Search results for: Zhang Rong
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1029

Search results for: Zhang Rong

939 Application of Hydrological Model in Support of Streamflow Allocation in Arid Watersheds in Northwestern China

Authors: Chansheng He, Lanhui Zhang, Baoqing Zhang

Abstract:

Spatial heterogeneity of landscape significantly affects watershed hydrological processes, particularly in high elevation and cold mountainous watersheds such as the inland river (terminal lake) basins in Northwest China, where the upper reach mountainous areas are the main source of streamflow for the downstream agricultural oases and desert ecosystems. Thus, it is essential to take into account spatial variations of hydrological processes in streamflow allocation at the watershed scale. This paper adapts the Distributed Large Basin Runoff Model (DLBRM) to the Heihe River Watershed, the second largest inland river with a drainage area of about 128,000 km2 in Northwest China, for understanding the transfer and partitioning mechanism among the glacier and snowmelt, surface runoff, evapotranspiration, and groundwater recharge among the upper, middle, and lower reaches in the study area. Results indicate that the upper reach Qilian Mountain area is the main source of streamflow for the middle reach agricultural oasis and downstream desert areas. Large withdrawals for agricultural irrigation in the middle reach had significantly depleted river flow for the lower reach desert ecosystems. Innovative conservation and enforcement programs need to be undertaken to ensure the successful implementation of water allocation plan of delivering 0.95 x 109 m3 of water downstream annually by the State Council in the Heihe River Watershed.

Keywords: DLBRM, Northwestern China, spatial variation, water allocation

Procedia PDF Downloads 273
938 Effects of Knitting Variables for Pressure Controlling of Tubular Compression Fabrics

Authors: Shi Yu, Rong Liu, Jingyun Lv

Abstract:

Compression textiles with ergonomic-fit and controllable pressure performance have demonstrated positive effect on prevention and treatment of chronic venous insufficiency (CVI). Well-designed compression textile products contribute to improving user compliance in their daily application. This study explored the effects of multiple knitting variables (yarn-machinery settings) on the physical-mechanical properties and the produced pressure magnitudes of tubular compression fabrics (TCFs) through experimental testing and multiple regression modeling. The results indicated that fabric physical (stitch densities and circumference) and mechanical (tensile) properties were affected by the linear density (yarn diameters) of inlay yarns, which, to some extent, influenced pressure magnitudes of the TCFs. Knitting variables (e.g., feeding velocity of inlay yarns and loop size settings) can alter circumferences and tensile properties of tubular fabrics, respectively, and significantly varied pressure values of the TCFs. This study enhanced the understanding of the effects of knitting factors on pressure controlling of TCFs, thus facilitating dimension and pressure design of compression textiles in future development.

Keywords: laid-in knitted fabric, yarn-machinery settings, pressure magnitudes, quantitative analysis, compression textiles

Procedia PDF Downloads 157
937 Human-Centric Sensor Networks for Comfort and Productivity in Offices: Integrating Environmental, Body Area Network, and Participatory Sensing

Authors: Chenlu Zhang, Wanni Zhang, Florian Schaule

Abstract:

Indoor environment in office buildings directly affects comfort, productivity, health, and well-being of building occupants. Wireless environmental sensor networks have been deployed in many modern offices to monitor and control the indoor environments. However, indoor environmental variables are not strong enough predictors of comfort and productivity levels of every occupant due to personal differences, both physiologically and psychologically. This study proposes human-centric sensor networks that integrate wireless environmental sensors, body area network sensors and participatory sensing technologies to collect data from both environment and human and support building operations. The sensor networks have been tested in one small-size and one medium-size office rooms with 22 participants for five months. Indoor environmental data (e.g., air temperature and relative humidity), physiological data (e.g., skin temperature and Galvani skin response), and physiological responses (e.g., comfort and self-reported productivity levels) were obtained from each participant and his/her workplace. The data results show that: (1) participants have different physiological and physiological responses in the same environmental conditions; (2) physiological variables are more effective predictors of comfort and productivity levels than environmental variables. These results indicate that the human-centric sensor networks can support human-centric building control and improve comfort and productivity in offices.

Keywords: body area network, comfort and productivity, human-centric sensors, internet of things, participatory sensing

Procedia PDF Downloads 116
936 Characterization of Double Shockley Stacking Fault in 4H-SiC Epilayer

Authors: Zhe Li, Tao Ju, Liguo Zhang, Zehong Zhang, Baoshun Zhang

Abstract:

In-grow stacking-faults (IGSFs) in 4H-SiC epilayers can cause increased leakage current and reduce the blocking voltage of 4H-SiC power devices. Double Shockley stacking fault (2SSF) is a common type of IGSF with double slips on the basal planes. In this study, a 2SSF in the 4H-SiC epilayer grown by chemical vaper deposition (CVD) is characterized. The nucleation site of the 2SSF is discussed, and a model for the 2SSF nucleation is proposed. Homo-epitaxial 4H-SiC is grown on a commercial 4 degrees off-cut substrate by a home-built hot-wall CVD. Defect-selected-etching (DSE) is conducted with melted KOH at 500 degrees Celsius for 1-2 min. Room temperature cathodoluminescence (CL) is conducted at a 20 kV acceleration voltage. Low-temperature photoluminescence (LTPL) is conducted at 3.6 K with the 325 nm He-Cd laser line. In the CL image, a triangular area with bright contrast is observed. Two partial dislocations (PDs) with a 20-degree angle in between show linear dark contrast on the edges of the IGSF. CL and LTPL spectrums are conducted to verify the IGSF’s type. The CL spectrum shows the maximum photoemission at 2.431 eV and negligible bandgap emission. In the LTPL spectrum, four phonon replicas are found at 2.468 eV, 2.438 eV, 2.420 eV and 2.410 eV, respectively. The Egx is estimated to be 2.512 eV. A shoulder with a red-shift to the main peak in CL, and a slight protrude at the same wavelength in LTPL are verified as the so called Egx- lines. Based on the CL and LTPL results, the IGSF is identified as a 2SSF. Back etching by neutral loop discharge and DSE are conducted to track the origin of the 2SSF, and the nucleation site is found to be a threading screw dislocation (TSD) in this sample. A nucleation mechanism model is proposed for the formation of the 2SSF. Steps introduced by the off-cut and the TSD on the surface are both suggested to be two C-Si bilayers height. The intersections of such two types of steps are along [11-20] direction from the TSD, while a four-bilayer step at each intersection. The nucleation of the 2SSF in the growth is proposed as follows. Firstly, the upper two bilayers of the four-bilayer step grow down and block the lower two at one intersection, and an IGSF is generated. Secondly, the step-flow grows over the IGSF successively, and forms an AC/ABCABC/BA/BC stacking sequence. Then a 2SSF is formed and extends by the step-flow growth. In conclusion, a triangular IGSF is characterized by CL approach. Base on the CL and LTPL spectrums, the estimated Egx is 2.512 eV and the IGSF is identified to be a 2SSF. By back etching, the 2SSF nucleation site is found to be a TSD. A model for the 2SSF nucleation from an intersection of off-cut- and TSD- introduced steps is proposed.

Keywords: cathodoluminescence, defect-selected-etching, double Shockley stacking fault, low-temperature photoluminescence, nucleation model, silicon carbide

Procedia PDF Downloads 280
935 The Richtmyer-Meshkov Instability Impacted by the Interface with Different Components Distribution

Authors: Sheng-Bo Zhang, Huan-Hao Zhang, Zhi-Hua Chen, Chun Zheng

Abstract:

In this paper, the Richtmyer-Meshkov instability has been studied numerically by using the high-resolution Roe scheme based on the two-dimensional unsteady Euler equation, which was caused by the interaction between shock wave and the helium circular light gas cylinder with different component distributions. The numerical results further discuss the deformation process of the gas cylinder, the wave structure of the flow field and quantitatively analyze the characteristic dimensions (length, height, and central axial width) of the gas cylinder, the volume compression ratio of the cylinder over time. In addition, the flow mechanism of shock-driven interface gas mixing is analyzed from multiple perspectives by combining it with the flow field pressure, velocity, circulation, and gas mixing rate. Then the effects of different initial component distribution conditions on interface instability are investigated. The results show when the diffusion interface transit to the sharp interface, the reflection coefficient gradually increases on both sides of the interface. When the incident shock wave interacts with the cylinder, the transmission of the shock wave will transit from conventional transmission to unconventional transmission. At the same time, the reflected shock wave is gradually strengthened, and the transmitted shock wave is gradually weakened, which leads to an increase in the Richtmyer-Meshkov instability. Moreover, the Atwood number on both sides of the interface also increases as the diffusion interface transit to the sharp interface, which leads to an increase in the Rayleigh-Taylor instability and the Kelvin-Helmholtz instability. Therefore, the increase in instability will lead to an increase the circulation, resulting in an increase in the growth rate of gas mixing rate.

Keywords: shock wave, He light cylinder, Richtmyer-Meshkov instability, Gaussian distribution

Procedia PDF Downloads 49
934 Data Recording for Remote Monitoring of Autonomous Vehicles

Authors: Rong-Terng Juang

Abstract:

Autonomous vehicles offer the possibility of significant benefits to social welfare. However, fully automated cars might not be going to happen in the near further. To speed the adoption of the self-driving technologies, many governments worldwide are passing laws requiring data recorders for the testing of autonomous vehicles. Currently, the self-driving vehicle, (e.g., shuttle bus) has to be monitored from a remote control center. When an autonomous vehicle encounters an unexpected driving environment, such as road construction or an obstruction, it should request assistance from a remote operator. Nevertheless, large amounts of data, including images, radar and lidar data, etc., have to be transmitted from the vehicle to the remote center. Therefore, this paper proposes a data compression method of in-vehicle networks for remote monitoring of autonomous vehicles. Firstly, the time-series data are rearranged into a multi-dimensional signal space. Upon the arrival, for controller area networks (CAN), the new data are mapped onto a time-data two-dimensional space associated with the specific CAN identity. Secondly, the data are sampled based on differential sampling. Finally, the whole set of data are encoded using existing algorithms such as Huffman, arithmetic and codebook encoding methods. To evaluate system performance, the proposed method was deployed on an in-house built autonomous vehicle. The testing results show that the amount of data can be reduced as much as 1/7 compared to the raw data.

Keywords: autonomous vehicle, data compression, remote monitoring, controller area networks (CAN), Lidar

Procedia PDF Downloads 131
933 Evaluation of Green Infrastructure with Different Woody Plants Practice and Benefit Using the Stormwater Management-HYDRUS Model

Authors: Bei Zhang, Zhaoxin Zhang, Lidong Zhao

Abstract:

Green infrastructures (GIs) for rainwater management can directly meet the multiple purposes of urban greening and non-point source pollution control. To reveal the overall layout law of GIs dominated by typical woody plants and their impact on urban environmental effects, we constructed a HYDRUS-1D and Stormwater management (SWMM) coupling model to simulate the response of typical root woody plant planting methods on urban hydrological. The results showed that the coupling model had high adaptability to the simulation of urban surface runoff control effect under different woody plant planting methods (NSE ≥0.64 and R² ≥ 0.71). The regulation effect on surface runoff showed that the average runoff reduction rate of GIs increased from 60 % to 71 % with the increase of planting area (5% to 25%) under the design rainfall event of the 2-year recurrence interval. Sophora japonica with tap roots was slightly higher than that of without plants (control) and Malus baccata (M. baccata) with fibrous roots. The comprehensive benefit evaluation system of rainwater utilization technology was constructed by using an analytic hierarchy process. The coupling model was used to evaluate the comprehensive benefits of woody plants with different planting areas in the study area in terms of environment, economy, and society. The comprehensive benefit value of planting 15% M. baccata was the highest, which was the first choice for the planting of woody plants in the study area. This study can provide a scientific basis for the decision-making of green facility layouts of woody plants.

Keywords: green infrastructure, comprehensive benefits, runoff regulation, woody plant layout, coupling model

Procedia PDF Downloads 39
932 Fano-Resonance-Based Wideband Acoustic Metamaterials with Highly Efficient Ventilation

Authors: Xi-Wen Xiao, Tzy-Rong Lin, Chien-Hao Liu

Abstract:

Ventilated acoustic metamaterials have attracted considerable research attention due to their low-frequency absorptions and efficient fluid ventilations. In this research, a wideband acoustic metamaterial with auditory filtering ability and efficient ventilation capacity were proposed. In contrast to a conventional Fano-like resonator, a Fano-like resonator composed of a resonant unit and two nonresonant units with a large opening area of 68% for fluid passages was developed. In addition, the coupling mechanism to improve the narrow bandwidths of conventional Fano-resonance-based meta-materials was included. With a suitable design, the output sound waves of the resonant and nonresonant states were out of phase to achieve sound absorptions in the far fields. Therefore, three-element and five-element coupled Fano-like metamaterials were designed and simulated with the help of the finite element software to obtain the filtering fractional bandwidths of 42.5% and 61.8%, respectively. The proposed approach can be extended to multiple coupled resonators for obtaining ultra-wide bandwidths and can be implemented with 3D printing for practical applications. The research results are expected to be beneficial for sound filtering or noise reductions in duct applications and limited-volume spaces.

Keywords: fano resonance, noise reduction, resonant coupling, sound filtering, ventilated acoustic metamaterial

Procedia PDF Downloads 88
931 Development of Solar Energy Resources for Land along the Transportation Infrastructure: Taking the Lan-Xin Railway in the Silk Road Economic Belt as an Example

Authors: Dan Han, Yukun Zhang, Jie Zheng, Rui Zhang

Abstract:

Making full use of space along transportation infrastructure to develop renewable energy sources, especially solar energy resources, has become a research focus in relevant fields. In recent years, relevant international researches can be classified into three stages of theoretical and technical exploration, exploratory practice as well as planning implementation. Compared with traditional solar energy development mode, the development of solar energy resources in places along the transportation infrastructure has special advantages, which can also bring forth new opportunities for the development of green transportation. 'Road Integrated Photovoltaic', a development model of combining transport and new energy, has been actively studied and applied in developed countries, but it was still in its infancy in China. 'New Silk Road Economic Belt' has great advantage to carry out the 'Road Integrated Photovoltaic' because of the rich solar energy resources in its path, the shortages of renewable energy, the constraints of agricultural land and other reasons. Especially the massive amount of construction of transportation infrastructure brought by Silk Road Economic Belt, large area of developable land along the transportation line will be generated. Abundant solar energy recourses along the Silk Road will provide extremely superb practical opportunities to the land development along transportation infrastructure. We take PVsyst, GIS and Google map software for simulation of its potential by taking Lan-Xin Railway as an example, so potential electrical energy generation can be quantified and further analyzed. Research of 'New Silk Road Economic Belt' combined with 'Road Integrated Photovoltaic' is a creative development for the along transport and energy infrastructure. It not only can make full use of solar radiation and land in its path, but also bring more long-term advantages and benefits.

Keywords: land use, silk road economic belt, solar energy, transportation infrastructure

Procedia PDF Downloads 207
930 Surface Flattening Assisted with 3D Mannequin Based on Minimum Energy

Authors: Shih-Wen Hsiao, Rong-Qi Chen, Chien-Yu Lin

Abstract:

The topic of surface flattening plays a vital role in the field of computer aided design and manufacture. Surface flattening enables the production of 2D patterns and it can be used in design and manufacturing for developing a 3D surface to a 2D platform, especially in fashion design. This study describes surface flattening based on minimum energy methods according to the property of different fabrics. Firstly, through the geometric feature of a 3D surface, the less transformed area can be flattened on a 2D platform by geodesic. Then, strain energy that has accumulated in mesh can be stably released by an approximate implicit method and revised error function. In some cases, cutting mesh to further release the energy is a common way to fix the situation and enhance the accuracy of the surface flattening, and this makes the obtained 2D pattern naturally generate significant cracks. When this methodology is applied to a 3D mannequin constructed with feature lines, it enhances the level of computer-aided fashion design. Besides, when different fabrics are applied to fashion design, it is necessary to revise the shape of a 2D pattern according to the properties of the fabric. With this model, the outline of 2D patterns can be revised by distributing the strain energy with different results according to different fabric properties. Finally, this research uses some common design cases to illustrate and verify the feasibility of this methodology.

Keywords: surface flattening, strain energy, minimum energy, approximate implicit method, fashion design

Procedia PDF Downloads 309
929 Methanol Steam Reforming with Heat Recovery for Hydrogen-Rich Gas Production

Authors: Horng-Wen Wu, Yi Chao, Rong-Fang Horng

Abstract:

This study is to develop a methanol steam reformer with a heat recovery zone, which recovers heat from exhaust gas of a diesel engine, and to investigate waste heat recovery ratio at the required reaction temperature. The operation conditions of the reformer are reaction temperature (200 °C, 250 °C, and 300 °C), steam to carbonate (S/C) ratio (0.9, 1.1, and 1.3), and N2 volume flow rate (40 cm3/min, 70 cm3/min, and 100 cm3/min). Finally, the hydrogen concentration, the CO, CO2, and N2 concentrations are measured and recorded to calculate methanol conversion efficiency, hydrogen flow rate, and assisting combustion gas and impeding combustion gas ratio. The heat source of this reformer comes from electric heater and waste heat of exhaust gas from diesel engines. The objective is to recover waste heat from the engine and to make more uniform temperature distribution within the reformer. It is beneficial for the reformer to enhance the methanol conversion efficiency and hydrogen-rich gas production. Experimental results show that the highest hydrogen flow rate exists at N2 of the volume rate 40 cm3/min and reforming reaction temperature of 300 °C and the value is 19.6 l/min. With the electric heater and heat recovery from exhaust gas, the maximum heat recovery ratio is 13.18 % occurring at water-methanol (S/C) ratio of 1.3 and the reforming reaction temperature of 300 °C.

Keywords: heat recovery, hydrogen-rich production, methanol steam reformer, methanol conversion efficiency

Procedia PDF Downloads 440
928 Design and Development of a Lead-Free BiFeO₃-BaTiO₃ Quenched Ceramics for High Piezoelectric Strain Performance

Authors: Muhammad Habib, Lin Tang, Guoliang Xue, Attaur Rahman, Myong-Ho Kim, Soonil Lee, Xuefan Zhou, Yan Zhang, Dou Zhang

Abstract:

Designing a high-performance, lead-free ceramic has become a cutting-edge research topic due to growing concerns about the toxic nature of lead-based materials. In this work, a convenient strategy of compositional design and domain engineering is applied to the lead-fee BiFeO₃-BaTiO₃ ceramics, which provides a flexible polarization-free-energy profile for domain switching. Here, simultaneously enhanced dynamic piezoelectric constant (d33* = 772 pm/V) and a good thermal-stability (d33* = 26% over the temperature of 20-180 ᵒC) are achieved with a high Curie temperature (TC) of 432 ᵒC. This high piezoelectric strain performance is collectively attributed to multiple effects such as thermal quenching, suppression of defect charges by donor doping, chemically induced local structure heterogeneity, and electric field-induced phase transition. Furthermore, the addition of BT content decreased octahedral tilting, reduced anisotropy for domain switching and increased tetragonality (cₜ/aₜ), providing a wider polar length for B-site cation displacement, leading to high piezoelectric strain performance. Atomic-resolution transmission electron microscopy and piezoelectric force microscopy combined with X-ray diffraction results strongly support the origin of high piezoelectricity. The high and temperature-stable piezoelectric strain response of this work is superior to those of other lead-free ceramics. The synergistic approach of composition design and the concept present here for the origin of high strain response provides a paradigm for the development of materials for high-temperature piezoelectric actuator applications.

Keywords: Piezoelectric, BiFeO3-BaTiO3, Quenching, Temperature-insensitive

Procedia PDF Downloads 46
927 Improving Early Detection, Diagnosis And Intervention For Children With Autism Spectrum Disorder: A Cross-sectional Survey In China

Authors: Yushen Dai, Tao Deng, Miaoying Chen, Baoqin Huang, Yan Ji, Yongshen Feng, Shaofei Liu, Dongmei Zhong, Tao Zhang, Lifeng Zhang

Abstract:

Background: Detection and diagnosis are prerequisites for early interventions in the care of children with Autism Spectrum Disorder (ASD). However, few studies have focused on this topic. Aim: This study aims to characterize the timing from symptom detection to intervention in children with ASD and to identify the potential predictors of early detection, diagnosis, and intervention. Methods and procedures: A cross-sectional survey was conducted with 314 parents of children with ASD in Guangzhou, China. Outcomes and Results: This study found that most children (76.24%) were diagnosed within one year after detection, and 25.8% of them did not receive the intervention after diagnosis. Predictors to ASD diagnosis included ASD-related symptoms identified at a younger age, more serious symptoms, and initial symptoms with abnormal development and sensory anomalies. ASD-related symptoms observed at an older age, initial symptoms with the social deficit, sensory anomalies, and without language impairment, parents as the primary caregivers, family with lower income and less social support utilization increased the odds of the time lag between detection and diagnosis. Children whose fathers had a lower level of education were less likely to receive the intervention. Conclusions and Implications: The study described the time for detection, diagnosis, and interventions of children with ASD. Findings suggest that the ASD-related symptoms, the timing at which symptoms first become a concern, primary caregivers’ roles, father’s educational level, and the family economic status should be considered when offering support to improve early detection, diagnosis, and intervention. Helping children and their families take full advantage of support is also important.

Keywords: autism spectrum disorder, child, detection, diagnosis, intervention, social support

Procedia PDF Downloads 57
926 In vitro Evaluation of the Synergistic Antiviral Activity of Amantadine Coupled with Magnesium Lithospermate B against Enterovirus 71 Infection

Authors: Wen-Yu Lin, Yi-Ching Chung, Jhao-Ren Lin, Tzyy-Rong Jinn

Abstract:

It is well known that enterovirus 71(EV71) causes recurring outbreaks of hand, foot and mouth disease and encephalitis leading to complications or death in young children. And, several enterovirus 71 (EV71) of hand foot and mouth disease (HFMD) with high mortalities occurred in Asia country, such as Hong Kung (1985), Malaysia (1997), Taiwan (1998) and China (2008) that EV71 results in severe neurological complications and sudden death in infants and young children. However, there are still no effective drugs and vaccines to reduce and inhibit EV71 infection. Therefore, the development of specific and effective antiviral strategies against EV71 has become an urgent issue for the protection of children from the hazards of the HFMD. As reported, amantadine is effective in prophylaxis and treatment of the EV71 infections. Thus, the aim of this study was to further evaluate the synergistic antiviral activity of amantadine coupled with magnesium lithospermate B (MLB) against enterovirus 71 infection. In a preliminary test, it is shown that the infected RD cells were treated with amantadine after virus absorption, at concentrations of 3 and 5µM of amantadine suppressed EV71-induced CPE to 13% and 23%, respectively at MOI of 3. Alternatively, at concentrations of 5µg/ml of MLB combined with 3 and 5 µM of amantadine apparently suppressed EV71-induced CPE to 45% and 63%, respectively at MOI of 3. Thus, amantadine coupled with MLB may have the potential for further study to development as the chemopreventive reagents against EV71 infection.

Keywords: amantadine, Enterovirus 71, magnesium lithospermate B, RD cells, synergistic effects

Procedia PDF Downloads 218
925 MOOCs (E-Learning) Project Personnel Competency Analysis

Authors: Shang-Hua Wu, Rong-Chi Chang, Horng–Twu Liaw

Abstract:

Nowadays, competencies of e-learning project personnel are very important in assisting them in offering courses, serving students in an effective way, leveraging advantages, strengthen their relationships with potential students, etc. among e-learning platforms, MOOCs has recently attracted increasing focuses in distance education since it can be conducted for a large numbers of virtual learners. Nonetheless, since MOOCs is a relatively new e-learning platform, top concerns have been paid to what competencies are important for e-learning personnel to consider. Taking this need, this research aimed to carry out an in-depth exploration of competency requirements of MOOCs (e-learning) project personnel in Taiwan vocational schools. Data were collected through thorough literature reviews and discussions and competency analysis was carried out using Delphi technique questionnaires. The results show that that MOOCs (e-learning) project personnel’ professional competency lie in three main dimensions, among which ‘demand analysis competency’ (i.e., containing 10 major competences and 48 subordinate capabilities) is the most important competency, followed by ‘project management competency’ (i.e., comprising 6 major competences and 31 secondary capabilities), and finally ‘digital content production competency’ (i.e., including 12 major competences and 79 secondary capabilities). As such, in Taiwan context with different organizational scales and market sizes, the e-learning competency items and unique experience/ achievements throughout the promotion process obtained in this research will provide useful references for academic institutions in promoting e-learning.

Keywords: competency analysis, Delphi technique questionnaire, e-learning, massive open online courses

Procedia PDF Downloads 255
924 A System Dynamics Approach to Technological Learning Impact for Cost Estimation of Solar Photovoltaics

Authors: Rong Wang, Sandra Hasanefendic, Elizabeth von Hauff, Bart Bossink

Abstract:

Technological learning and learning curve models have been continuously used to estimate the photovoltaics (PV) cost development over time for the climate mitigation targets. They can integrate a number of technological learning sources which influence the learning process. Yet the accuracy and realistic predictions for cost estimations of PV development are still difficult to achieve. This paper develops four hypothetical-alternative learning curve models by proposing different combinations of technological learning sources, including both local and global technology experience and the knowledge stock. This paper specifically focuses on the non-linear relationship between the costs and technological learning source and their dynamic interaction and uses the system dynamics approach to predict a more accurate PV cost estimation for future development. As the case study, the data from China is gathered and drawn to illustrate that the learning curve model that incorporates both the global and local experience is more accurate and realistic than the other three models for PV cost estimation. Further, absorbing and integrating the global experience into the local industry has a positive impact on PV cost reduction. Although the learning curve model incorporating knowledge stock is not realistic for current PV cost deployment in China, it still plays an effective positive role in future PV cost reduction.

Keywords: photovoltaic, system dynamics, technological learning, learning curve

Procedia PDF Downloads 66
923 Thermal Analysis and Computational Fluid Dynamics Simulation of Large-Scale Cryopump

Authors: Yue Shuai Zhao, Rong Ping Shao, Wei Sun, Guo Hua Ren, Yong Wang, Li Chen Sun

Abstract:

A large-scale cryopump (DN1250) used in large vacuum leak detecting system was designed and its performance experimentally investigated by Beijing Institute of Spacecraft Environment Engineering. The cryopump was cooled by four closed cycle helium refrigerators (two dual stage refrigerators and two single stage refrigerators). Detailed numerical analysis of the heat transfer in the first stage array and the second stage array were performed by using computational fluid dynamic method (CFD). Several design parameters were considered to find the effect on the temperature distribution and the cooldown time. The variation of thermal conductivity and heat capacity with temperature was taken into account. The thermal analysis method based on numerical techniques was introduced in this study, the heat transfer in the first stage array and the second stage cryopanel was carefully analyzed to determine important considerations in the thermal design of the cryopump. A performance test system according to the RNEUROP standards was built to test main performance of the cryopump. The experimental results showed that the structure of first stage array which was optimized by the method could meet the requirement of the cryopump well. The temperature of the cryopanel was down to 10K within 300 min, and the result of the experiment was accordant with theoretical analysis' conclusion. The test also showed that the pumping speed for N2 of the pump was up to 57,000 L/s, and the crossover was over than 300,000 Pa•L.

Keywords: cryopump, temperature distribution, thermal analysis, CFD Simulation

Procedia PDF Downloads 276
922 Estimation of Normalized Glandular Doses Using a Three-Layer Mammographic Phantom

Authors: Kuan-Jen Lai, Fang-Yi Lin, Shang-Rong Huang, Yun-Zheng Zeng, Po-Chieh Hsu, Jay Wu

Abstract:

The normalized glandular dose (DgN) estimates the energy deposition of mammography in clinical practice. The Monte Carlo simulations frequently use uniformly mixed phantom for calculating the conversion factor. However, breast tissues are not uniformly distributed, leading to errors of conversion factor estimation. This study constructed a three-layer phantom to estimated more accurate of normalized glandular dose. In this study, MCNP code (Monte Carlo N-Particles code) was used to create the geometric structure. We simulated three types of target/filter combinations (Mo/Mo, Mo/Rh, Rh/Rh), six voltages (25 ~ 35 kVp), six HVL parameters and nine breast phantom thicknesses (2 ~ 10 cm) for the three-layer mammographic phantom. The conversion factor for 25%, 50% and 75% glandularity was calculated. The error of conversion factors compared with the results of the American College of Radiology (ACR) was within 6%. For Rh/Rh, the difference was within 9%. The difference between the 50% average glandularity and the uniform phantom was 7.1% ~ -6.7% for the Mo/Mo combination, voltage of 27 kVp, half value layer of 0.34 mmAl, and breast thickness of 4 cm. According to the simulation results, the regression analysis found that the three-layer mammographic phantom at 0% ~ 100% glandularity can be used to accurately calculate the conversion factors. The difference in glandular tissue distribution leads to errors of conversion factor calculation. The three-layer mammographic phantom can provide accurate estimates of glandular dose in clinical practice.

Keywords: Monte Carlo simulation, mammography, normalized glandular dose, glandularity

Procedia PDF Downloads 160
921 Mackerel (Scomber Australasicus) Reproduction in Northeastern Taiwan

Authors: Sunarti Sinaga, Hsueh-Jung Lu, Jia-Rong Lin

Abstract:

Blue mackerel (Scomber australasicus) is a crucial target species for Taiwan coastal fisheries and has maintained its status as the highest-produced species. Timely measurement of spawning status is crucial for determining the correct management strategy for this species. The objective of this study was to determine size at maturity, fecundity, batch fecundity, and spawning frequency on the basis of samples collected from Nan-Fang-Ao fishing port in Yilan during the spawning season from 2017 to 2019. Histological sections indicated that the blue mackerel are multiple spawners. A higher percentage of female fish spawned at the peak of the gonadosomatic index. The 50% sizes at maturity were 32.02, 32.13, and 29.64 cm. Mean total fecundity (batch fecundity) was 165 (103), 229 (96), and 210 (68) oocytes per ovary-free weight (g) for 2017, 2018, and 2019, respectively; fecundity was determined through observation of postovulatory follicles (POFs). The spawning frequencies (spawning fraction) in 2017, 2018, and 2019 were 3–10 days (0.13), 4–14 days (0.08), and 4–12 days (0.08), respectively. The spawning frequencies determined through the 3 estimated methods, namely the sums of (a) hydrated and Day 0 POFs; (b) Day 1+ POFs, and (c) all data combined, were 1 spawning event per 8, 10, and 9 days, respectively. The reproduction of the blue mackerel was greater in 2017 than it was in 2018 or 2019, as indicated by the higher batch fecundity and shorter spawning seasons. Environmental factors should also be considered as a major factor influencing successful reproduction and the spawning season.

Keywords: scomber australasicus, spawning frequency, batch fecundity, fecundity

Procedia PDF Downloads 76
920 Subjective Well-being, Beliefs, and Lifestyles of First Year University Students in the UK

Authors: Kaili C. Zhang

Abstract:

Mental well-being is an integral part of university students’ overall well-being and has been a matter of increasing concern in the UK. This study addressed the impact of university experience on students by investigating the changes students experience in their beliefs, lifestyles, and well-being during their first year of study, as well as the factors contributing to such changes. Using a longitudinal two-wave mixed method design, this project identified importantfactors that contribute to or inhibit these changes. Implications for universities across the UK are discussed.

Keywords: subjective well-being, beliefs, lifestyles, university students

Procedia PDF Downloads 162
919 Mathematical Model and Algorithm for the Berth and Yard Resource Allocation at Seaports

Authors: Ming Liu, Zhihui Sun, Xiaoning Zhang

Abstract:

This paper studies a deterministic container transportation problem, jointly optimizing the berth allocation, quay crane assignment and yard storage allocation at container ports. The problem is formulated as an integer program to coordinate the decisions. Because of the large scale, it is then transformed into a set partitioning formulation, and a framework of branchand- price algorithm is provided to solve it.

Keywords: branch-and-price, container terminal, joint scheduling, maritime logistics

Procedia PDF Downloads 258
918 Statistical Correlation between Ply Mechanical Properties of Composite and Its Effect on Structure Reliability

Authors: S. Zhang, L. Zhang, X. Chen

Abstract:

Due to the large uncertainty on the mechanical properties of FRP (fibre reinforced plastic), the reliability evaluation of FRP structures are currently receiving much attention in industry. However, possible statistical correlation between ply mechanical properties has been so far overlooked, and they are mostly assumed to be independent random variables. In this study, the statistical correlation between ply mechanical properties of uni-directional and plain weave composite is firstly analyzed by a combination of Monte-Carlo simulation and finite element modeling of the FRP unit cell. Large linear correlation coefficients between the in-plane mechanical properties are observed, and the correlation coefficients are heavily dependent on the uncertainty of the fibre volume ratio. It is also observed that the correlation coefficients related to Poisson’s ratio are negative while others are positive. To experimentally achieve the statistical correlation coefficients between in-plane mechanical properties of FRP, all concerned in-plane mechanical properties of the same specimen needs to be known. In-plane shear modulus of FRP is experimentally derived by the approach suggested in the ASTM standard D5379M. Tensile tests are conducted using the same specimens used for the shear test, and due to non-uniform tensile deformation a modification factor is derived by a finite element modeling. Digital image correlation is adopted to characterize the specimen non-uniform deformation. The preliminary experimental results show a good agreement with the numerical analysis on the statistical correlation. Then, failure probability of laminate plates is calculated in cases considering and not considering the statistical correlation, using the Monte-Carlo and Markov Chain Monte-Carlo methods, respectively. The results highlight the importance of accounting for the statistical correlation between ply mechanical properties to achieve accurate failure probability of laminate plates. Furthermore, it is found that for the multi-layer laminate plate, the statistical correlation between the ply elastic properties significantly affects the laminate reliability while the effect of statistical correlation between the ply strength is minimal.

Keywords: failure probability, FRP, reliability, statistical correlation

Procedia PDF Downloads 127
917 Effect of Class V Cavity Configuration and Loading Situation on the Stress Concentration

Authors: Jia-Yu Wu, Chih-Han Chang, Shu-Fen Chuang, Rong-Yang Lai

Abstract:

Objective: This study was to examine the stress distribution of tooth with different class V restorations under different loading situations and geometry by 3D finite element (FE) analysis. `Methods: A series of FE models of mandibular premolars containing class V cavities were constructed using micro-CT. The class V cavities were assigned as the combinations of different cavity depths x occlusal -gingival heights: 1x2, 1x4, 2x2, and 2x4 mm. Three alveolar bone loss conditions were examined: 0, 1, and 2 mm. 200 N force was exerted on the buccal cusp tip under various directions (vertical, V; obliquely 30° angled, O; oblique and parallel the individual occlusal cavity wall, P). A 3-D FE analysis was performed and the von-Mises stress was used to summarize the data of stress distribution and maximum stress. Results: The maximal stress did not vary in different alveolar bone heights. For each geometry, the maximal stress was found at bilateral corners of the cavity. The peak stress of restorations was significantly higher under load P compared to those under loads V and O while the latter two were similar. 2x2mm cavity exhibited significantly increased (2.88 fold) stress under load P compared to that under load V, followed by 1x2mm (2.11 fold), 2x4mm (1.98 fold) and 1x4mm (1.1fold). Conclusion: Load direction causes the greatest impact on the results of stress, while the effect of alveolar bone loss is minor. Load direction parallel to the cavity wall may enhance the stress concentration especially in deep and narrow class cavities.

Keywords: class v restoration, finite element analysis, loading situation, stress

Procedia PDF Downloads 220
916 Study on Eco-Feedback of Thermal Comfort and Cost Efficiency for Low Energy Residence

Authors: Y. Jin, N. Zhang, X. Luo, W. Zhang

Abstract:

China with annual increasing 0.5-0.6 billion squares city residence has brought in enormous energy consumption by HVAC facilities and other appliances. In this regard, governments and researchers are encouraging renewable energy like solar energy, geothermal energy using in houses. However, high cost of equipment and low energy conversion result in a very low acceptable to residents. So what’s the equilibrium point of eco-feedback to reach economic benefit and thermal comfort? That is the main question should be answered. In this paper, the objective is an on-site solar PV and heater house, which has been evaluated as a low energy building. Since HVAC system is considered as main energy consumption equipment, the residence with 24-hour monitoring system set to measure temperature, wind velocity and energy in-out value with no HVAC system for one month of summer and winter. Thermal comfort time period will be analyzed and confirmed; then the air-conditioner will be started within thermal discomfort time for the following one summer and winter month. The same data will be recorded to calculate the average energy consumption monthly for a purpose of whole day thermal comfort. Finally, two analysis work will be done: 1) Original building thermal simulation by computer at design stage with actual measured temperature after construction will be contrastive analyzed; 2) The cost of renewable energy facilities and power consumption converted to cost efficient rate to assess the feasibility of renewable energy input for residence. The results of the experiment showed that a certain deviation exists between actual measured data and simulated one for human thermal comfort, especially in summer period. Moreover, the cost-effectiveness is high for a house in targeting city Guilin now with at least 11 years of cost-covering. The conclusion proves that an eco-feedback of a low energy residence is never only consideration of its energy net value, but also the cost efficiency that is the critical factor to push renewable energy acceptable by the public.

Keywords: cost efficiency, eco-feedback, low energy residence, thermal comfort

Procedia PDF Downloads 230
915 Design of an Artificial Oil Body-Cyanogen Bromide Technology Platform for the Expression of Small Bioactive Peptide, Mastoparan B

Authors: Tzyy-Rong Jinn, Sheng-Kuo Hsieh, Yi-Ching Chung, Feng-Chia Hsieh

Abstract:

In this study, we attempted to develop a recombinant oleosin-based fusion expression strategy in Escherichia coli (E. coli) and coupled with the artificial oil bodies (AOB)-cyanogen bromide technology platform to produce bioactive mastoparan B (MP-B). As reported, the oleosin in AOB system plays a carrier (fusion with target protein), since oleosin possess two amphipathic regions (at the N-terminus and C-terminus), which result in the N-terminus and C-terminus of oleosin could be arranged on the surface of AOB. Thus, the target protein fused to the N-terminus or C-terminus of oleosin which also is exposed on the surface of AOB, and this process will greatly facilitate the subsequent separation and purification of target protein from AOB. In addition, oleosin, a unique structural protein of seed oil bodies, has the added advantage of helping the fused MP-B expressed in inclusion bodies, which can protect from proteolytic degradation. In this work, MP-B was fused to the C-terminus of oleosin and then was expressed in E. coli as an insoluble recombinant protein. As a consequence, we successfully developed a reliable recombinant oleosin-based fusion expression strategy in Escherichia coli and coupled with the artificial oil bodies (AOB)-cyanogen bromide technology platform to produce the small peptide, MP-B. Take together, this platform provides an insight into the production of active MP-B, which will facilitate studies and applications of this peptide in the future.

Keywords: artificial oil bodies, Escherichia coli, Oleosin-fusion protein, Mastoparan-B

Procedia PDF Downloads 429
914 Dynamic Behavior of the Nanostructure of Load-Bearing Biological Materials

Authors: Mahan Qwamizadeh, Kun Zhou, Zuoqi Zhang, Yong Wei Zhang

Abstract:

Typical load-bearing biological materials like bone, mineralized tendon and shell, are biocomposites made from both organic (collagen) and inorganic (biomineral) materials. This amazing class of materials with intrinsic internally designed hierarchical structures show superior mechanical properties with regard to their weak components from which they are formed. Extensive investigations concentrating on static loading conditions have been done to study the biological materials failure. However, most of the damage and failure mechanisms in load-bearing biological materials will occur whenever their structures are exposed to dynamic loading conditions. The main question needed to be answered here is: What is the relation between the layout and architecture of the load-bearing biological materials and their dynamic behavior? In this work, a staggered model has been developed based on the structure of natural materials at nanoscale and Finite Element Analysis (FEA) has been used to study the dynamic behavior of the structure of load-bearing biological materials to answer why the staggered arrangement has been selected by nature to make the nanocomposite structure of most of the biological materials. The results showed that the staggered structures will efficiently attenuate the stress wave rather than the layered structure. Furthermore, such staggered architecture is effectively in charge of utilizing the capacity of the biostructure to resist both normal and shear loads. In this work, the geometrical parameters of the model like the thickness and aspect ratio of the mineral inclusions selected from the typical range of the experimentally observed feature sizes and layout dimensions of the biological materials such as bone and mineralized tendon. Furthermore, the numerical results validated with existing theoretical solutions. Findings of the present work emphasize on the significant effects of dynamic behavior on the natural evolution of load-bearing biological materials and can help scientists to design bioinspired materials in the laboratories.

Keywords: load-bearing biological materials, nanostructure, staggered structure, stress wave decay

Procedia PDF Downloads 423
913 Hydrodynamics of Undulating Ribbon-fin and Its Application in Bionic Underwater Robot

Authors: Zhang Jun, Zhai Shucheng, Bai Yaqiang, Zhang Guoping

Abstract:

The Gymnarchus Niioticus fish(GNF) cruises generally with high efficiency by undulating ribbon-fin propulsion while keeping its body for straight line. The swing amplitude of GNF fins is usually in 60° to 90°, and in normal state the amplitude is close to 90°, only in the control of hovering or swimming at very low speed, the amplitude is smaller (about 60°). It provides inspiration for underwater robot design. In the paper, the unsteady flow of undulating ribbon-fin propulsion is numerical simulated by the dynamic grid technique including spring-based smoothing model and local grid remeshing to adapt to the fin surface significantly deforming, and the swing amplitude of fin ray reaches 850. The numerical simulation method is validated by thrust experiments. The spatial vortex structure and its evolution with phase angle is analyzed. The propulsion mechanism is investigated by comprehensive analysis of the hydrodynamics, vortex structure, and pressure distribution on the fin surface. The numerical results indicates that there are mainly three kinds of vortexes, i.e. streamwise vortex, crescent vortex and toroidal vortex. The intensity of streamwise vortex is the strongest among all kinds of vortexes. Streamwise vortexes and crescent vortexes all alternately distribute on the two sides of mid-sagittal plane. Inside the crescent vortexes is high-speed flow, while outside is low-speed flow. The crescent vortexes mainly induce high-speed axial jet, which produces the primary thrust. This is hydrodynamic mechanism undulating ribbon-fin propulsion. The streamwise vortexes mainly induce the vertical jet, which generates the primary heave force. The effect on hydrodynamics of main geometry and movement parameters including wave length, amplitude and advanced coefficients is investigated. A bionic underwater robot with bilateral undulating ribbon-fins is designed, and its navigation performance and maneuverability are measured.

Keywords: bionic propulsion, mobile robot, underwater robot, undulating ribbon-fins

Procedia PDF Downloads 252
912 Design of a Virtual Reality System for Children with Developmental Coordination Disorder

Authors: Ya-Ju Ju, Li-Chen Yang, Yi-Chun Du, Rong-Ju Cherng

Abstract:

Introduction: It is estimated that 5-6% of school-aged children may be diagnosed to have developmental coordination disorder (DCD). Children with DCD are characterized with motor skill difficulty which cannot be explained by any medical or intellectual reasons. Such motor difficulties limit children’s participation to sports activity, further affect their physical fitness, cardiopulmonary function and balance, and may lead to obesity. The purpose of the project was to develop an exergaming system for children with DCD aiming to improve their physical fitness, cardiopulmonary function and balance ability. Methods: This study took five steps to build up the system: system planning, tasks selection, tasks programming, system integration and usability test. The system basically adopted virtual reality technique to integrate self-developed training programs. The training programs were developed to brainstorm among team members and after literature review. The selected tasks for training in the system were a combination of fundamental movement tor skill. Results and Discussion: Based on the theory of motor development, we design the training task from easy ones to hard ones, from single tasks to dual tasks. The tasks included walking, sit to stand, jumping, kicking, weight shifting, side jumping and their combination. Preliminary study showed that the tasks presented an order of development. Further study is needed to examine its effect on motor skill and cardiovascular fitness in children with DCD.

Keywords: virtual reality, virtual reality system, developmental coordination disorder, children

Procedia PDF Downloads 85
911 Advances in Medication Reconciliation Tools

Authors: Zixuan Liu, Xin Zhang, Kexin He

Abstract:

In the context of widespread prevalence of multiple diseases, medication safety has become a highly concerned issue affecting patient safety. Medication reconciliation plays a vital role in preventing potential medication risks. However, in medical practice, medication reconciliation faces various challenges, and there is a wide variety of medication reconciliation tools, making the selection of appropriate tools somewhat difficult. The article introduces and analyzes the currently available medication reconciliation tools, providing a reference for healthcare professionals to choose and apply the appropriate medication reconciliation tools.

Keywords: patient safety, medication reconciliation, tools, review

Procedia PDF Downloads 44
910 Towards the Prediction of Aesthetic Requirements for Women’s Apparel Product

Authors: Yu Zhao, Min Zhang, Yuanqian Wang, Qiuyu Yu

Abstract:

The prediction of aesthetics of apparel is helpful for the development of a new type of apparel. This study is to build the quantitative relationship between the aesthetics and its design parameters. In particular, women’s pants have been preliminarily studied. This aforementioned relationship has been carried out by statistical analysis. The contributions of this study include the development of a more personalized apparel design mechanism and the provision of some empirical knowledge for the development of other products in the aspect of aesthetics.

Keywords: aesthetics, crease line, cropped straight leg pants, knee width

Procedia PDF Downloads 156