric, semi-spherical, solar collector, solar energy, water heating

Procedia PDF Downloads 237
428 Electric Vehicle Fleet Operators in the Energy Market - Feasibility and Effects on the Electricity Grid

Authors: Benjamin Blat Belmonte, Stephan Rinderknecht

Abstract:

The transition to electric vehicles (EVs) stands at the forefront of innovative strategies designed to address environmental concerns and reduce fossil fuel dependency. As the number of EVs on the roads increases, so too does the potential for their integration into energy markets. This research dives deep into the transformative possibilities of using electric vehicle fleets, specifically electric bus fleets, not just as consumers but as active participants in the energy market. This paper investigates the feasibility and grid effects of electric vehicle fleet operators in the energy market. Our objective centers around a comprehensive exploration of the sector coupling domain, with an emphasis on the economic potential in both electricity and balancing markets. Methodologically, our approach combines data mining techniques with thorough pre-processing, pulling from a rich repository of electricity and balancing market data. Our findings are grounded in the actual operational realities of the bus fleet operator in Darmstadt, Germany. We employ a Mixed Integer Linear Programming (MILP) approach, with the bulk of the computations being processed on the High-Performance Computing (HPC) platform ‘Lichtenbergcluster’. Our findings underscore the compelling economic potential of EV fleets in the energy market. With electric buses becoming more prevalent, the considerable size of these fleets, paired with their substantial battery capacity, opens up new horizons for energy market participation. Notably, our research reveals that economic viability is not the sole advantage. Participating actively in the energy market also translates into pronounced positive effects on grid stabilization. Essentially, EV fleet operators can serve a dual purpose: facilitating transport while simultaneously playing an instrumental role in enhancing grid reliability and resilience. This research highlights the symbiotic relationship between the growth of EV fleets and the stabilization of the energy grid. Such systems could lead to both commercial and ecological advantages, reinforcing the value of electric bus fleets in the broader landscape of sustainable energy solutions. In conclusion, the electrification of transport offers more than just a means to reduce local greenhouse gas emissions. By positioning electric vehicle fleet operators as active participants in the energy market, there lies a powerful opportunity to drive forward the energy transition. This study serves as a testament to the synergistic potential of EV fleets in bolstering both economic viability and grid stabilization, signaling a promising trajectory for future sector coupling endeavors.

Keywords: electric vehicle fleet, sector coupling, optimization, electricity market, balancing market

Procedia PDF Downloads 41
427 Investigation of Different Electrolyte Salts Effect on ZnO/MWCNT Anode Capacity in LIBs

Authors: Şeyma Dombaycıoğlu, Hilal Köse, Ali Osman Aydın, Hatem Akbulut

Abstract:

Rechargeable lithium ion batteries (LIBs) have been considered as one of the most attractive energy storage choices for laptop computers, electric vehicles and cellular phones owing to their high energy and power density. Compared with conventional carbonaceous materials, transition metal oxides (TMOs) have attracted great interests and stand out among versatile novel anode materials due to their high theoretical specific capacity, wide availability and good safety performance. ZnO, as an anode material for LIBs, has a high theoretical capacity of 978 mAh g-1, much higher than that of the conventional graphite anode (∼370 mAhg-1). However, several major problems such as poor cycleability, resulting from the severe volume expansion and contraction during the alloying-dealloying cycles with Li+ ions and the associated charge transfer process, the pulverization and the agglomeration of individual particles, which drastically reduces the total entrance/exit sites available for Li+ ions still hinder the practical use of ZnO powders as an anode material for LIBs. Therefore, a great deal of effort has been devoted to overcome these problems, and many methods have been developed. In most of these methods, it is claimed that carbon nanotubes (CNTs) will radically improve the performance of batteries, because their unique structure may especially enhance the kinetic properties of the electrodes and result in an extremely high specific charge compared with the theoretical limits of graphitic carbon. Due to outstanding properties of CNTs, MWCNT buckypaper substrate is considered a buffer material to prevent mechanical disintegration of anode material during the battery applications. As the bridge connecting the positive and negative electrodes, the electrolyte plays a critical role affecting the overall electrochemical performance of the cell including rate, capacity, durability and safety. Commercial electrolytes for Li-ion batteries normally consist of certain lithium salts and mixed organic linear and cyclic carbonate solvents. Most commonly, LiPF6 is attributed to its remarkable features including high solubility, good ionic conductivity, high dissociation constant and satisfactory electrochemical stability for commercial fabrication. Besides LiPF6, LiBF4 is well known as a conducting salt for LIBs. LiBF4 shows a better temperature stability in organic carbonate based solutions and less moisture sensitivity compared to LiPF6. In this work, free standing zinc oxide (ZnO) and multiwalled carbon nanotube (MWCNT) nanocomposite materials were prepared by a sol gel technique giving a high capacity anode material for lithium ion batteries. Electrolyte solutions (including 1 m Li+ ion) were prepared with different Li salts in glove box. For this purpose, LiPF6 and LiBF4 salts and also mixed of these salts were solved in EC:DMC solvents (1:1, w/w). CR2016 cells were assembled by using these prepared electrolyte solutions, the ZnO/MWCNT buckypaper nanocomposites as working electrodes, metallic lithium as cathode and polypropylene (PP) as separator. For investigating the effect of different Li salts on the electrochemical performance of ZnO/MWCNT nanocomposite anode material electrochemical tests were performed at room temperature.

Keywords: anode, electrolyte, Li-ion battery, ZnO/MWCNT

Procedia PDF Downloads 207
426 Investigation of the Physicochemistry in Leaching of Blackmass for the Recovery of Metals from Spent Lithium-Ion Battery

Authors: Alexandre Chagnes

Abstract:

Lithium-ion battery is the technology of choice in the development of electric vehicles. This technology is now mature, although there are still many challenges to increase their energy density while ensuring an irreproachable safety of use. For this goal, it is necessary to develop new cathodic materials that can be cycled at higher voltages and electrolytes compatible with these materials. But the challenge does not only concern the production of efficient batteries for the electrochemical storage of energy since lithium-ion battery technology relies on the use of critical and/or strategic value resources. It is, therefore, crucial to include Lithium-ion batteries development in a circular economy approach very early. In particular, optimized recycling and reuse of battery components must both minimize their impact on the environment and limit geopolitical issues related to tensions on the mineral resources necessary for lithium-ion battery production. Although recycling will never replace mining, it reduces resource dependence by ensuring the presence of exploitable resources in the territory, which is particularly important for countries like France, where exploited or exploitable resources are limited. This conference addresses the development of a new hydrometallurgical process combining leaching of cathodic material from spent lithium-ion battery in acidic chloride media and solvent extraction process. Most of recycling processes reported in the literature rely on the sulphate route, and a few studies investigate the potentialities of the chloride route despite many advantages and the possibility to develop new chemistry, which could get easier the metal separation. The leaching mechanisms and the solvent extraction equilibria will be presented in this conference. Based on the comprehension of the physicochemistry of leaching and solvent extraction, the present study will introduce a new hydrometallurgical process for the production of cobalt, nickel, manganese and lithium from spent cathodic materials.

Keywords: lithium-ion battery, recycling, hydrometallurgy, leaching, solvent extraction

Procedia PDF Downloads 43
425 The Proton Flow Battery for Storing Renewable Energy: A Theoretical Model of Electrochemical Hydrogen Storage in an Activated Carbon Electrode

Authors: Sh. Heidari, A. J. Andrews, A. Oberoi

Abstract:

Electrochemical storage of hydrogen in activated carbon electrodes as part of a reversible fuel cell offers a potentially attractive option for storing surplus electrical energy from inherently variable solar and wind energy resources. Such a system – which we have called a proton flow battery – promises to have a roundtrip energy efficiency comparable to lithium ion batteries, while having higher gravimetric and volumetric energy densities. In this paper, a theoretical model is presented of the process of H+ ion (proton) conduction through an acid electrolyte into a highly porous activated carbon electrode where it is neutralised and absorbed on the inner surfaces of pores. A Butler-Volmer type equation relates the rate of adsorption to the potential difference between the activated carbon surface and the electrolyte. This model for the hydrogen storage electrode is then incorporated into a more general computer model based on MATLAB software of the entire electrochemical cell including the oxygen electrode. Hence a theoretical voltage-current curve is generated for given input parameters for a particular activated carbon electrode. It is shown that theoretical VI curves produced by the model can be fitted accurately to experimental data from an actual electrochemical cell with the same characteristics. By obtaining the best-fit values of input parameters, such as the exchange current density and charge transfer coefficient for the hydrogen adsorption reaction, an improved understanding of the adsorption reaction is obtained. This new model will assist in designing improved proton flow batteries for storing solar and wind energy.

Keywords: electrochemical hydrogen storage, proton flow battery, butler-volmer equation, activated carbon

Procedia PDF Downloads 464
424 Advanced Structural Analysis of Energy Storage Materials

Authors: Disha Gupta

Abstract:

The aim of this research is to conduct X-ray and e-beam characterization techniques on lithium-ion battery materials for the improvement of battery performance. The key characterization techniques employed are the synchrotron X-ray Absorption Spectroscopy (XAS) combined with X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to obtain a more holistic approach to understanding material properties. This research effort provides additional battery characterization knowledge that promotes the development of new cathodes, anodes, electrolyte and separator materials for batteries, hence, leading to better and more efficient battery performance. Both ex-situ and in-situ synchrotron experiments were performed on LiFePO₄, one of the most common cathode material, from different commercial sources and their structural analysis, were conducted using Athena/Artemis software. This analysis technique was then further extended to study other cathode materials like LiMnxFe(₁₋ₓ)PO₄ and even some sulphate systems like Li₂Mn(SO₄)₂ and Li₂Co0.5Mn₀.₅ (SO₄)₂. XAS data were collected for Fe and P K-edge for LiFePO4, and Fe, Mn and P-K-edge for LiMnxFe(₁₋ₓ)PO₄ to conduct an exhaustive study of the structure. For the sulphate system, Li₂Mn(SO₄)₂, XAS data was collected at both Mn and S K-edge. Finite Difference Method for Near Edge Structure (FDMNES) simulations were also conducted for various iron, manganese and phosphate model compounds and compared with the experimental XANES data to understand mainly the pre-edge structural information of the absorbing atoms. The Fe K-edge XAS results showed a charge compensation occurring on the Fe atom for all the differently synthesized LiFePO₄ materials as well as the LiMnxFe(₁₋ₓ)PO₄ systems. However, the Mn K-edge showed a difference in results as the Mn concentration changed in the materials. For the sulphate-based system Li₂Mn(SO₄)₂, however, no change in the Mn K-edge was observed, even though electrochemical studies showed Mn redox reactions.

Keywords: li-ion batteries, electrochemistry, X-ray absorption spectroscopy, XRD

Procedia PDF Downloads 115
423 The Proton Flow Battery for Storing Renewable Energy: Hydrogen Storage Capacity of Selected Activated Carbon Electrodes Made from Brown Coal

Authors: Amandeep Singh Oberoi, John Andrews, Alan L. Chaffee, Lachlan Ciddor

Abstract:

Electrochemical storage of hydrogen in activated carbon electrodes as part of a reversible fuel cell offers a potentially attractive option for storing surplus electrical energy from inherently variable solar and wind energy resources. Such a system – which we have called a proton flow battery – promises to have roundtrip energy efficiency comparable to lithium ion batteries, while having higher gravimetric and volumetric energy densities. Activated carbons with high internal surface area, high pore volume, light weight and easy availability have attracted considerable research interest as a solid-state hydrogen storage medium. This paper compares the physical characteristics and hydrogen storage capacities of four activated carbon electrodes made by different methods from brown coal. The fabrication methods for these samples are explained. Their proton conductivity was measured using electrochemical impedance spectroscopy, and their hydrogen storage capacity by galvanostatic charging and discharging in a three-electrode electrolytic cell with 1 mol sulphuric acid as electrolyte. The highest hydrogen storage capacity obtained was 1.29 wt%, which compares favourably with metal hydrides used in commercially available solid-state hydrogen storages. The hydrogen storage capacity of the samples increased monotonically with increasing BET surface area (calculated from CO2 adsorption method). The results point the way towards selecting high-performing electrodes for proton flow batteries that the competitiveness of this energy storage technology.

Keywords: activated carbon, electrochemical hydrogen storage, proton flow battery, proton conductivity

Procedia PDF Downloads 547
422 Fabrication of Silver Nanowire Based Low Temperature Conductive Ink

Authors: Merve Nur Güven Biçer

Abstract:

Conductive inks are used extensively in electronic devices like sensors, batteries, photovoltaic devices, antennae, and organic light-emitting diodes. These inks are typically made from silver. Wearable technology is another industry that requires inks to be flexible. The aim of this study is the fabrication of low-temperature silver paste by synthesis long silver nanowires.

Keywords: silver ink, conductive ink, low temperature conductive ink, silver nanowire

Procedia PDF Downloads 157
421 Study of Chemical State Analysis of Rubidium Compounds in Lα, Lβ₁, Lβ₃,₄ and Lγ₂,₃ X-Ray Emission Lines with Wavelength Dispersive X-Ray Fluorescence Spectrometer

Authors: Harpreet Singh Kainth

Abstract:

Rubidium salts have been commonly used as an electrolyte to improve the efficiency cycle of Li-ion batteries. In recent years, it has been implemented into the large scale for further technological advances to improve the performance rate and better cyclability in the batteries. X-ray absorption spectroscopy (XAS) is a powerful tool for obtaining the information in the electronic structure which involves the chemical state analysis in the active materials used in the batteries. However, this technique is not well suited for the industrial applications because it needs a synchrotron X-ray source and special sample file for in-situ measurements. In contrast to this, conventional wavelength dispersive X-ray fluorescence (WDXRF) spectrometer is nondestructive technique used to study the chemical shift in all transitions (K, L, M, …) and does not require any special pre-preparation planning. In the present work, the fluorescent Lα, Lβ₁ , Lβ₃,₄ and Lγ₂,₃ X-ray spectra of rubidium in different chemical forms (Rb₂CO₃ , RbCl, RbBr, and RbI) have been measured first time with high resolution wavelength dispersive X-ray fluorescence (WDXRF) spectrometer (Model: S8 TIGER, Bruker, Germany), equipped with an Rh anode X-ray tube (4-kW, 60 kV and 170 mA). In ₃₇Rb compounds, the measured energy shifts are in the range (-0.45 to - 1.71) eV for Lα X-ray peak, (0.02 to 0.21) eV for Lβ₁ , (0.04 to 0.21) eV for Lβ₃ , (0.15 to 0.43) eV for Lβ₄ and (0.22 to 0.75) eV for Lγ₂,₃ X-ray emission lines. The chemical shifts in rubidium compounds have been measured by considering Rb₂CO₃ compounds taking as a standard reference. A Voigt function is used to determine the central peak position of all compounds. Both positive and negative shifts have been observed in L shell emission lines. In Lα X-ray emission lines, all compounds show negative shift while in Lβ₁, Lβ₃,₄, and Lγ₂,₃ X-ray emission lines, all compounds show a positive shift. These positive and negative shifts result increase or decrease in X-ray energy shifts. It looks like that ligands attached with central metal atom attract or repel the electrons towards or away from the parent nucleus. This pulling and pushing character of rubidium affects the central peak position of the compounds which causes a chemical shift. To understand the chemical effect more briefly, factors like electro-negativity, line intensity ratio, effective charge and bond length are responsible for the chemical state analysis in rubidium compounds. The effective charge has been calculated from Suchet and Pauling method while the line intensity ratio has been calculated by calculating the area under the relevant emission peak. In the present work, it has been observed that electro-negativity, effective charge and intensity ratio (Lβ₁/Lα, Lβ₃,₄/Lα and Lγ₂,₃/Lα) are inversely proportional to the chemical shift (RbCl > RbBr > RbI), while bond length has been found directly proportional to the chemical shift (RbI > RbBr > RbCl).

Keywords: chemical shift in L emission lines, bond length, electro-negativity, effective charge, intensity ratio, Rubidium compounds, WDXRF spectrometer

Procedia PDF Downloads 476
420 Analysis and Design of Inductive Power Transfer Systems for Automotive Battery Charging Applications

Authors: Wahab Ali Shah, Junjia He

Abstract:

Transferring electrical power without any wiring has been a dream since late 19th century. There were some advances in this area as to know more about microwave systems. However, this subject has recently become very attractive due to their practiScal systems. There are low power applications such as charging the batteries of contactless tooth brushes or implanted devices, and higher power applications such as charging the batteries of electrical automobiles or buses. In the first group of applications operating frequencies are in microwave range while the frequency is lower in high power applications. In the latter, the concept is also called inductive power transfer. The aim of the paper is to have an overview of the inductive power transfer for electrical vehicles with a special concentration on coil design and power converter simulation for static charging. Coil design is very important for an efficient and safe power transfer. Coil design is one of the most critical tasks. Power converters are used in both side of the system. The converter on the primary side is used to generate a high frequency voltage to excite the primary coil. The purpose of the converter in the secondary is to rectify the voltage transferred from the primary to charge the battery. In this paper, an inductive power transfer system is studied. Inductive power transfer is a promising technology with several possible applications. Operation principles of these systems are explained, and components of the system are described. Finally, a single phase 2 kW system was simulated and results were presented. The work presented in this paper is just an introduction to the concept. A reformed compensation network based on traditional inductor-capacitor-inductor (LCL) topology is proposed to realize robust reaction to large coupling variation that is common in dynamic wireless charging application. In the future, this type compensation should be studied. Also, comparison of different compensation topologies should be done for the same power level.

Keywords: coil design, contactless charging, electrical automobiles, inductive power transfer, operating frequency

Procedia PDF Downloads 219
419 Towards an Enhanced Quality of IPTV Media Server Architecture over Software Defined Networking

Authors: Esmeralda Hysenbelliu

Abstract:

The aim of this paper is to present the QoE (Quality of Experience) IPTV SDN-based media streaming server enhanced architecture for configuring, controlling, management and provisioning the improved delivery of IPTV service application with low cost, low bandwidth, and high security. Furthermore, it is given a virtual QoE IPTV SDN-based topology to provide an improved IPTV service based on QoE Control and Management of multimedia services functionalities. Inside OpenFlow SDN Controller there are enabled in high flexibility and efficiency Service Load-Balancing Systems; based on the Loading-Balance module and based on GeoIP Service. This two Load-balancing system improve IPTV end-users Quality of Experience (QoE) with optimal management of resources greatly. Through the key functionalities of OpenFlow SDN controller, this approach produced several important features, opportunities for overcoming the critical QoE metrics for IPTV Service like achieving incredible Fast Zapping time (Channel Switching time) < 0.1 seconds. This approach enabled Easy and Powerful Transcoding system via FFMPEG encoder. It has the ability to customize streaming dimensions bitrates, latency management and maximum transfer rates ensuring delivering of IPTV streaming services (Audio and Video) in high flexibility, low bandwidth and required performance. This QoE IPTV SDN-based media streaming architecture unlike other architectures provides the possibility of Channel Exchanging between several IPTV service providers all over the word. This new functionality brings many benefits as increasing the number of TV channels received by end –users with low cost, decreasing stream failure time (Channel Failure time < 0.1 seconds) and improving the quality of streaming services.

Keywords: improved quality of experience (QoE), OpenFlow SDN controller, IPTV service application, softwarization

Procedia PDF Downloads 118
418 Quality of Service Based Routing Algorithm for Real Time Applications in MANETs Using Ant Colony and Fuzzy Logic

Authors: Farahnaz Karami

Abstract:

Routing is an important, challenging task in mobile ad hoc networks due to node mobility, lack of central control, unstable links, and limited resources. An ant colony has been found to be an attractive technique for routing in Mobile Ad Hoc Networks (MANETs). However, existing swarm intelligence based routing protocols find an optimal path by considering only one or two route selection metrics without considering correlations among such parameters making them unsuitable lonely for routing real time applications. Fuzzy logic combines multiple route selection parameters containing uncertain information or imprecise data in nature, but does not have multipath routing property naturally in order to provide load balancing. The objective of this paper is to design a routing algorithm using fuzzy logic and ant colony that can solve some of routing problems in mobile ad hoc networks, such as nodes energy consumption optimization to increase network lifetime, link failures rate reduction to increase packet delivery reliability and providing load balancing to optimize available bandwidth. In proposed algorithm, the path information will be given to fuzzy inference system by ants. Based on the available path information and considering the parameters required for quality of service (QoS), the fuzzy cost of each path is calculated and the optimal paths will be selected. NS2.35 simulation tools are used for simulation and the results are compared and evaluated with the newest QoS based algorithms in MANETs according to packet delivery ratio, end-to-end delay and routing overhead ratio criterions. The simulation results show significant improvement in the performance of these networks in terms of decreasing end-to-end delay, and routing overhead ratio, and also increasing packet delivery ratio.

Keywords: mobile ad hoc networks, routing, quality of service, ant colony, fuzzy logic

Procedia PDF Downloads 30
417 Balancing a Rotary Inverted Pendulum System Using Robust Generalized Dynamic Inverse: Design and Experiment

Authors: Ibrahim M. Mehedi, Uzair Ansari, Ubaid M. Al-Saggaf, Abdulrahman H. Bajodah

Abstract:

This paper presents a methodology for balancing a rotary inverted pendulum system using Robust Generalized Dynamic Inversion (RGDI) under influence of parametric variations and external disturbances. In GDI control, dynamic constraints are formulated in the form of asymptotically stable differential equation which encapsulates the control objectives. The constraint differential equations are based on the deviation function of the angular position and its rates from their reference values. The constraint dynamics are inverted using Moore-Penrose Generalized Inverse (MPGI) to realize the control expression. The GDI singularity problem is addressed by augmenting a dynamic scale factor in the interpretation of MPGI which guarantee asymptotically stable position tracking. An additional term based on Sliding Mode Control is appended within GDI control to make it robust against parametric variations, disturbances and tracking performance deterioration due to generalized inversion scaling. The stability of the closed loop system is ensured by using positive definite Lyapunov energy function that guarantees semi-global practically stable position tracking. Numerical simulations are conducted on the dynamic model of rotary inverted pendulum system to analyze the efficiency of proposed RGDI control law. The comparative study is also presented, in which the performance of RGDI control is compared with Linear Quadratic Regulator (LQR) and is verified through experiments. Numerical simulations and real-time experiments demonstrate better tracking performance abilities and robustness features of RGDI control in the presence of parametric uncertainties and disturbances.

Keywords: generalized dynamic inversion, lyapunov stability, rotary inverted pendulum system, sliding mode control

Procedia PDF Downloads 146
416 Tailoring and Characterization of Lithium Manganese Ferrite- Polypyrrole Nanocomposite (LixMnxFe₂O₄-PPY) to Evaluate Their Performance as an Energy Storage Device

Authors: Muhammad Waheed Mushtaq, Shahid bashir, Atta Ur Rehman

Abstract:

In the past decade, the growing demand for capital and the increased utilization of supercapacitors reflect advancements in energy-producing systems and energy storage devices. Metal oxides and ferrites have emerged as promising candidates for supercapacitors and batteries. In our current study, we synthesized Lithium manganese nanoferrite, denoted as LixMnxFe₂O₄, using the hydrothermal technique. Subsequently, we treated it with sodium dodecyl benzene sulphonate (SDBS) surfactant to create nanocomposites of Lithium manganese nano ferrite (LMFe) with poly pyrrole (LixMnxFe₂O₄-PPY). We employed Powder X-ray diffraction (XRD) to confirm the crystalline nature and spinel phase structure of LMFe nanoparticles, which exhibited a single-phase crystal structure, indicating sample purity. To assess the surface topography, morphology, and grain size of both synthesized LixMnxFe₂O₄ and LixMnxFe₂O₄-PPY, we used atomic force microscopy and scanning electron microscopy (SEM). The average particle size of pure ferrite was found to be 54 nm, while that of its nanocomposite was 71 nm. Energy dispersive X-ray (EDX) analysis confirmed the presence of all required elements, including Li, Mn, Fe, and O, in the appropriate proportions. Saturation magnetization (32.69 emu), remanence (Mr), and coercive force (Hc) were measured using a Vibrating Sample Magnetometer (VSM). To assess the electrochemical performance of the material, we conducted Cyclic Voltammetry (CV) measurements for both pure LMFe and LMFe-PPY. The CV results for LMFe-PPY demonstrated that specific capacitance decreased with increasing scan rate while the area of the current-voltage loop increased. These findings are promising for the development of supercapacitors and lithium-ion batteries (LIBs).

Keywords: lithium manganese ferrite, poly pyrrole, nanocomposites, cyclic voltammetry, cathode

Procedia PDF Downloads 37
415 Coils and Antennas Fabricated with Sewing Litz Wire for Wireless Power Transfer

Authors: Hikari Ryu, Yuki Fukuda, Kento Oishi, Chiharu Igarashi, Shogo Kiryu

Abstract:

Recently, wireless power transfer has been developed in various fields. Magnetic coupling is popular for feeding power at a relatively short distance and at a lower frequency. Electro-magnetic wave coupling at a high frequency is used for long-distance power transfer. The wireless power transfer has attracted attention in e-textile fields. Rigid batteries are required for many body-worn electric systems at the present time. The technology enables such batteries to be removed from the systems. Flexible coils have been studied for such applications. Coils with a high Q factor are required in the magnetic-coupling power transfer. Antennas with low return loss are needed for the electro-magnetic coupling. Litz wire is so flexible to fabricate coils and antennas sewn on fabric and has low resistivity. In this study, the electric characteristics of some coils and antennas fabricated with the Litz wire by using two sewing techniques are investigated. As examples, a coil and an antenna are described. Both were fabricated with 330/0.04 mm Litz wire. The coil was a planar coil with a square shape. The outer side was 150 mm, the number of turns was 15, and the pitch interval between each turn was 5 mm. The Litz wire of the coil was overstitched with a sewing machine. The coil was fabricated as a receiver coil for a magnetic coupled wireless power transfer. The Q factor was 200 at a frequency of 800 kHz. A wireless power system was constructed by using the coil. A power oscillator was used in the system. The resonant frequency of the circuit was set to 123 kHz, where the switching loss of power FETs was small. The power efficiencies were 0.44 – 0.99, depending on the distance between the transmitter and receiver coils. As an example of an antenna with a sewing technique, a fractal pattern antenna was stitched on a 500 mm x 500 mm fabric by using a needle punch method. The pattern was the 2nd-oder Vicsec fractal. The return loss of the antenna was -28 dB at a frequency of 144 MHz.

Keywords: e-textile, flexible coils and antennas, Litz wire, wireless power transfer

Procedia PDF Downloads 98
414 Optimization of Titanium Leaching Process Using Experimental Design

Authors: Arash Rafiei, Carroll Moore

Abstract:

Leaching process as the first stage of hydrometallurgy is a multidisciplinary system including material properties, chemistry, reactor design, mechanics and fluid dynamics. Therefore, doing leaching system optimization by pure scientific methods need lots of times and expenses. In this work, a mixture of two titanium ores and one titanium slag are used for extracting titanium for leaching stage of TiO2 pigment production procedure. Optimum titanium extraction can be obtained from following strategies: i) Maximizing titanium extraction without selective digestion; and ii) Optimizing selective titanium extraction by balancing between maximum titanium extraction and minimum impurity digestion. The main difference between two strategies is due to process optimization framework. For the first strategy, the most important stage of production process is concerned as the main stage and rest of stages would be adopted with respect to the main stage. The second strategy optimizes performance of more than one stage at once. The second strategy has more technical complexity compared to the first one but it brings more economical and technical advantages for the leaching system. Obviously, each strategy has its own optimum operational zone that is not as same as the other one and the best operational zone is chosen due to complexity, economical and practical aspects of the leaching system. Experimental design has been carried out by using Taguchi method. The most important advantages of this methodology are involving different technical aspects of leaching process; minimizing the number of needed experiments as well as time and expense; and concerning the role of parameter interactions due to principles of multifactor-at-time optimization. Leaching tests have been done at batch scale on lab with appropriate control on temperature. The leaching tank geometry has been concerned as an important factor to provide comparable agitation conditions. Data analysis has been done by using reactor design and mass balancing principles. Finally, optimum zone for operational parameters are determined for each leaching strategy and discussed due to their economical and practical aspects.

Keywords: titanium leaching, optimization, experimental design, performance analysis

Procedia PDF Downloads 340
413 Defining New Limits in Hybrid Perovskites: Single-Crystal Solar Cells with Exceptional Electron Diffusion Length Reaching Half Millimeters

Authors: Bekir Turedi

Abstract:

Exploiting the potential of perovskite single-crystal solar cells in optoelectronic applications necessitates overcoming a significant challenge: the low charge collection efficiency at increased thickness, which has restricted their deployment in radiation detectors and nuclear batteries. Our research details a promising approach to this problem, wherein we have successfully fabricated single-crystal MAPbI3 solar cells employing a space-limited inverse temperature crystallization (ITC) methodology. Remarkably, these cells, up to 400-fold thicker than current-generation perovskite polycrystalline films, maintain a high charge collection efficiency even without external bias. The crux of this achievement lies in the long electron diffusion length within these cells, estimated to be around 0.45 mm. This extended diffusion length ensures the conservation of high charge collection and power conversion efficiencies, even as the thickness of the cells increases. Fabricated cells at 110, 214, and 290 µm thickness manifested power conversion efficiencies (PCEs) of 20.0, 18.4, and 14.7% respectively. The single crystals demonstrated nearly optimal charge collection, even when their thickness exceeded 200 µm. Devices of thickness 108, 214, and 290 µm maintained 98.6, 94.3, and 80.4% of charge collection efficiency relative to their maximum theoretical short-circuit current value, respectively. Additionally, we have proposed an innovative, self-consistent technique for ascertaining the electron-diffusion length in perovskite single crystals under operational conditions. The computed electron-diffusion length approximated 446 µm, significantly surpassing previously reported values for this material. In conclusion, our findings underscore the feasibility of fabricating halide perovskite single-crystal solar cells of hundreds of micrometers in thickness while preserving high charge extraction efficiency and PCE. This advancement paves the way for developing perovskite-based optoelectronics necessitating thicker active layers, such as X-ray detectors and nuclear batteries.

Keywords: perovskite, solar cell, single crystal, diffusion length

Procedia PDF Downloads 21