Search results for: arrays arrangement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 681

Search results for: arrays arrangement

651 Advanced Magnetic Field Mapping Utilizing Vertically Integrated Deployment Platforms

Authors: John E. Foley, Martin Miele, Raul Fonda, Jon Jacobson

Abstract:

This paper presents development and implementation of new and innovative data collection and analysis methodologies based on deployment of total field magnetometer arrays. Our research has focused on the development of a vertically-integrated suite of platforms all utilizing common data acquisition, data processing and analysis tools. These survey platforms include low-altitude helicopters and ground-based vehicles, including robots, for terrestrial mapping applications. For marine settings the sensor arrays are deployed from either a hydrodynamic bottom-following wing towed from a surface vessel or from a towed floating platform for shallow-water settings. Additionally, sensor arrays are deployed from tethered remotely operated vehicles (ROVs) for underwater settings where high maneuverability is required. While the primary application of these systems is the detection and mapping of unexploded ordnance (UXO), these system are also used for various infrastructure mapping and geologic investigations. For each application, success is driven by the integration of magnetometer arrays, accurate geo-positioning, system noise mitigation, and stable deployment of the system in appropriate proximity of expected targets or features. Each of the systems collects geo-registered data compatible with a web-enabled data management system providing immediate access of data and meta-data for remote processing, analysis and delivery of results. This approach allows highly sophisticated magnetic processing methods, including classification based on dipole modeling and remanent magnetization, to be efficiently applied to many projects. This paper also briefly describes the initial development of magnetometer-based detection systems deployed from low-altitude helicopter platforms and the subsequent successful transition of this technology to the marine environment. Additionally, we present examples from a range of terrestrial and marine settings as well as ongoing research efforts related to sensor miniaturization for unmanned aerial vehicle (UAV) magnetic field mapping applications.

Keywords: dipole modeling, magnetometer mapping systems, sub-surface infrastructure mapping, unexploded ordnance detection

Procedia PDF Downloads 439
650 Numerical Solutions of Fredholm Integral Equations by B-Spline Wavelet Method

Authors: Ritu Rani

Abstract:

In this paper, we apply minimalistically upheld linear semi-orthogonal B-spline wavelets, exceptionally developed for the limited interim to rough the obscure function present in the integral equations. Semi-orthogonal wavelets utilizing B-spline uniquely developed for the limited interim and these wavelets can be spoken to in a shut frame. This gives a minimized help. Semi-orthogonal wavelets frame the premise in the space L²(R). Utilizing this premise, an arbitrary function in L²(R) can be communicated as the wavelet arrangement. For the limited interim, the wavelet arrangement cannot be totally introduced by utilizing this premise. This is on the grounds that backings of some premise are truncated at the left or right end purposes of the interim. Subsequently, an uncommon premise must be brought into the wavelet development on the limited interim. These functions are alluded to as the limit scaling functions and limit wavelet functions. B-spline wavelet method has been connected to fathom linear and nonlinear integral equations and their systems. The above method diminishes the integral equations to systems of algebraic equations and afterward these systems can be illuminated by any standard numerical methods. Here, we have connected Newton's method with suitable starting speculation for solving these systems.

Keywords: semi-orthogonal, wavelet arrangement, integral equations, wavelet development

Procedia PDF Downloads 147
649 Green Synthesized Palladium Loaded Titanium Nanotube Arrays for Simultaneous Azo-Dye Degradation and Hydrogen Production

Authors: Yen-Ping Peng, Ku-Fan Chen, Ken-Lin Chang, Jian Sun

Abstract:

In this study, palladium loaded titanium dioxide nanotube arrays (Pd/TNAs) was successfully synthesized by anodic oxidation etching method combined with microwave hydrothermal method, using tea or coffee as a green reductant. Pd/TNAs was employed as an electrode in a photoelectrochemcial (PEC) system to simultaneously remove azo-dye and to generate hydrogen in the anodic and cathodic chamber, respectively. The chemical and physical properties of as-synthesized Pd/TNAs were characterized by scanning electron microscopy (SEM), ultraviolet–visible spectroscopy (UV-vis), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). SEM image indicates the diameter and the length of Pd/TNAs were approximately 300 nm and 2.5 μm, respectively. XPS analyses indicate that 1.13% (atomic %) of Pd was loaded onto the surface of TNAs. UV-vis results show that the band gap of TNAs was reduced from 3.2 eV to 2.37 eV after Pd loading. In addition, the electrochemical performances of Pd/TNAs were investigated by photocurrent density test and electrochemical impedance spectroscopy (EIS). The photocurrent (4.0 mA/cm²) of Pd /TNAs was higher than that of the uncoated TNAs (1.4 mA/cm²) at a bias potential of 1 V (vs. Ag/AgCl), indicating that Pd/TNAs-C can effectively separate photogenerated electrons and holes. The mechanism of our PEC system was proposed and discussed in detail in this study.

Keywords: Pd/TNAs, photoelectrochemical, azo-dye degradation, hydrogen generation

Procedia PDF Downloads 399
648 Reinforcement Effect on Dynamic Properties of Saturated Sand

Authors: R. Ziaie Moayed, M. Alibolandi

Abstract:

Dynamic behavior of soil are evaluated relative to a number of factors including: strain level, density, number of cycles, material type, fine content, geosynthetic inclusion, saturation, and effective stress. This paper investigate the dynamic behavior of saturated reinforced sand under cyclic stress condition. The cyclic triaxial tests are conducted on remolded specimens under various CSR which reinforced by different arrangement of non-woven geotextile. Aforementioned tests simulate field reinforced saturated deposits during earthquake or other cyclic loadings. This analysis revealed that the geotextile arrangement played dominant role on dynamic soil behavior and as geotextile close to top of specimen, the liquefaction resistance increased.

Keywords: dynamic behavior, reinforced sand, triaxial test, non-woven geotextile

Procedia PDF Downloads 208
647 Hardware Implementation for the Contact Force Reconstruction in Tactile Sensor Arrays

Authors: María-Luisa Pinto-Salamanca, Wilson-Javier Pérez-Holguín

Abstract:

Reconstruction of contact forces is a fundamental technique for analyzing the properties of a touched object and is essential for regulating the grip force in slip control loops. This is based on the processing of the distribution, intensity, and direction of the forces during the capture of the sensors. Currently, efficient hardware alternatives have been used more frequently in different fields of application, allowing the implementation of computationally complex algorithms, as is the case with tactile signal processing. The use of hardware for smart tactile sensing systems is a research area that promises to improve the processing time and portability requirements of applications such as artificial skin and robotics, among others. The literature review shows that hardware implementations are present today in almost all stages of smart tactile detection systems except in the force reconstruction process, a stage in which they have been less applied. This work presents a hardware implementation of a model-driven reported in the literature for the contact force reconstruction of flat and rigid tactile sensor arrays from normal stress data. From the analysis of a software implementation of such a model, this implementation proposes the parallelization of tasks that facilitate the execution of matrix operations and a two-dimensional optimization function to obtain a vector force by each taxel in the array. This work seeks to take advantage of the parallel hardware characteristics of Field Programmable Gate Arrays, FPGAs, and the possibility of applying appropriate techniques for algorithms parallelization using as a guide the rules of generalization, efficiency, and scalability in the tactile decoding process and considering the low latency, low power consumption, and real-time execution as the main parameters of design. The results show a maximum estimation error of 32% in the tangential forces and 22% in the normal forces with respect to the simulation by the Finite Element Modeling (FEM) technique of Hertzian and non-Hertzian contact events, over sensor arrays of 10×10 taxels of different sizes. The hardware implementation was carried out on an MPSoC XCZU9EG-2FFVB1156 platform of Xilinx® that allows the reconstruction of force vectors following a scalable approach, from the information captured by means of tactile sensor arrays composed of up to 48 × 48 taxels that use various transduction technologies. The proposed implementation demonstrates a reduction in estimation time of x / 180 compared to software implementations. Despite the relatively high values of the estimation errors, the information provided by this implementation on the tangential and normal tractions and the triaxial reconstruction of forces allows to adequately reconstruct the tactile properties of the touched object, which are similar to those obtained in the software implementation and in the two FEM simulations taken as reference. Although errors could be reduced, the proposed implementation is useful for decoding contact forces for portable tactile sensing systems, thus helping to expand electronic skin applications in robotic and biomedical contexts.

Keywords: contact forces reconstruction, forces estimation, tactile sensor array, hardware implementation

Procedia PDF Downloads 153
646 Numerical Study of Heat Release of the Symmetrically Arranged Extruded-Type Heat Sinks

Authors: Man Young Kim, Gyo Woo Lee

Abstract:

In this numerical study, we want to present the design of highly efficient extruded-type heat sink. The symmetrically arranged extruded-type heat sinks are used instead of a single extruded or swaged-type heat sink. In this parametric study, the maximum temperatures, the base temperatures between heaters, and the heat release rates were investigated with respect to the arrangements of heat sources, air flow rates, and amounts of heat input. Based on the results we believe that the use of both side of heat sink is to be much better for release the heat than the use of single side. Also from the results, it is believed that the symmetric arrangement of heat sources is recommended to achieve a higher heat transfer from the heat sink.

Keywords: heat sink, forced convection, heat transfer, performance evaluation, symmetrical arrangement

Procedia PDF Downloads 375
645 Numerical Simulation of Turbulent Flow around Two Cam Shaped Cylinders in Tandem Arrangement

Authors: Arash Mir Abdolah Lavasani, M. Ebrahimisabet

Abstract:

In this paper, the 2-D unsteady viscous flow around two cam shaped cylinders in tandem arrangement is numerically simulated in order to study the characteristics of the flow in turbulent regimes. The investigation covers the effects of high subcritical and supercritical Reynolds numbers and L/D ratio on total drag coefficient. The equivalent diameter of cylinders is 27.6 mm The space between center to center of two cam shaped cylinders is define as longitudinal pitch ratio and it varies in range of 1.5 < L/D < 6. Reynolds number base on equivalent circular cylinder varies in range of 27×103 < Re < 166×103 Results show that drag coefficient of both cylinders depends on pitch ratio. However drag coefficient of downstream cylinder is more dependent on the pitch ratio.

Keywords: cam shaped, tandem, numerical, drag coefficient, turbulent

Procedia PDF Downloads 440
644 Investigating the Effect of Groundwater Level on Nailing Arrangement in Excavation Stability

Authors: G. Khamooshian, A. Abbasimoshaei

Abstract:

Different methods are used to stabilize the sticks, among which the method of knitting is commonly used. In recent years, the use of nailing for the stability of excavation has been considered much, which is providing sufficient stability and controlling the structural defects of the guardian, also reduces the cost of the operation. In addition, this method is more prominent in deep excavations than other methods. The purpose of this paper is to investigate the effect of groundwater level and soil type on the length and designing of nails. In this paper, analysis and modeling for vertical arena with constant depth and different levels of groundwater have been done. Also, by changing the soil resistance parameters and design of the nails, an optimum arrangement was made and the effect of changes in groundwater level and soil's type on the design of the nails, the maximum axial force mobilized in the nails and the confidence coefficient for the stability of the groove was examined.

Keywords: excavation, soil effects, nailing, hole analyzing

Procedia PDF Downloads 156
643 The Factors for Developing Trainers in Auto Parts Manufacturing Factories at Amata Nakon Industrial Estate in Cholburi Province

Authors: Weerakarj Dokchan

Abstract:

The purposes of this research are to find out the factors for developing trainers in the auto part manufacturing factories (AMF) in Amata Nakon Industrial Estate Cholburi. Population in this study included 148 operators to complete the questionnaires and 10 trainers to provide the information on the interview. The research statistics consisted of percentage, mean, standard deviation and step-wise multiple linear regression analysis.The analysis of the training model revealed that: The research result showed that the development factors of trainers in AMF consisted of 3 main factors and 8 sub-factors: 1) knowledge competency consisting of 4 sub-factors; arrangement of critical thinking, organizational loyalty, working experience of the trainers, analysis of behavior, and work and organization loyalty which could predict the success of the trainers at 55.60%. 2) Skill competency consisted of 4 sub-factors, arrangement of critical thinking, organizational loyalty and analysis of behavior and work and the development of emotional quotient. These 4 sub-factors could predict the success of the trainers in skill aspect 55.90%. 3) The attitude competency consisted of 4 sub-factors, arrangement of critical thinking, intention of trainee computer competency and teaching psychology. In conclusion, these 4 sub-factors could predict the success of the trainers in attitude aspect 58.50%.

Keywords: the development factors, trainers development, trainer competencies, auto part manufacturing factory (AMF), AmataNakon Industrial Estate Cholburi

Procedia PDF Downloads 276
642 Strengthening Legal Protection of Personal Data through Technical Protection Regulation in Line with Human Rights

Authors: Tomy Prihananto, Damar Apri Sudarmadi

Abstract:

Indonesia recognizes the right to privacy as a human right. Indonesia provides legal protection against data management activities because the protection of personal data is a part of human rights. This paper aims to describe the arrangement of data management and data management in Indonesia. This paper is a descriptive research with qualitative approach and collecting data from literature study. Results of this paper are comprehensive arrangement of data that have been set up as a technical requirement of data protection by encryption methods. Arrangements on encryption and protection of personal data are mutually reinforcing arrangements in the protection of personal data. Indonesia has two important and immediately enacted laws that provide protection for the privacy of information that is part of human rights.

Keywords: Indonesia, protection, personal data, privacy, human rights, encryption

Procedia PDF Downloads 152
641 Lattice Boltzmann Simulation of Fluid Flow and Heat Transfer Through Porous Media by Means of Pore-Scale Approach: Effect of Obstacles Size and Arrangement on Tortuosity and Heat Transfer for a Porosity Degree

Authors: Annunziata D’Orazio, Arash Karimipour, Iman Moradi

Abstract:

The size and arrangement of the obstacles in the porous media has an influential effect on the fluid flow and heat transfer, even in the same porosity. Regarding to this, in the present study, several different amounts of obstacles, in both regular and stagger arrangements, in the analogous porosity have been simulated through a channel. In order to compare the effect of stagger and regular arrangements, as well as different quantity of obstacles in the same porosity, on fluid flow and heat transfer. In the present study, the Single Relaxation Time Lattice Boltzmann Method, with Bhatnagar-Gross-Ktook (BGK) approximation and D2Q9 model, is implemented for the numerical simulation. Also, the temperature field is modeled through a Double Distribution Function (DDF) approach. Results are presented in terms of velocity and temperature fields, streamlines, percentage of pressure drop and Nusselt number of the obstacles walls. Also, the correlation between tortuosity and Nusselt number of the obstacles walls, for both regular and staggered arrangements, has been proposed. On the other hand, the results illustrated that by increasing the amount of obstacles, as well as changing their arrangement from regular to staggered, in the same porosity, the rate of tortuosity and Nusselt number of the obstacles walls increased.

Keywords: lattice boltzmann method, heat transfer, porous media, pore-scale, porosity, tortuosity

Procedia PDF Downloads 52
640 Field-Programmable Gate Arrays Based High-Efficiency Oriented Fast and Rotated Binary Robust Independent Elementary Feature Extraction Method Using Feature Zone Strategy

Authors: Huang Bai-Cheng

Abstract:

When deploying the Oriented Fast and Rotated Binary Robust Independent Elementary Feature (BRIEF) (ORB) extraction algorithm on field-programmable gate arrays (FPGA), the access of global storage for 31×31 pixel patches of the features has become the bottleneck of the system efficiency. Therefore, a feature zone strategy has been proposed. Zones are searched as features are detected. Pixels around the feature zones are extracted from global memory and distributed into patches corresponding to feature coordinates. The proposed FPGA structure is targeted on a Xilinx FPGA development board of Zynq UltraScale+ series, and multiple datasets are tested. Compared with the streaming pixel patch extraction method, the proposed architecture obtains at least two times acceleration consuming extra 3.82% Flip-Flops (FFs) and 7.78% Look-Up Tables (LUTs). Compared with the non-streaming one, the proposed architecture saves 22.3% LUT and 1.82% FF, causing a latency of only 0.2ms and a drop in frame rate for 1. Compared with the related works, the proposed strategy and hardware architecture have the superiority of keeping a balance between FPGA resources and performance.

Keywords: feature extraction, real-time, ORB, FPGA implementation

Procedia PDF Downloads 90
639 The Effect of the Structural Arrangement of Binary Bisamide Organogelators on their Self-Assembly Behavior

Authors: Elmira Ghanbari, Jan Van Esch, Stephen J. Picken, Sahil Aggarwal

Abstract:

Low-molecular-weight organogelators form gels by self-assembly into the crystalline network which immobilizes the organic solvent. For single bisamide organogelator systems, the effect of the molecular structure on the molecular interaction and their self-assembly behavior has been explored. The spatial arrangement of bisamide molecules in the gel-state is driven by a combination of hydrogen bonding and Van der Waals interactions. The hydrogen-bonding pattern between the amide groups of bisamide molecules is regulated by the number of methylene spacers; the even number of methylene spacers between two amide groups, in even-spaced bisamides, leads to the antiparallel position of amide groups within a molecule. An even-spaced bisamide molecule with antiparallel amide groups can make two pairs of hydrogen bonding with the molecules on the same plane. The odd-spaced bisamide with a parallel directionality of amide groups can form four independent hydrogen bonds with four other bisamide molecules on different planes. The arrangement of bisamide molecules in the crystalline state and the interaction of these molecules depends on the molecular structure, particularly the parity of the spacer length between the amide groups in the bisamide molecule. In this study, the directionality of amide groups has been exploited as a structural characteristic to affect the arrangement of molecules in the crystalline state and produce different binary bisamide gelators with different degrees of crystallinities. Single odd- and even-spaced single bisamides were synthesized and blended to produce binary bisamide organogelators to be characterized in order to understand the effect of the different directionality of amide groups on the molecular interaction in the crystalline state. The pattern of molecular interactions between these blended molecules, mixing or phase separation, has been monitored via differential scanning calorimetry (DSC) and crystallography techniques; X-ray powder diffraction (XRD) and Small-angle X-ray scattering (SAXS). The formation of lamellar structures for odd- and even-spaced bisamide gelators was confirmed by using SAXS and XRD techniques. DSC results have shown that binary bisamide organogelators with different parity of methylene spacers (odd-even binary blends) have a higher tendency for phase separation compared to the binary bisamides with the same parity (odd-odd or even-even binary blends). Phase separation in binary odd-even bisamides was confirmed by the presence of individual (100) reflections of odd and even lamellar structures. The structural characteristic of bisamide organogelators, the parity of spacer length in binary systems, is a promising tool to control the arrangement of molecules and their crystalline structure.

Keywords: binary bisamide organogelators, crystalline structure, phase separation, self-assembly behavior

Procedia PDF Downloads 160
638 The Effect of Fibre Orientation on the Mechanical Behaviour of Skeletal Muscle: A Finite Element Study

Authors: Christobel Gondwe, Yongtao Lu, Claudia Mazzà, Xinshan Li

Abstract:

Skeletal muscle plays an important role in the human body system and function by generating voluntary forces and facilitating body motion. However, The mechanical properties and behaviour of skeletal muscle are still not comprehensively known yet. As such, various robust engineering techniques have been applied to better elucidate the mechanical behaviour of skeletal muscle. It is considered that muscle mechanics are highly governed by the architecture of the fibre orientations. Therefore, the aim of this study was to investigate the effect of different fibre orientations on the mechanical behaviour of skeletal muscle.In this study, a continuum mechanics approach–finite element (FE) analysis was applied to the left bicep femoris long head to determine the contractile mechanism of the muscle using Hill’s three-element model. The geometry of the muscle was segmented from the magnetic resonance images. The muscle was modelled as a quasi-incompressible hyperelastic (Mooney-Rivlin) material. Two types of fibre orientations were implemented: one with the idealised fibre arrangement, i.e. parallel single-direction fibres going from the muscle origin to insertion sites, and the other with curved fibre arrangement which is aligned with the muscle shape.The second fibre arrangement was implemented through the finite element method; non-uniform rational B-spline (FEM-NURBs) technique by means of user material (UMAT) subroutines. The stress-strain behaviour of the muscle was investigated under idealised exercise conditions, and will be further analysed under physiological conditions. The results of the two different FE models have been outputted and qualitatively compared.

Keywords: FEM-NURBS, finite element analysis, Mooney-Rivlin hyperelastic, muscle architecture

Procedia PDF Downloads 456
637 Currency Boards in Crisis: Experience of Baltic Countries

Authors: Gordana Kordić, Petra Palić

Abstract:

The European countries that during the past two decades based their exchange rate regimes on currency board arrangement (CBA) are usually analysed from the perspective of corner solution choice’s stabilisation effects. There is an open discussion on the positive and negative background of a strict exchange rate regime choice, although it should be seen as part of the transition process towards the monetary union membership. The focus of the paper is on the Baltic countries that after two decades of a rigid exchange rate arrangement and strongly influenced by global crisis are finishing their path towards the euro zone. Besides the stabilising capacity, the CBA is highly vulnerable regime, with limited developing potential. The rigidity of the exchange rate (and monetary) system, despite the ensured credibility, do not leave enough (or any) space for the adjustment and/or active crisis management. Still, the Baltics are in a process of recovery, with fiscal consolidation measures combined with (painful and politically unpopular) measures of internal devaluation. Today, two of them (Estonia and Latvia) are members of euro zone, fulfilling their ultimate transition targets, but de facto exchanging one fixed regime with another. The paper analyses the challenges for the CBA in unstable environment since the fixed regimes rely on imported stability and are sensitive to external shocks. With limited monetary instruments, these countries were oriented to the fiscal policies and used a combination of internal devaluation and tax policy measures. Despite their rather quick recovery, our second goal is to analyse the long term influence that the measures had on the national economy.

Keywords: currency board arrangement, internal devaluation, exchange rate regime, great recession

Procedia PDF Downloads 235
636 Electrocatalytic Properties of Ru-Pd Bimetal Quantum Dots/TiO₂ Nanotube Arrays Electrodes Composites with Double Schottky Junctions

Authors: Shiying Fan, Xinyong Li

Abstract:

The development of highly efficient multifunctional catalytic materials towards HER, ORR and Photo-fuel cell applications in terms of combined electrochemical and photo-electrochemical principles have currently confronted with dire challenges. In this study, novel palladium (Pd) and ruthenium (Ru) Bimetal Quantum Dots (BQDs) co-anchored on Titania nanotube (NTs) arrays electrodes have been successfully constructed by facial two-step electrochemical strategy. Double Schottky junctions with superior performance in electrocatalytic (EC) hydrogen generations and solar fuel cell energy conversions (PE) have been found. Various physicochemical techniques including UV-vis spectroscopy, TEM/EDX/HRTEM, SPV/TRV and electro-chemical strategy including EIS, C-V, I-V, and I-T, etc. were chronically utilized to systematically characterize the crystal-, electronic and micro-interfacial structures of the composites with double Schottky junction, respectively. The characterizations have implied that the marvelous enhancement of separation efficiency of electron-hole pairs generations is mainly caused by the Schottky-barriers within the nanocomposites, which would greatly facilitate the interfacial charge transfer for H₂ generations and solar fuel cell energy conversions. Moreover, the DFT calculations clearly indicated that the oriented growth of Ru and Pd bimetal atoms at the anatase (101) surface is mainly driven by the interaction between Ru/Pd and surface atoms, and the most active site for bimetal Ru and Pd adatoms on the perfect TiO₂ (101) surface is the 2cO-6cTi-3cO bridge sites and the 2cO-bridge sites with the highest adsorption energy of 9.17 eV. Furthermore, the electronic calculations show that in the nanocomposites, the number of impurity (i.e., co-anchored Ru-Pd BQDs) energy levels near Fermi surface increased and some were overlapped with original energy level, promoting electron energy transition and reduces the band gap. Therefore, this work shall provide a deeper insight for the molecular design of Bimetal Quantum Dots (BQDs) assembled onto Tatiana NTs composites with superior performance for electrocatalytic hydrogen productions and solar fuel cell energy conversions (PE) simultaneously.

Keywords: eletrocatalytic, Ru-Pd bimetallic quantum dots, titania nanotube arrays, double Schottky junctions, hydrogen production

Procedia PDF Downloads 118
635 The Influence of Structural Disorder and Phonon on Metal-To-Insulator Transition of VO₂

Authors: Sang-Wook Han, In-Hui Hwang, Zhenlan Jin, Chang-In Park

Abstract:

We used temperature-dependent X-Ray absorption fine structure (XAFS) measurements to examine the local structural properties around vanadium atoms at the V K edge from VO₂ films. A direct comparison of simultaneously-measured resistance and XAFS from the VO₂ films showed that the thermally-driven structural phase transition (SPT) occurred prior to the metal-insulator transition (MIT) during heating, whereas these changed simultaneously during cooling. XAFS revealed a significant increase in the Debye-Waller factors of the V-O and V-V pairs in the {111} direction of the R-phase VO₂ due to the phonons of the V-V arrays along the direction in a metallic phase. A substantial amount of structural disorder existing on the V-V pairs along the c-axis in both M₁ and R phases indicates the structural instability of V-V arrays in the axis. The anomalous structural disorder observed on all atomic sites at the SPT prevents the migration of the V 3d¹ electrons, resulting in a Mott insulator in the M₂-phase VO₂. The anomalous structural disorder, particularly, at vanadium sites, effectively affects the migration of metallic electrons, resulting in the Mott insulating properties in M₂ phase and a non-congruence of the SPT, MIT, and local density of state. The thermally-induced phonons in the {111} direction assist the delocalization of the V 3d¹ electrons in the R phase VO₂ and the electrons likely migrate via the V-V array in the {111} direction as well as the V-V dimerization along the c-axis. This study clarifies that the tetragonal symmetry is essentially important for the metallic phase in VO₂.

Keywords: metal-insulator transition, XAFS, VO₂, structural-phase transition

Procedia PDF Downloads 241
634 Influence of Mooring Conditions on Side-By-Side Offloading System Safety Performance

Authors: Liu Shengnan, Sun Liping, Zhu Jianxun

Abstract:

Based on three dimensional potential flow theory, hydrodynamic response analysis is carried on the multi floating bodies system composed of FPSO moored with yoke and shuttle tanker. It considered hydrodynamic interaction between FPSO and shuttle tanker, interaction between the hull and yoke mooring systems, hawsers, fenders, and then focuses on hawsers of the side-by-side offloading system. The influence of hawsers parameters on system safety is studied in respects of hawser stiffness, length and arrangement. Through analysis in different environment conditions and two typical loading conditions, it can be found that a better safety performance can be achieved through these three ways including enlarging the number of hawsers as well as the stiffness of hawsers, changing the length and arrangement of hawsers.

Keywords: yoke mooring, side-by-side offloading, multi floating body, hawser, safety

Procedia PDF Downloads 400
633 A Memristive Device with Intrinsic Rectification Behavior and Performace of Crossbar Arrays

Authors: Yansong Gao, Damith C.Ranasinghe, Siad F. Al-Sarawi, Omid Kavehei, Derek Abbott

Abstract:

Passive crossbar arrays is in principle the simplest functional electrical circuit, together with memristive device in cross-point, holding great promise in future high-density, non-volatile memories. However, the greatest problem of crossbar array is the sneak path current. In this paper, we investigate one type of memristive device with intrinsic rectification behavior to address the sneak path currents. Firstly, a SPICE behavior model written in Verilog-A language of the memristive device is presented to fit experimental data published in literature. Next, systematic performance simulations including read margin and power consumption of crossbar array, which uses the self-rectifying memristive device as storage element at cross-point, with respect to different crossbar sizes, interconnect resistance, ratio of HRS/LRS (High Resistance State/ Low Resistance State), rectification ratio and different read schemes are conducted. Subsequently, Trade-offs among reading margin, power consumption, and reading schemes are analyzed to provide guidelines for circuit design. Finally, performance comparison between the memristive device with/without intrinsic rectification behavior is given to show the worthiness of this intrinsic rectification behavior.

Keywords: memristive device, memristor, crossbar, RRAM, read margin, power consumption

Procedia PDF Downloads 414
632 Anticandidal and Antibacterial Silver and Silver(Core)-Gold(Shell) Bimetallic Nanoparticles by Fusarium graminearum

Authors: Dipali Nagaonkar, Mahendra Rai

Abstract:

Nanotechnology has experienced significant developments in engineered nanomaterials in the core-shell arrangement. Nanomaterials having nanolayers of silver and gold are of primary interest due to their wide applications in catalytical and biomedical fields. Further, mycosynthesis of nanoparticles has been proved as a sustainable synthetic approach of nanobiotechnology. In this context, we have synthesized silver and silver (core)-gold (shell) bimetallic nanoparticles using a fungal extract of Fusarium graminearum by sequential reduction. The core-shell deposition of nanoparticles was confirmed by the red shift in the surface plasmon resonance from 434 nm to 530 nm with the aid of the UV-Visible spectrophotometer. The mean particle size of Ag and Ag-Au nanoparticles was confirmed by nanoparticle tracking analysis as 37 nm and 50 nm respectively. Quite polydispersed and spherical nanoparticles are evident by TEM analysis. These mycosynthesized bimetallic nanoparticles were tested against some pathogenic bacteria and Candida sp. The antimicrobial analysis confirmed enhanced anticandidal and antibacterial potential of bimetallic nanoparticles over their monometallic counterparts.

Keywords: bimetallic nanoparticles, core-shell arrangement, mycosynthesis, sequential reduction

Procedia PDF Downloads 543
631 Quick Response Codes in Physio: A Simple Click to Long-Term Oxygen Therapy Education

Authors: K. W. Lee, C. M. Choi, H. C. Tsang, W. K. Fong, Y. K. Cheng, L. Y. Chan, C. K. Yuen, P. W. Lau, Y. L. To, K. C. Chow

Abstract:

QR (Quick Response) Code is a matrix barcode. It enables users to open websites, photos and other information with mobile devices by just snapping the code. In usual Long Term Oxygen Therapy arrangement, piles of LTOT related information like leaflets from different oxygen service providers are given to patients to choose an appropriate plan according to their needs. If these printed materials are transformed into electronic format (QR Code), it would be more environmentally-friendly. More importantly, electronic materials including LTOT equipment operation and dyspnoea relieving techniques also empower patients in long-term disease management. The objective to this study is to investigate the effect of QR code in patient education on new LTOT users. This study was carried out in medical wards of North District Hospital. Adult patients and relatives who followed commands, were able to use smartphones with internet services and required LTOT arrangement on hospital discharge were recruited. In LTOT arrangement, apart from the usual LTOT education booklets which included patients’ personal information (e.g. oxygen titration and six-minute walk test results etc.), extra leaflets consisted of 1. QR codes of LTOT plans from different oxygen service providers, 2. Education materials of dyspnoea management and 3. Instructions on LTOT equipment operation were given. Upon completion of LTOT arrangement, a questionnaire about the use of QR code on patient education was filled in by patients or relatives. A total of 10 new LTOT users were recruited from November 2017 to January 2018. Initially, 70% of them did not know anything about the QR code, but all of them understood its operation after a simple demonstration. 70% of them agreed that it was convenient to use (20% strongly agree, 40% agree, 10% somewhat agree). 80% of them agreed that QR code could facilitate the retrieval of more LTOT related information (10% strongly agree, 70% agree) while 90% agreed that we should continue delivering QR code leaflets to new LTOT users in the future (30% strongly agree, 40% agree, 20% somewhat agree). It is proven that QR code is a convenient and environmentally-friendly tool to deliver information. It is also relatively easy to be introduced to new users. It has received welcoming feedbacks from current users.

Keywords: long-term oxygen therapy, physiotherapy, patient education, QR code

Procedia PDF Downloads 122
630 Probing Extensive Air Shower Primaries and Their Interactions by Combining Individual Muon Tracks and Shower Depth

Authors: Moon Moon Devi, Ran Budnik

Abstract:

The current large area cosmic ray detector surface arrays typically measure only the net flux and arrival-time of the charged particles produced in an extensive air shower (EAS). Measurement of the individual charged particles at a surface array will provide additional distinguishing parameters to identify the primary and to map the very high energy interactions in the upper layers of the atmosphere. In turn, these may probe anomalies in QCD interactions at energies beyond the reach of current accelerators. The recent attempts of studying the individual muon tracks are limited in their expandability to larger arrays and can only probe primary particles with energy up to about 10^15.5 eV. New developments in detector technology allow for a realistic cost of large area detectors, however with limitations on energy resolutions, directional information, and dynamic range. In this study, we perform a simulation study using CORSIKA to combine the energy spectrum and lateral spread of the muons with the longitudinal depth (Xmax) of an EAS initiated by a primary at ultra high energies (10¹⁶ – 10¹⁹) eV. Using proton and iron as the shower primaries, we show that the muon observables and Xmax together can be used to distinguish the primary. This study can be used to design a future detector for the surface array, which will be able to enhance our knowledge of primaries and QCD interactions.

Keywords: ultra high energy extensive air shower, muon tracking, air shower primaries, QCD interactions

Procedia PDF Downloads 197
629 Building Safer Communities through Institutional Collaboration in Ghana: An Appraisal of Existing Arrangement

Authors: Louis Kusi Frimpong, Martin Oteng-Ababio

Abstract:

The problem of crime and insecurity in urban environments are often complex, multilayered, multidimensional and sometimes interwoven. It is from this perspective that recent approaches and strategies aimed at responding to crime and insecurity have looked at the problem from a social, economic, spatial and institutional point of view. In Ghana, there is much understanding of how various elements of the social and spatial setting influence crime and safety concerns of residents in urban areas. However, little research attention has been given to the institutional dimension of the problem of crime and insecurity in urban Ghana. In particular, scholars and policymakers in the area of safety and security have scarcely interrogated the forms of collaboration that exist between the various formal and informal institutions and how gaps and lapses in this collaboration influence vulnerability to crime and feelings of insecurity. Using Sekondi-Takoradi as a case study and drawing on both primary and secondary data, this paper assesses the activities of various institutions both formal and informal in crime control and prevention in the Sekondi-Takoradi metropolis, the third largest city in Ghana. More importantly, the paper seeks to address gaps in the institutional arrangement and coordination between and among institutions at the forefront of crime prevention efforts in the metropolis and by extension Ghanaian cities. The study found that whiles there is some form of collaboration between the police and the community, little collaboration existed between planning authorities and the police on the one hand, and the community on the other hand. The paper concludes that in light of the complex nature of a crime, institutional coordination and an inclusive approach involving formal and informal will be critical in promoting safer cities in Ghana.

Keywords: crime prevention, coordination, Ghana, institutional arrangement

Procedia PDF Downloads 101
628 Using Coupled Oscillators for Implementing Frequency Diverse Array

Authors: Maryam Hasheminasab, Ahmed Cheldavi, Ahmed Kishk

Abstract:

Frequency-diverse arrays (FDAs) have garnered significant attention from researchers due to their ability to combine frequency diversity with the inherent spatial diversity of an array. The introduction of frequency diversity in FDAs enables the generation of auto-scanning patterns that are range-dependent, which can have advantageous applications in communication and radar systems. However, the main challenge in implementing FDAs lies in determining the technique for distributing frequencies among the array elements. One approach to address this challenge is by utilizing coupled oscillators, which are a technique commonly employed in active microwave theory. Nevertheless, the limited stability range of coupled oscillators poses another obstacle to effectively utilizing this technique. In this paper, we explore the possibility of employing a coupled oscillator array in the mode lock state (MLS) for implementing frequency distribution in FDAs. Additionally, we propose and simulate the use of a digital phase-locked loop (DPLL) as a backup technique to stabilize the oscillators. Through simulations, we validate the functionality of this technique. This technique holds great promise for advancing the implementation of phased arrays and overcoming current scan rate and phase shifter limitations, especially in millimeter wave frequencies.

Keywords: angle-changing rate, auto scanning beam, pull-in range, hold-in range, locking range, mode locked state, frequency locked state

Procedia PDF Downloads 51
627 The Sectoral Differences in the Use of Construction Incentive

Authors: Qiuwen Ma, Sai On Cheung

Abstract:

Incentive contracting has been developed to push the agent team for extra effort. Generally, there are three types of incentive arrangement, namely incentive/penalty for super performance/underperformance, risk/reward sharing and future business opportunities. It is found that there are significant differences in the use of incentive arrangement in private and public projects. In Hong Kong, very few public projects have used future business as incentivizer whereas private developers often signal repeated business coupled with heavy penalty. This study was conducted to identify various attributes affecting the use of I/D in both private and public engineering sectors of Hong Kong. The diverging preferences were unveiled with reference to a literature review and semi-structured interviews with industry experts. The findings reveal the public/private sectors would consider the implementation issues regarding the various performance targets. The most deterministic factor for the public sector is about accountability. The private sector is in general skeptical about the need to provide extra for the contractors for what they have already contracted to perform.

Keywords: construction incentive, public/private projects, semi-structured interview, hong kong

Procedia PDF Downloads 60
626 Development of a Method to Prepare In-School Tactile Guide Maps for Visually Impaired School Children

Authors: K. Doi, T. Nishimura, M. Kawano, H. Fujimoto, Y. Tanaka, M. Sawada, S. Oouchi, T. Kaneko, K. Kanamori

Abstract:

As part of reasonable accommodation for people with disabilities in Japan, which has ratified the Convention on the Rights of Persons with Disabilities, tactile guide maps are necessary. Such maps can enable visually impaired children to attend schools of special needs education (visual impairments) to grasp the arrangement of classrooms on their school campuses. However, it takes many years to be able to use a tactile guide map without difficulty. Thus, information support, in which audio information is added in addition to tactile information, is required. In the present research, a method to prepare an in-school tactile guide map with an additional audio reading function was developed. This map can enable visually impaired school children attending schools of special needs education (visual impairments) to grasp the arrangement of classrooms on their school campuses.

Keywords: accessible design, visually impaired, braille, tactile map, in-school tactile guide map

Procedia PDF Downloads 336
625 Perspectives of Computational Modeling in Sanskrit Lexicons

Authors: Baldev Ram Khandoliyan, Ram Kishor

Abstract:

India has a classical tradition of Sanskrit Lexicons. Research work has been done on the study of Indian lexicography. India has seen amazing strides in Information and Communication Technology (ICT) applications for Indian languages in general and for Sanskrit in particular. Since Machine Translation from Sanskrit to other Indian languages is often the desired goal, traditional Sanskrit lexicography has attracted a lot of attention from the ICT and Computational Linguistics community. From Nighaŋţu and Nirukta to Amarakośa and Medinīkośa, Sanskrit owns a rich history of lexicography. As these kośas do not follow the same typology or standard in the selection and arrangement of the words and the information related to them, several types of Kośa-styles have emerged in this tradition. The model of a grammar given by Aṣṭādhyāyī is well appreciated by Indian and western linguists and grammarians. But the different models provided by lexicographic tradition also have importance. The general usefulness of Sanskrit traditional Kośas is well discussed by some scholars. That is most of the matter made available in the text. Some also have discussed the good arrangement of lexica. This paper aims to discuss some more use of the different models of Sanskrit lexicography especially focusing on its computational modeling and its use in different computational operations.

Keywords: computational lexicography, Sanskrit Lexicons, nighanṭu, kośa, Amarkosa

Procedia PDF Downloads 130
624 Optimal Harmonic Filters Design of Taiwan High Speed Rail Traction System

Authors: Ying-Pin Chang

Abstract:

This paper presents a method for combining a particle swarm optimization with nonlinear time-varying evolution and orthogonal arrays (PSO-NTVEOA) in the planning of harmonic filters for the high speed railway traction system with specially connected transformers in unbalanced three-phase power systems. The objective is to minimize the cost of the filter, the filters loss, the total harmonic distortion of currents and voltages at each bus simultaneously. An orthogonal array is first conducted to obtain the initial solution set. The set is then treated as the initial training sample. Next, the PSO-NTVEOA method parameters are determined by using matrix experiments with an orthogonal array, in which a minimal number of experiments would have an effect that approximates the full factorial experiments. This PSO-NTVEOA method is then applied to design optimal harmonic filters in Taiwan High Speed Rail (THSR) traction system, where both rectifiers and inverters with IGBT are used. From the results of the illustrative examples, the feasibility of the PSO-NTVEOA to design an optimal passive harmonic filter of THSR system is verified and the design approach can greatly reduce the harmonic distortion. Three design schemes are compared that V-V connection suppressing the 3rd order harmonic, and Scott and Le Blanc connection for the harmonic improvement is better than the V-V connection.

Keywords: harmonic filters, particle swarm optimization, nonlinear time-varying evolution, orthogonal arrays, specially connected transformers

Procedia PDF Downloads 365
623 Vortex Generation to Model the Airflow Downstream of a Piezoelectric Fan Array

Authors: Alastair Hales, Xi Jiang, Siming Zhang

Abstract:

Numerical methods are used to generate vortices in a domain. Through considered design, two counter-rotating vortices may interact and effectively drive one another downstream. This phenomenon is comparable to the vortex interaction that occurs in a region immediately downstream from two counter-oscillating piezoelectric (PE) fan blades. PE fans are small blades clamped at one end and driven to oscillate at their first natural frequency by an extremely low powered actuator. In operation, the high oscillation amplitude and frequency generate sufficient blade tip speed through the surrounding air to create downstream air flow. PE fans are considered an ideal solution for low power hot spot cooling in a range of small electronic devices, but a single blade does not typically induce enough air flow to be considered a direct alternative to conventional air movers, such as axial fans. The development of face-to-face PE fan arrays containing multiple blades oscillating in counter-phase to one another is essential for expanding the range of potential PE fan applications regarding the cooling of power electronics. Even in an unoptimised state, these arrays are capable of moving air volumes comparable to axial fans with less than 50% of the power demand. Replicating the airflow generated by face-to-face PE fan arrays without including the actual blades in the model reduces the process’s computational demands and enhances the rate of innovation and development in the field. Vortices are generated at a defined inlet using a time-dependent velocity profile function, which pulsates the inlet air velocity magnitude. This induces vortex generation in the considered domain, and these vortices are shown to separate and propagate downstream in a regular manner. The generation and propagation of a single vortex are compared to an equivalent vortex generated from a PE fan blade in a previous experimental investigation. Vortex separation is found to be accurately replicated in the present numerical model. Additionally, the downstream trajectory of the vortices’ centres vary by just 10.5%, and size and strength of the vortices differ by a maximum of 10.6%. Through non-dimensionalisation, the numerical method is shown to be valid for PE fan blades with differing parameters to the specific case investigated. The thorough validation methods presented verify that the numerical model may be used to replicate vortex formation from an oscillating PE fans blade. An investigation is carried out to evaluate the effects of varying the distance between two PE fan blade, pitch. At small pitch, the vorticity in the domain is maximised, along with turbulence in the near vicinity of the inlet zones. It is proposed that face-to-face PE fan arrays, oscillating in counter-phase, should have a minimal pitch to optimally cool nearby heat sources. On the other hand, downstream airflow is maximised at a larger pitch, where the vortices can fully form and effectively drive one another downstream. As such, this should be implemented when bulk airflow generation is the desired result.

Keywords: piezoelectric fans, low energy cooling, vortex formation, computational fluid dynamics

Procedia PDF Downloads 149
622 IoT Based Monitoring Temperature and Humidity

Authors: Jay P. Sipani, Riki H. Patel, Trushit Upadhyaya

Abstract:

Today there is a demand to monitor environmental factors almost in all research institutes and industries and even for domestic uses. The analog data measurement requires manual effort to note readings, and there may be a possibility of human error. Such type of systems fails to provide and store precise values of parameters with high accuracy. Analog systems are having drawback of storage/memory. Therefore, there is a requirement of a smart system which is fully automated, accurate and capable enough to monitor all the environmental parameters with utmost possible accuracy. Besides, it should be cost-effective as well as portable too. This paper represents the Wireless Sensor (WS) data communication using DHT11, Arduino, SIM900A GSM module, a mobile device and Liquid Crystal Display (LCD). Experimental setup includes the heating arrangement of DHT11 and transmission of its data using Arduino and SIM900A GSM shield. The mobile device receives the data using Arduino, GSM shield and displays it on LCD too. Heating arrangement is used to heat and cool the temperature sensor to study its characteristics.

Keywords: wireless communication, Arduino, DHT11, LCD, SIM900A GSM module, mobile phone SMS

Procedia PDF Downloads 254