Search results for: Weibull bi-parameter probability function
6064 A Stochastic Diffusion Process Based on the Two-Parameters Weibull Density Function
Authors: Meriem Bahij, Ahmed Nafidi, Boujemâa Achchab, Sílvio M. A. Gama, José A. O. Matos
Abstract:
Stochastic modeling concerns the use of probability to model real-world situations in which uncertainty is present. Therefore, the purpose of stochastic modeling is to estimate the probability of outcomes within a forecast, i.e. to be able to predict what conditions or decisions might happen under different situations. In the present study, we present a model of a stochastic diffusion process based on the bi-Weibull distribution function (its trend is proportional to the bi-Weibull probability density function). In general, the Weibull distribution has the ability to assume the characteristics of many different types of distributions. This has made it very popular among engineers and quality practitioners, who have considered it the most commonly used distribution for studying problems such as modeling reliability data, accelerated life testing, and maintainability modeling and analysis. In this work, we start by obtaining the probabilistic characteristics of this model, as the explicit expression of the process, its trends, and its distribution by transforming the diffusion process in a Wiener process as shown in the Ricciaardi theorem. Then, we develop the statistical inference of this model using the maximum likelihood methodology. Finally, we analyse with simulated data the computational problems associated with the parameters, an issue of great importance in its application to real data with the use of the convergence analysis methods. Overall, the use of a stochastic model reflects only a pragmatic decision on the part of the modeler. According to the data that is available and the universe of models known to the modeler, this model represents the best currently available description of the phenomenon under consideration.Keywords: diffusion process, discrete sampling, likelihood estimation method, simulation, stochastic diffusion process, trends functions, bi-parameters weibull density function
Procedia PDF Downloads 3086063 Exponentiated Transmuted Weibull Distribution: A Generalization of the Weibull Probability Distribution
Authors: Abd El Hady N. Ebraheim
Abstract:
This paper introduces a new generalization of the two parameter Weibull distribution. To this end, the quadratic rank transmutation map has been used. This new distribution is named exponentiated transmuted Weibull (ETW) distribution. The ETW distribution has the advantage of being capable of modeling various shapes of aging and failure criteria. Furthermore, eleven lifetime distributions such as the Weibull, exponentiated Weibull, Rayleigh and exponential distributions, among others follow as special cases. The properties of the new model are discussed and the maximum likelihood estimation is used to estimate the parameters. Explicit expressions are derived for the quantiles. The moments of the distribution are derived, and the order statistics are examined.Keywords: exponentiated, inversion method, maximum likelihood estimation, transmutation map
Procedia PDF Downloads 5656062 Survival and Hazard Maximum Likelihood Estimator with Covariate Based on Right Censored Data of Weibull Distribution
Authors: Al Omari Mohammed Ahmed
Abstract:
This paper focuses on Maximum Likelihood Estimator with Covariate. Covariates are incorporated into the Weibull model. Under this regression model with regards to maximum likelihood estimator, the parameters of the covariate, shape parameter, survival function and hazard rate of the Weibull regression distribution with right censored data are estimated. The mean square error (MSE) and absolute bias are used to compare the performance of Weibull regression distribution. For the simulation comparison, the study used various sample sizes and several specific values of the Weibull shape parameter.Keywords: weibull regression distribution, maximum likelihood estimator, survival function, hazard rate, right censoring
Procedia PDF Downloads 4416061 Wind Power Density and Energy Conversion in Al-Adwas Ras-Huwirah Area, Hadhramout, Yemen
Authors: Bawadi M. A., Abbad J. A., Baras E. A.
Abstract:
This study was conducted to assess wind energy resources in the area of Al-Adwas Ras-Huwirah Hadhramout Governorate, Yemen, through using statistical calculations, the Weibull model and SPSS program were used in the monthly and the annual to analyze the wind energy resource; the convergence of wind energy; turbine efficiency in the selected area. Wind speed data was obtained from NASA over a period of ten years (2010-2019) and at heights of 50 m above ground level. Probability distributions derived from wind data and their distribution parameters are determined. The density probability function is fitted to the measured probability distributions on an annual basis. This study also involves locating preliminary sites for wind farms using Geographic Information System (GIS) technology. This further leads to maximizing the output energy from the most suitable wind turbines in the proposed site.Keywords: wind speed analysis, Yemen wind energy, wind power density, Weibull distribution model
Procedia PDF Downloads 836060 An Assessment of Wind Energy in Sanar Village in North of Iran Using Weibull Function
Authors: Ehsanolah Assareh, Mojtaba Biglari, Mojtaba Nedaei
Abstract:
Sanar village in north of Iran is a remote region with difficult access to electricity, grid and water supply. Thus the aim of this research is to evaluate the potential of wind as a power source either for electricity generation or for water pumping. In this study the statistical analysis has been performed by Weibull distribution function. The results show that the Weibull distribution has fitted the wind data very well. Also it has been demonstrated that wind speed at 40 m height is ranged from 1.75 m/s in Dec to 3.28 m/s in Aug with average value of 2.69 m/s. In this research, different wind speed characteristics such as turbulence intensity, wind direction, monthly air temperature, humidity wind power density and other related parameters have been investigated. Finally it was concluded that the wind energy in the Sanar village may be explored by employing modern wind turbines that require very lower start-up speeds.Keywords: wind energy, wind turbine, weibull, Sanar village, Iran
Procedia PDF Downloads 5236059 Feasibility Study of Wind Energy Potential in Turkey: Case Study of Catalca District in Istanbul
Authors: Mohammed Wadi, Bedri Kekezoglu, Mustafa Baysal, Mehmet Rida Tur, Abdulfetah Shobole
Abstract:
This paper investigates the technical evaluation of the wind potential for present and future investments in Turkey taking into account the feasibility of sites, installments, operation, and maintenance. This evaluation based on the hourly measured wind speed data for the three years 2008–2010 at 30 m height for Çatalca district. These data were obtained from national meteorology station in Istanbul–Republic of Turkey are analyzed in order to evaluate the feasibility of wind power potential and to assure supreme assortment of wind turbines installing for the area of interest. Furthermore, the data are extrapolated and analyzed at 60 m and 80 m regarding the variability of roughness factor. Weibull bi-parameter probability function is used to approximate monthly and annually wind potential and power density based on three calculation methods namely, the approximated, the graphical and the energy pattern factor methods. The annual mean wind power densities were to be 400.31, 540.08 and 611.02 W/m² for 30, 60, and 80 m heights respectively. Simulation results prove that the analyzed area is an appropriate place for constructing large-scale wind farms.Keywords: wind potential in Turkey, Weibull bi-parameter probability function, the approximated method, the graphical method, the energy pattern factor method, capacity factor
Procedia PDF Downloads 2596058 A Hazard Rate Function for the Time of Ruin
Authors: Sule Sahin, Basak Bulut Karageyik
Abstract:
This paper introduces a hazard rate function for the time of ruin to calculate the conditional probability of ruin for very small intervals. We call this function the force of ruin (FoR). We obtain the expected time of ruin and conditional expected time of ruin from the exact finite time ruin probability with exponential claim amounts. Then we introduce the FoR which gives the conditional probability of ruin and the condition is that ruin has not occurred at time t. We analyse the behavior of the FoR function for different initial surpluses over a specific time interval. We also obtain FoR under the excess of loss reinsurance arrangement and examine the effect of reinsurance on the FoR.Keywords: conditional time of ruin, finite time ruin probability, force of ruin, reinsurance
Procedia PDF Downloads 4056057 Adaptive CFAR Analysis for Non-Gaussian Distribution
Authors: Bouchemha Amel, Chachoui Takieddine, H. Maalem
Abstract:
Automatic detection of targets in a modern communication system RADAR is based primarily on the concept of adaptive CFAR detector. To have an effective detection, we must minimize the influence of disturbances due to the clutter. The detection algorithm adapts the CFAR detection threshold which is proportional to the average power of the clutter, maintaining a constant probability of false alarm. In this article, we analyze the performance of two variants of adaptive algorithms CA-CFAR and OS-CFAR and we compare the thresholds of these detectors in the marine environment (no-Gaussian) with a Weibull distribution.Keywords: CFAR, threshold, clutter, distribution, Weibull, detection
Procedia PDF Downloads 5886056 A Data Driven Approach for the Degradation of a Lithium-Ion Battery Based on Accelerated Life Test
Authors: Alyaa M. Younes, Nermine Harraz, Mohammad H. Elwany
Abstract:
Lithium ion batteries are currently used for many applications including satellites, electric vehicles and mobile electronics. Their ability to store relatively large amount of energy in a limited space make them most appropriate for critical applications. Evaluation of the life of these batteries and their reliability becomes crucial to the systems they support. Reliability of Li-Ion batteries has been mainly considered based on its lifetime. However, another important factor that can be considered critical in many applications such as in electric vehicles is the cycle duration. The present work presents the results of an experimental investigation on the degradation behavior of a Laptop Li-ion battery (type TKV2V) and the effect of applied load on the battery cycle time. The reliability was evaluated using an accelerated life test. Least squares linear regression with median rank estimation was used to estimate the Weibull distribution parameters needed for the reliability functions estimation. The probability density function, failure rate and reliability function under each of the applied loads were evaluated and compared. An inverse power model is introduced that can predict cycle time at any stress level given.Keywords: accelerated life test, inverse power law, lithium-ion battery, reliability evaluation, Weibull distribution
Procedia PDF Downloads 1686055 Modified Weibull Approach for Bridge Deterioration Modelling
Authors: Niroshan K. Walgama Wellalage, Tieling Zhang, Richard Dwight
Abstract:
State-based Markov deterioration models (SMDM) sometimes fail to find accurate transition probability matrix (TPM) values, and hence lead to invalid future condition prediction or incorrect average deterioration rates mainly due to drawbacks of existing nonlinear optimization-based algorithms and/or subjective function types used for regression analysis. Furthermore, a set of separate functions for each condition state with age cannot be directly derived by using Markov model for a given bridge element group, which however is of interest to industrial partners. This paper presents a new approach for generating Homogeneous SMDM model output, namely, the Modified Weibull approach, which consists of a set of appropriate functions to describe the percentage condition prediction of bridge elements in each state. These functions are combined with Bayesian approach and Metropolis Hasting Algorithm (MHA) based Markov Chain Monte Carlo (MCMC) simulation technique for quantifying the uncertainty in model parameter estimates. In this study, factors contributing to rail bridge deterioration were identified. The inspection data for 1,000 Australian railway bridges over 15 years were reviewed and filtered accordingly based on the real operational experience. Network level deterioration model for a typical bridge element group was developed using the proposed Modified Weibull approach. The condition state predictions obtained from this method were validated using statistical hypothesis tests with a test data set. Results show that the proposed model is able to not only predict the conditions in network-level accurately but also capture the model uncertainties with given confidence interval.Keywords: bridge deterioration modelling, modified weibull approach, MCMC, metropolis-hasting algorithm, bayesian approach, Markov deterioration models
Procedia PDF Downloads 7276054 Residual Lifetime Estimation for Weibull Distribution by Fusing Expert Judgements and Censored Data
Authors: Xiang Jia, Zhijun Cheng
Abstract:
The residual lifetime of a product is the operation time between the current time and the time point when the failure happens. The residual lifetime estimation is rather important in reliability analysis. To predict the residual lifetime, it is necessary to assume or verify a particular distribution that the lifetime of the product follows. And the two-parameter Weibull distribution is frequently adopted to describe the lifetime in reliability engineering. Due to the time constraint and cost reduction, a life testing experiment is usually terminated before all the units have failed. Then the censored data is usually collected. In addition, other information could also be obtained for reliability analysis. The expert judgements are considered as it is common that the experts could present some useful information concerning the reliability. Therefore, the residual lifetime is estimated for Weibull distribution by fusing the censored data and expert judgements in this paper. First, the closed-forms concerning the point estimate and confidence interval for the residual lifetime under the Weibull distribution are both presented. Next, the expert judgements are regarded as the prior information and how to determine the prior distribution of Weibull parameters is developed. For completeness, the cases that there is only one, and there are more than two expert judgements are both focused on. Further, the posterior distribution of Weibull parameters is derived. Considering that it is difficult to derive the posterior distribution of residual lifetime, a sample-based method is proposed to generate the posterior samples of Weibull parameters based on the Monte Carlo Markov Chain (MCMC) method. And these samples are used to obtain the Bayes estimation and credible interval for the residual lifetime. Finally, an illustrative example is discussed to show the application. It demonstrates that the proposed method is rather simple, satisfactory, and robust.Keywords: expert judgements, information fusion, residual lifetime, Weibull distribution
Procedia PDF Downloads 1426053 Weibull Cumulative Distribution Function Analysis with Life Expectancy Endurance Test Result of Power Window Switch
Authors: Miky Lee, K. Kim, D. Lim, D. Cho
Abstract:
This paper presents the planning, rationale for test specification derivation, sampling requirements, test facilities, and result analysis used to conduct lifetime expectancy endurance tests on power window switches (PWS) considering thermally induced mechanical stress under diurnal cyclic temperatures during normal operation (power cycling). The detail process of analysis and test results on the selected PWS set were discussed in this paper. A statistical approach to ‘life time expectancy’ was given to the measurement standards dealing with PWS lifetime determination through endurance tests. The approach choice, within the framework of the task, was explained. The present task was dedicated to voltage drop measurement to derive lifetime expectancy while others mostly consider contact or surface resistance. The measurements to perform and the main instruments to measure were fully described accordingly. The failure data from tests were analyzed to conclude lifetime expectancy through statistical method using Weibull cumulative distribution function. The first goal of this task is to develop realistic worst case lifetime endurance test specification because existing large number of switch test standards cannot induce degradation mechanism which makes the switches less reliable. 2nd goal is to assess quantitative reliability status of PWS currently manufactured based on test specification newly developed thru this project. The last and most important goal is to satisfy customer’ requirement regarding product reliability.Keywords: power window switch, endurance test, Weibull function, reliability, degradation mechanism
Procedia PDF Downloads 2356052 Mixtures of Length-Biased Weibull Distributions for Loss Severity Modelling
Authors: Taehan Bae
Abstract:
In this paper, a class of length-biased Weibull mixtures is presented to model loss severity data. The proposed model generalizes the Erlang mixtures with the common scale parameter, and it shares many important modelling features, such as flexibility to fit various data distribution shapes and weak-denseness in the class of positive continuous distributions, with the Erlang mixtures. We show that the asymptotic tail estimate of the length-biased Weibull mixture is Weibull-type, which makes the model effective to fit loss severity data with heavy-tailed observations. A method of statistical estimation is discussed with applications on real catastrophic loss data sets.Keywords: Erlang mixture, length-biased distribution, transformed gamma distribution, asymptotic tail estimate, EM algorithm, expectation-maximization algorithm
Procedia PDF Downloads 2246051 Bayesian Reliability of Weibull Regression with Type-I Censored Data
Authors: Al Omari Moahmmed Ahmed
Abstract:
In the Bayesian, we developed an approach by using non-informative prior with covariate and obtained by using Gauss quadrature method to estimate the parameters of the covariate and reliability function of the Weibull regression distribution with Type-I censored data. The maximum likelihood seen that the estimators obtained are not available in closed forms, although they can be solved it by using Newton-Raphson methods. The comparison criteria are the MSE and the performance of these estimates are assessed using simulation considering various sample size, several specific values of shape parameter. The results show that Bayesian with non-informative prior is better than Maximum Likelihood Estimator.Keywords: non-informative prior, Bayesian method, type-I censoring, Gauss quardature
Procedia PDF Downloads 5036050 Data Driven Infrastructure Planning for Offshore Wind farms
Authors: Isha Saxena, Behzad Kazemtabrizi, Matthias C. M. Troffaes, Christopher Crabtree
Abstract:
The calculations done at the beginning of the life of a wind farm are rarely reliable, which makes it important to conduct research and study the failure and repair rates of the wind turbines under various conditions. This miscalculation happens because the current models make a simplifying assumption that the failure/repair rate remains constant over time. This means that the reliability function is exponential in nature. This research aims to create a more accurate model using sensory data and a data-driven approach. The data cleaning and data processing is done by comparing the Power Curve data of the wind turbines with SCADA data. This is then converted to times to repair and times to failure timeseries data. Several different mathematical functions are fitted to the times to failure and times to repair data of the wind turbine components using Maximum Likelihood Estimation and the Posterior expectation method for Bayesian Parameter Estimation. Initial results indicate that two parameter Weibull function and exponential function produce almost identical results. Further analysis is being done using the complex system analysis considering the failures of each electrical and mechanical component of the wind turbine. The aim of this project is to perform a more accurate reliability analysis that can be helpful for the engineers to schedule maintenance and repairs to decrease the downtime of the turbine.Keywords: reliability, bayesian parameter inference, maximum likelihood estimation, weibull function, SCADA data
Procedia PDF Downloads 866049 Analysis of Reliability of Mining Shovel Using Weibull Model
Authors: Anurag Savarnya
Abstract:
The reliability of the various parts of electric mining shovel has been assessed through the application of Weibull Model. The study was initiated to find reliability of components of electric mining shovel. The paper aims to optimize the reliability of components and increase the life cycle of component. A multilevel decomposition of the electric mining shovel was done and maintenance records were used to evaluate the failure data and appropriate system characterization was done to model the system in terms of reasonable number of components. The approach used develops a mathematical model to assess the reliability of the electric mining shovel components. The model can be used to predict reliability of components of the hydraulic mining shovel and system performance. Reliability is an inherent attribute to a system. When the life-cycle costs of a system are being analyzed, reliability plays an important role as a major driver of these costs and has considerable influence on system performance. It is an iterative process that begins with specification of reliability goals consistent with cost and performance objectives. The data were collected from an Indian open cast coal mine and the reliability of various components of the electric mining shovel has been assessed by following a Weibull Model.Keywords: reliability, Weibull model, electric mining shovel
Procedia PDF Downloads 5136048 Wind Power Potential in Selected Algerian Sahara Regions
Authors: M. Dahbi, M. Sellam, A. Benatiallah, A. Harrouz
Abstract:
The wind energy is one of the most significant and rapidly developing renewable energy sources in the world and it provides a clean energy resource, which is a promising alternative in the short term in Algeria The main purpose of this paper is to compared and discuss the wind power potential in three sites located in sahara of Algeria (south west of Algeria) and to perform an investigation on the wind power potential of desert of Algeria. In this comparative, wind speed frequency distributions data obtained from the web site SODA.com are used to calculate the average wind speed and the available wind power. The Weibull density function has been used to estimate the monthly power wind density and to determine the characteristics of monthly parameters of Weibull for these three sites. The annual energy produced by the BWC XL.1 1KW wind machine is obtained and compared. The analysis shows that in the south west of Algeria, at 10 m height, the available wind power was found to vary between 136.59 W/m2 and 231.04 W/m2. The highest potential wind power was found at Adrar, with 21h per day and the mean wind speed is above 6 m/s. Besides, it is found that the annual wind energy generated by that machine lie between 512 KWh and 1643.2 kWh. However, the wind resource appears to be suitable for power production on the sahara and it could provide a viable substitute to diesel oil for irrigation pumps and rural electricity generation.Keywords: Weibull distribution, parameters of Wiebull, wind energy, wind turbine, operating hours
Procedia PDF Downloads 4956047 Additive Weibull Model Using Warranty Claim and Finite Element Analysis Fatigue Analysis
Authors: Kanchan Mondal, Dasharath Koulage, Dattatray Manerikar, Asmita Ghate
Abstract:
This paper presents an additive reliability model using warranty data and Finite Element Analysis (FEA) data. Warranty data for any product gives insight to its underlying issues. This is often used by Reliability Engineers to build prediction model to forecast failure rate of parts. But there is one major limitation in using warranty data for prediction. Warranty periods constitute only a small fraction of total lifetime of a product, most of the time it covers only the infant mortality and useful life zone of a bathtub curve. Predicting with warranty data alone in these cases is not generally provide results with desired accuracy. Failure rate of a mechanical part is driven by random issues initially and wear-out or usage related issues at later stages of the lifetime. For better predictability of failure rate, one need to explore the failure rate behavior at wear out zone of a bathtub curve. Due to cost and time constraints, it is not always possible to test samples till failure, but FEA-Fatigue analysis can provide the failure rate behavior of a part much beyond warranty period in a quicker time and at lesser cost. In this work, the authors proposed an Additive Weibull Model, which make use of both warranty and FEA fatigue analysis data for predicting failure rates. It involves modeling of two data sets of a part, one with existing warranty claims and other with fatigue life data. Hazard rate base Weibull estimation has been used for the modeling the warranty data whereas S-N curved based Weibull parameter estimation is used for FEA data. Two separate Weibull models’ parameters are estimated and combined to form the proposed Additive Weibull Model for prediction.Keywords: bathtub curve, fatigue, FEA, reliability, warranty, Weibull
Procedia PDF Downloads 736046 Classical and Bayesian Inference of the Generalized Log-Logistic Distribution with Applications to Survival Data
Authors: Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa
Abstract:
A generalized log-logistic distribution with variable shapes of the hazard rate was introduced and studied, extending the log-logistic distribution by adding an extra parameter to the classical distribution, leading to greater flexibility in analysing and modeling various data types. The proposed distribution has a large number of well-known lifetime special sub-models such as; Weibull, log-logistic, exponential, and Burr XII distributions. Its basic mathematical and statistical properties were derived. The method of maximum likelihood was adopted for estimating the unknown parameters of the proposed distribution, and a Monte Carlo simulation study is carried out to assess the behavior of the estimators. The importance of this distribution is that its tendency to model both monotone (increasing and decreasing) and non-monotone (unimodal and bathtub shape) or reversed “bathtub” shape hazard rate functions which are quite common in survival and reliability data analysis. Furthermore, the flexibility and usefulness of the proposed distribution are illustrated in a real-life data set and compared to its sub-models; Weibull, log-logistic, and BurrXII distributions and other parametric survival distributions with 3-parmaeters; like the exponentiated Weibull distribution, the 3-parameter lognormal distribution, the 3- parameter gamma distribution, the 3-parameter Weibull distribution, and the 3-parameter log-logistic (also known as shifted log-logistic) distribution. The proposed distribution provided a better fit than all of the competitive distributions based on the goodness-of-fit tests, the log-likelihood, and information criterion values. Finally, Bayesian analysis and performance of Gibbs sampling for the data set are also carried out.Keywords: hazard rate function, log-logistic distribution, maximum likelihood estimation, generalized log-logistic distribution, survival data, Monte Carlo simulation
Procedia PDF Downloads 2026045 A Bathtub Curve from Nonparametric Model
Authors: Eduardo C. Guardia, Jose W. M. Lima, Afonso H. M. Santos
Abstract:
This paper presents a nonparametric method to obtain the hazard rate “Bathtub curve” for power system components. The model is a mixture of the three known phases of a component life, the decreasing failure rate (DFR), the constant failure rate (CFR) and the increasing failure rate (IFR) represented by three parametric Weibull models. The parameters are obtained from a simultaneous fitting process of the model to the Kernel nonparametric hazard rate curve. From the Weibull parameters and failure rate curves the useful lifetime and the characteristic lifetime were defined. To demonstrate the model the historic time-to-failure of distribution transformers were used as an example. The resulted “Bathtub curve” shows the failure rate for the equipment lifetime which can be applied in economic and replacement decision models.Keywords: bathtub curve, failure analysis, lifetime estimation, parameter estimation, Weibull distribution
Procedia PDF Downloads 4466044 Validation of Escherichia coli O157:H7 Inactivation on Apple-Carrot Juice Treated with Manothermosonication by Kinetic Models
Authors: Ozan Kahraman, Hao Feng
Abstract:
Several models such as Weibull, Modified Gompertz, Biphasic linear, and Log-logistic models have been proposed in order to describe non-linear inactivation kinetics and used to fit non-linear inactivation data of several microorganisms for inactivation by heat, high pressure processing or pulsed electric field. First-order kinetic parameters (D-values and z-values) have often been used in order to identify microbial inactivation by non-thermal processing methods such as ultrasound. Most ultrasonic inactivation studies employed first-order kinetic parameters (D-values and z-values) in order to describe the reduction on microbial survival count. This study was conducted to analyze the E. coli O157:H7 inactivation data by using five microbial survival models (First-order, Weibull, Modified Gompertz, Biphasic linear and Log-logistic). First-order, Weibull, Modified Gompertz, Biphasic linear and Log-logistic kinetic models were used for fitting inactivation curves of Escherichia coli O157:H7. The residual sum of squares and the total sum of squares criteria were used to evaluate the models. The statistical indices of the kinetic models were used to fit inactivation data for E. coli O157:H7 by MTS at three temperatures (40, 50, and 60 0C) and three pressures (100, 200, and 300 kPa). Based on the statistical indices and visual observations, the Weibull and Biphasic models were best fitting of the data for MTS treatment as shown by high R2 values. The non-linear kinetic models, including the Modified Gompertz, First-order, and Log-logistic models did not provide any better fit to data from MTS compared the Weibull and Biphasic models. It was observed that the data found in this study did not follow the first-order kinetics. It is possibly because of the cells which are sensitive to ultrasound treatment were inactivated first, resulting in a fast inactivation period, while those resistant to ultrasound were killed slowly. The Weibull and biphasic models were found as more flexible in order to determine the survival curves of E. coli O157:H7 treated by MTS on apple-carrot juice.Keywords: Weibull, Biphasic, MTS, kinetic models, E.coli O157:H7
Procedia PDF Downloads 3666043 Reliability Indices Evaluation of SEIG Rotor Core Magnetization with Minimum Capacitive Excitation for WECs
Authors: Lokesh Varshney, R. K. Saket
Abstract:
This paper presents reliability indices evaluation of the rotor core magnetization of the induction motor operated as a self-excited induction generator by using probability distribution approach and Monte Carlo simulation. Parallel capacitors with calculated minimum capacitive value across the terminals of the induction motor operating as a SEIG with unregulated shaft speed have been connected during the experimental study. A three phase, 4 poles, 50Hz, 5.5 hp, 12.3A, 230V induction motor coupled with DC Shunt Motor was tested in the electrical machine laboratory with variable reactive loads. Based on this experimental study, it is possible to choose a reliable induction machine operating as a SEIG for unregulated renewable energy application in remote area or where grid is not available. Failure density function, cumulative failure distribution function, survivor function, hazard model, probability of success and probability of failure for reliability evaluation of the three phase induction motor operating as a SEIG have been presented graphically in this paper.Keywords: residual magnetism, magnetization curve, induction motor, self excited induction generator, probability distribution, Monte Carlo simulation
Procedia PDF Downloads 5586042 Predictive Models of Ruin Probability in Retirement Withdrawal Strategies
Authors: Yuanjin Liu
Abstract:
Retirement withdrawal strategies are very important to minimize the probability of ruin in retirement. The ruin probability is modeled as a function of initial withdrawal age, gender, asset allocation, inflation rate, and initial withdrawal rate. The ruin probability is obtained based on the 2019 period life table for the Social Security, IRS Required Minimum Distribution (RMD) Worksheets, US historical bond and equity returns, and inflation rates using simulation. Several popular machine learning algorithms of the generalized additive model, random forest, support vector machine, extreme gradient boosting, and artificial neural network are built. The model validation and selection are based on the test errors using hyperparameter tuning and train-test split. The optimal model is recommended for retirees to monitor the ruin probability. The optimal withdrawal strategy can be obtained based on the optimal predictive model.Keywords: ruin probability, retirement withdrawal strategies, predictive models, optimal model
Procedia PDF Downloads 746041 A Double Acceptance Sampling Plan for Truncated Life Test Having Exponentiated Transmuted Weibull Distribution
Authors: A. D. Abdellatif, A. N. Ahmed, M. E. Abdelaziz
Abstract:
The main purpose of this paper is to design a double acceptance sampling plan under the time truncated life test when the product lifetime follows an exponentiated transmuted Weibull distribution. Here, the motive is to meet both the consumer’s risk and producer’s risk simultaneously at the specified quality levels, while the termination time is specified. A comparison between the results of the double and single acceptance sampling plans is conducted. We demonstrate the applicability of our results to real data sets.Keywords: double sampling plan, single sampling plan, producer’s risk, consumer’s risk, exponentiated transmuted weibull distribution, time truncated experiment, single, double, Marshal-Olkin
Procedia PDF Downloads 4876040 Simple Procedure for Probability Calculation of Tensile Crack Occurring in Rigid Pavement: A Case Study
Authors: Aleš Florian, Lenka Ševelová, Jaroslav Žák
Abstract:
Formation of tensile cracks in concrete slabs of rigid pavement can be (among others) the initiation point of the other, more serious failures which can ultimately lead to complete degradation of the concrete slab and thus the whole pavement. Two measures can be used for reliability assessment of this phenomenon - the probability of failure and/or the reliability index. Different methods can be used for their calculation. The simple ones are called moment methods and simulation techniques. Two methods - FOSM Method and Simple Random Sampling Method - are verified and their comparison is performed. The influence of information about the probability distribution and the statistical parameters of input variables as well as of the limit state function on the calculated reliability index and failure probability are studied in three points on the lower surface of concrete slabs of the older type of rigid pavement formerly used in the Czech Republic.Keywords: failure, pavement, probability, reliability index, simulation, tensile crack
Procedia PDF Downloads 5466039 Exact Solutions for Steady Response of Nonlinear Systems under Non-White Excitation
Authors: Yaping Zhao
Abstract:
In the present study, the exact solutions for the steady response of quasi-linear systems under non-white wide-band random excitation are considered by means of the stochastic averaging method. The non linearity of the systems contains the power-law damping and the cross-product term of the power-law damping and displacement. The drift and diffusion coefficients of the Fokker-Planck-Kolmogorov (FPK) equation after averaging are obtained by a succinct approach. After solving the averaged FPK equation, the joint probability density function and the marginal probability density function in steady state are attained. In the process of resolving, the eigenvalue problem of ordinary differential equation is handled by integral equation method. Some new results are acquired and the novel method to deal with the problems in nonlinear random vibration is proposed.Keywords: random vibration, stochastic averaging method, FPK equation, transition probability density
Procedia PDF Downloads 5036038 Informality, Trade Facilitation, and Trade: Evidence from Guinea-Bissau
Authors: Julio Vicente Cateia
Abstract:
This paper aims to assess the role of informality and trade facilitation on the export probability of Guinea-Bissau. We include informality in the Féchet function, which gives the expression for the country's supply probability. We find that Guinea-Bissau is about 7.2% less likely to export due to the 1% increase in informality. The export's probability increases by about 1.7%, 4%, and 1.1% due to a 1% increase in trade facilitation, R&D stock, and year of education. These results are significant at the usual levels. We suggest a development agenda aimed at reducing the level of informality in this country.Keywords: development, trade, informality, trade facilitation, economy of Guinea-Bissau
Procedia PDF Downloads 1746037 Characteristic Function in Estimation of Probability Distribution Moments
Authors: Vladimir S. Timofeev
Abstract:
In this article the problem of distributional moments estimation is considered. The new approach of moments estimation based on usage of the characteristic function is proposed. By statistical simulation technique, author shows that new approach has some robust properties. For calculation of the derivatives of characteristic function there is used numerical differentiation. Obtained results confirmed that author’s idea has a certain working efficiency and it can be recommended for any statistical applications.Keywords: characteristic function, distributional moments, robustness, outlier, statistical estimation problem, statistical simulation
Procedia PDF Downloads 5046036 Quantum Mechanics Approach for Ruin Probability
Authors: Ahmet Kaya
Abstract:
Incoming cash flows and outgoing claims play an important role to determine how is companies’ profit or loss. In this matter, ruin probability provides to describe vulnerability of the companies against ruin. Quantum mechanism is one of the significant approaches to model ruin probability as stochastically. Using the Hamiltonian method, we have performed formalisation of quantum mechanics < x|e-ᵗᴴ|x' > and obtained the transition probability of 2x2 and 3x3 matrix as traditional and eigenvector basis where A is a ruin operator and H|x' > is a Schroedinger equation. This operator A and Schroedinger equation are defined by a Hamiltonian matrix H. As a result, probability of not to be in ruin can be simulated and calculated as stochastically.Keywords: ruin probability, quantum mechanics, Hamiltonian technique, operator approach
Procedia PDF Downloads 3416035 The Control of Wall Thickness Tolerance during Pipe Purchase Stage Based on Reliability Approach
Authors: Weichao Yu, Kai Wen, Weihe Huang, Yang Yang, Jing Gong
Abstract:
Metal-loss corrosion is a major threat to the safety and integrity of gas pipelines as it may result in the burst failures which can cause severe consequences that may include enormous economic losses as well as the personnel casualties. Therefore, it is important to ensure the corroding pipeline integrity and efficiency, considering the value of wall thickness, which plays an important role in the failure probability of corroding pipeline. Actually, the wall thickness is controlled during pipe purchase stage. For example, the API_SPEC_5L standard regulates the allowable tolerance of the wall thickness from the specified value during the pipe purchase. The allowable wall thickness tolerance will be used to determine the wall thickness distribution characteristic such as the mean value, standard deviation and distribution. Taking the uncertainties of the input variables in the burst limit-state function into account, the reliability approach rather than the deterministic approach will be used to evaluate the failure probability. Moreover, the cost of pipe purchase will be influenced by the allowable wall thickness tolerance. More strict control of the wall thickness usually corresponds to a higher pipe purchase cost. Therefore changing the wall thickness tolerance will vary both the probability of a burst failure and the cost of the pipe. This paper describes an approach to optimize the wall thickness tolerance considering both the safety and economy of corroding pipelines. In this paper, the corrosion burst limit-state function in Annex O of CSAZ662-7 is employed to evaluate the failure probability using the Monte Carlo simulation technique. By changing the allowable wall thickness tolerance, the parameters of the wall thickness distribution in the limit-state function will be changed. Using the reliability approach, the corresponding variations in the burst failure probability will be shown. On the other hand, changing the wall thickness tolerance will lead to a change in cost in pipe purchase. Using the variation of the failure probability and pipe cost caused by changing wall thickness tolerance specification, the optimal allowable tolerance can be obtained, and used to define pipe purchase specifications.Keywords: allowable tolerance, corroding pipeline segment, operation cost, production cost, reliability approach
Procedia PDF Downloads 396