Search results for: Volcanic rocks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 401

Search results for: Volcanic rocks

311 Modeling of Gas Extraction from a Partially Gas-Saturated Porous Gas Hydrate Reservoir with Respect to Thermal Interactions with Surrounding Rocks

Authors: Angelina Chiglintseva, Vladislav Shagapov

Abstract:

We know from the geological data that quite sufficient gas reserves are concentrated in hydrates that occur on the Earth and on the ocean floor. Therefore, the development of these sources of energy and the storage of large reserves of gas hydrates is an acute global problem. An advanced technology for utilizing gas is to store it in a gas-hydrate state. Under natural conditions, storage facilities can be established, e.g., in underground reservoirs, where quite large volumes of gas can be conserved compared with reservoirs of pure gas. An analysis of the available experimental data of the kinetics and the mechanism of the gas-hydrate formation process shows the self-conservation effect that allows gas to be stored at negative temperatures and low values of pressures of up to several atmospheres. A theoretical model has been constructed for the gas-hydrate reservoir that represents a unique natural chemical reactor, and the principal possibility of the full extraction of gas from a hydrate due to the thermal reserves of the reservoirs themselves and the surrounding rocks has been analyzed. The influence exerted on the evolution of a gas hydrate reservoir by the reservoir thicknesses and the parameters that determine its initial state (a temperature, pressure, hydrate saturation) has been studied. It has been established that the shortest time of exploitation required by the reservoirs with a thickness of a few meters for the total hydrate decomposition is recorded in the cyclic regime when gas extraction alternated with the subsequent conservation of the gas hydrate deposit. The study was performed by a grant from the Russian Science Foundation (project No.15-11-20022).

Keywords: conservation, equilibrium state, gas hydrate reservoir, rocks

Procedia PDF Downloads 274
310 Physico-Mechanical Behavior of Indian Oil Shales

Authors: K. S. Rao, Ankesh Kumar

Abstract:

The search for alternative energy sources to petroleum has increased these days because of increase in need and depletion of petroleum reserves. Therefore the importance of oil shales as an economically viable substitute has increased many folds in last 20 years. The technologies like hydro-fracturing have opened the field of oil extraction from these unconventional rocks. Oil shale is a compact laminated rock of sedimentary origin containing organic matter known as kerogen which yields oil when distilled. Oil shales are formed from the contemporaneous deposition of fine grained mineral debris and organic degradation products derived from the breakdown of biota. Conditions required for the formation of oil shales include abundant organic productivity, early development of anaerobic conditions, and a lack of destructive organisms. These rocks are not gown through the high temperature and high pressure conditions in Mother Nature. The most common approach for oil extraction is drastically breaking the bond of the organics which involves retorting process. The two approaches for retorting are surface retorting and in-situ processing. The most environmental friendly approach for extraction is In-situ processing. The three steps involved in this process are fracturing, injection to achieve communication, and fluid migration at the underground location. Upon heating (retorting) oil shale at temperatures in the range of 300 to 400°C, the kerogen decomposes into oil, gas and residual carbon in a process referred to as pyrolysis. Therefore it is very important to understand the physico-mechenical behavior of such rocks, to improve the technology for in-situ extraction. It is clear from the past research and the physical observations that these rocks will behave as an anisotropic rock so it is very important to understand the mechanical behavior under high pressure at different orientation angles for the economical use of these resources. By knowing the engineering behavior under above conditions will allow us to simulate the deep ground retorting conditions numerically and experimentally. Many researchers have investigate the effect of organic content on the engineering behavior of oil shale but the coupled effect of organic and inorganic matrix is yet to be analyzed. The favourable characteristics of Assam coal for conversion to liquid fuels have been known for a long time. Studies have indicated that these coals and carbonaceous shale constitute the principal source rocks that have generated the hydrocarbons produced from the region. Rock cores of the representative samples are collected by performing on site drilling, as coring in laboratory is very difficult due to its highly anisotropic nature. Different tests are performed to understand the petrology of these samples, further the chemical analyses are also done to exactly quantify the organic content in these rocks. The mechanical properties of these rocks are investigated by considering different anisotropic angles. Now the results obtained from petrology and chemical analysis are correlated with the mechanical properties. These properties and correlations will further help in increasing the producibility of these rocks. It is well established that the organic content is negatively correlated to tensile strength, compressive strength and modulus of elasticity.

Keywords: oil shale, producibility, hydro-fracturing, kerogen, petrology, mechanical behavior

Procedia PDF Downloads 321
309 Factors Affecting the Ultimate Compressive Strength of the Quaternary Calcarenites, North Western Desert, Egypt

Authors: M. A. Rashed, A. S. Mansour, H. Faris, W. Afify

Abstract:

The calcarenites carbonate rocks of the Quaternary ridges, which extend along the northwestern Mediterranean coastal plain of Egypt, represent an excellent model for the transformation of loose sediments to real sedimentary rocks by the different stages of meteoric diagenesis. The depositional and diagenetic fabrics of the rocks, in addition to the strata orientation, highly affect their ultimate compressive strength and other geotechnical properties. There is a marked increase in the compressive strength (UCS) from the first to the fourth ridge rock samples. The lowest values are related to the loose packing, weakly cemented aragonitic ooid sediments with high porosity, besides the irregularly distributed of cement, which result in decreasing the ability of these rocks to withstand crushing under direct pressure. The high (UCS) values are attributed to the low porosity, the presence of micritic cement, the reduction in grain size and the occurrence of micritization and calcretization processes. The strata orientation has a notable effect on the measured (UCS). The lowest values have been recorded for the samples cored in the inclined direction; whereas the highest values have been noticed in most samples cored in the vertical and parallel directions to bedding plane. In case of the inclined direction, the bedding planes were oriented close to the plane of maximum shear stress. The lowest and highest anisotropy values have been recorded for the first and the third ridges rock samples, respectively, which may attributed to the relatively homogeneity and well sorted grain-stone of the first ridge rock samples, and relatively heterogeneity in grain and pore size distribution and degree of cementation of the third ridge rock samples, besides, the abundance of shell fragments with intra-particle pore spaces, which may produce lines of weakness within the rock.

Keywords: compressive strength, anisotropy, calcarenites, Egypt

Procedia PDF Downloads 347
308 Laser Ultrasonic Diagnostics and Acoustic Emission Technique for Examination of Rock Specimens under Uniaxial Compression

Authors: Elena B. Cherepetskaya, Vladimir A. Makarov, Dmitry V. Morozov, Ivan E. Sas

Abstract:

Laboratory studies of the stress-strain behavior of rocks specimens were conducted by using acoustic emission and laser-ultrasonic diagnostics. The sensitivity of the techniques allowed changes in the internal structure of the specimens under uniaxial compressive load to be examined at micro- and macro scales. It was shown that microcracks appear in geologic materials when the stress level reaches about 50% of breaking strength. Also, the characteristic stress of the main crack formation was registered in the process of single-stage compression of rocks. On the base of laser-ultrasonic echoscopy, 2D visualization of the internal structure of rocky soil specimens was realized, and the microcracks arising during uniaxial compression were registered.

Keywords: acoustic emission, geomaterial, laser ultrasound, uniaxial compression

Procedia PDF Downloads 342
307 Peculiar Mineralogical and Chemical Evolution of Contaminated Igneous Rocks at a Gabbro-Carbonate Contact, Wadai Bayhan, Yemen

Authors: Murad Ali, Shoji Arai, Mohamed Khedr, Mukhtar Nasher, Shawki Nasr

Abstract:

The Wadi Bayhan area of southeastern Yemen is about 60 km NW of Al-Bayda city in the Al-Bayda uplift terrane at the southeast margin of the Arabian-Nubian Shield. Intrusion of alkali gabbro into carbonate rocks apparently produced an 8m to 10 m thick reaction zone at the contact. This had been identified as nepheline pyroxenite. We have observed this to be mineralogically zoned with calc-silicate assemblages (e.g. pyroxene, calcite, spinel, garnet and melilite). The presence of melilite implies a skarn. The sinuous embayed pyroxenite-skarn contact, the presence of skarn minerals in pyroxenite, and textural evidence for growth of calc-silicate skarn by replacement of both carbonate rocks and solid pyroxenite indicate that reaction involved assimilation of carbonate wall rock by magma and loss of Al and Si to the skarn. Textural relationships between minerals provide evidence for a metasomatic development of the skarn at the expense of the pyroxenite. This process, related to the circulation of fluids equilibrated with carbonates, is responsible for those pyroxenite-spinel (± calcite) skarns. The uneven modal distribution of euhedral pyroxenite and enveloping nepheline in pyroxenite, the restricted occurrence of alkali gabbro as dikes in pyroxenite and skarn and the leucocratic matrix of pyroxenite suggest that pyroxenite represents an accumulation of titanaugite cemented by an alkali-rich residual magma and that alkali gabbro represents a part of the residual contaminated magma that was squeezed out of the pyroxene crystal mush. Carbonate assimilation is modeled by reaction of calcite and magmatic plagioclase, which results in resorption of plagioclase, growth of pyroxene enriched in Ca, Fe, Ti, and Al, and solution of nepheline in residual contaminated magma. The composition of nepheline pyroxenite evolved by addition of Ca from dissolved carbonate rocks, loss of Al and Si to skarn, and local segregation of solid pyroxene and alkali gabbro magma. The predominance of pyroxenite among contaminated rocks and their restriction to a large zone along the intrusive contact provide little evidence for the genesis of a significant volume of alkaline magmatic surroundings by carbonate assimilation.

Keywords: Yemen, Wadi Bayhan, skarn, pyroxenite, carbonatite, metasomatic

Procedia PDF Downloads 302
306 Agronomic Test to Determine the Efficiency of Hydrothermally Treated Alkaline Igneous Rocks and Their Potassium Fertilizing Capacity

Authors: Aaron Herve Mbwe Mbissik, Lotfi Khiari, Otmane Raji, Abdellatif Elghali, Abdelkarim Lajili, Muhammad Ouabid, Martin Jemo, Jean-Louis Bodinier

Abstract:

Potassium (K) is an essential macronutrient for plant growth, helping to regulate several physiological and metabolic processes. Evaporite-related potash salts, mainly sylvite minerals (K chloride or KCl), are the principal source of K for the fertilizer industry. However, due to the high potash-supply risk associated with its considerable price fluctuations and uneven geographic distribution for most agriculture-based developing countries, the development of alternative sources of fertilizer K is imperative to maintain adequate crop yield, reduce yield gaps, and food security. Alkaline Igneous rocks containing significant K-rich silicate minerals such as K feldspar are increasingly seen as the best alternative available. However, these rocks may require to be hydrothermally treatment to enhance the release of potassium. In this study, we evaluate the fertilizing capacity of raw and hydrothermally treated K-bearing silicate rocks from different areas in Morocco. The effectiveness of rock powders was tested in a greenhouse experiment using ryegrass (Lolium multiflorum) by comparing them to a control (no K added) and to a conventional fertilizer (muriate of potash: MOP or KCl). The trial was conducted in a randomized complete block design with three replications, and plants were grown on K-depleted soils for three growing cycles. To achieve our objective, in addition to the analysis of the muriate response curve and the different biomasses, we also examined three necessary coefficients, namely: the K uptake, then apparent K recovery (AKR), and the relative K efficiency (RKE). The results showed that based on the optimum economic rate of MOP (230 kg.K.ha⁻¹) and the optimum yield (44 000 kg.K.ha⁻¹), the efficiency of K silicate rocks was as high as that of MOP. Although the plants took up only half of the K supplied by the powdered rock, the hydrothermal material was found to be satisfactory, with a biomass value reaching the optimum economic limit until the second crop cycle. In comparison, the AKR of the MOP (98.6%) and its RKE in the 1st cycle were higher than our materials: 39% and 38%, respectively. Therefore, the raw and hydrothermal materials mixture could be an appropriate solution for long-term agronomic use based on the obtained results.

Keywords: K-uptake, AKR, RKE, K-bearing silicate rock, MOP

Procedia PDF Downloads 58
305 Prediction of Index-Mechanical Properties of Pyroclastic Rock Utilizing Electrical Resistivity Method

Authors: İsmail İnce

Abstract:

The aim of this study is to determine index and mechanical properties of pyroclastic rock in a practical way by means of electrical resistivity method. For this purpose, electrical resistivity, uniaxial compressive strength, point load strength, P-wave velocity, density and porosity values of 10 different pyroclastic rocks were measured in the laboratory. A simple regression analysis was made among the index-mechanical properties of the samples compatible with electrical resistivity values. A strong exponentially relation was found between index-mechanical properties and electrical resistivity values. The electrical resistivity method can be used to assess the engineering properties of the rock from which it is difficult to obtain regular shaped samples as a non-destructive method.

Keywords: electrical resistivity, index-mechanical properties, pyroclastic rocks, regression analysis

Procedia PDF Downloads 442
304 Effect of Saturation and Deformation Rate on Split Tensile Strength for Various Sedimentary Rocks

Authors: D. K. Soni

Abstract:

A study of engineering properties of stones, i.e. compressive strength, tensile strength, modulus of elasticity, density, hardness were carried out to explore the possibility of optimum utilization of stone. The laboratory test results on equally dimensioned discs of the stone show a considerable variation in computed split tensile strength with varied rates of deformation. Hence, the effect of strain rate on the tensile strength of a sand stone and lime stone under wet and dry conditions has been studied experimentally using the split tensile strength test technique. It has been observed that the tensile strength of these stone is very much dependent on the rate of deformation particularly in a dry state. On saturation the value of split tensile strength reduced considerably depending upon the structure of rock and amount of water absorption.

Keywords: sedimentary rocks, split tensile test, deformation rate, saturation rate, sand stone, lime stone

Procedia PDF Downloads 376
303 Petrology and Petrochemistry of Basement Rocks in Ila Orangun Area, Southwestern Nigeria

Authors: Jayeola A. O., Ayodele O. S., Olususi J. I.

Abstract:

From field studies, six (6) lithological units were identified to be common around the study area, which includes quartzites, granites, granite gneiss, porphyritic granites, amphibolite and pegmatites. Petrographical analysis was done to establish the major mineral assemblages and accessory minerals present in selected rock samples, which represents the major rock types in the area. For the purpose of this study, twenty (20) pulverized rock samples were taken to the laboratory for geochemical analysis with their results used in the classification, as well as suggest the geochemical attributes of the rocks. Results from petrographical studies of the rocks under both plane and cross polarized lights revealed the major minerals identified under thin sections to include quartz, feldspar, biotite, hornblende, plagioclase and muscovite with opaque other accessory minerals, which include actinolite, spinel and myrmekite. Geochemical results obtained and interpreted using various geochemical plots or discrimination plots all classified the rocks in the area as belonging to both the peralkaline metaluminous and peraluminous types. Results for the major oxides ratios produced for Na₂O/K₂O, Al₂O₃/Na₂O + CaO + K₂O and Na₂O + CaO + K₂O/Al₂O₃ show the excess of alumina, Al₂O₃ over the alkaline Na₂O +CaO +K₂O thus suggesting peraluminous rocks. While the excess of the alkali over the alumina suggests the peralkaline metaluminous rock type. The results of correlation coefficient show a perfect strong positive correlation, which shows that they are of same geogenic sources, while negative correlation coefficient values indicate a perfect weak negative correlation, suggesting that they are of heterogeneous geogenic sources. From factor analysis, five component groups were identified as Group 1 consists of Ag-Cr-Ni elemental associations suggesting Ag, Cr, and Ni mineralization, predicting the possibility of sulphide mineralization. in the study area. Group ll and lll consist of As-Ni-Hg-Fe-Sn-Co-Pb-Hg element association, which are pathfinder elements to the mineralization of gold. Group 1V and V consist of Cd-Cu-Ag-Co-Zn, which concentrations are significant to elemental associations and mineralization. In conclusion, from the potassium radiometric anomaly map produced, the eastern section (northeastern and southeastern) is observed to be the hot spot and mineralization zone for the study area.

Keywords: petrography, Ila Orangun, petrochemistry, pegmatites, peraluminous

Procedia PDF Downloads 31
302 Geomorphology of Leyte, Philippines: Seismic Response and Remote Sensing Analysis and Its Implication to Landslide Hazard Assessment

Authors: Arturo S. Daag, Ira Karrel D. L. San Jose, Mike Gabriel G. Pedrosa, Ken Adrian C. Villarias, Rayfred P. Ingeniero, Cyrah Gale H. Rocamora, Margarita P. Dizon, Roland Joseph B. De Leon, Teresito C. Bacolcol

Abstract:

The province of Leyte consists of various geomorphological landforms: These are: a) landforms of tectonic origin transect large part of the volcanic centers in upper Ormoc area; b) landforms of volcanic origin, several inactive volcanic centers located in Upper Ormoc are transected by Philippine Fault; c) landforms of volcano-denudational and denudational slopes dominates the area where most of the earthquake-induced landslide occurred; and d) Colluvium and alluvial deposits dominate the foot slope of Ormoc and Jaro-Pastrana plain. Earthquake ground acceleration and geotechnical properties of various landforms are crucial for landslide studies. To generate the landslide critical acceleration model of sliding block, various data were considered, these are: geotechnical data (i.e., soil and rock strength parameters), slope, topographic wetness index (TWI), landslide inventory, soil map, geologic maps for the calculation of the factor of safety. Horizontal-to-vertical spectral ratio (HVSR) surveying methods, refraction microtremor (ReMi), and three-component microtremor (3CMT) were conducted to measure site period and surface wave velocity as well as to create a soil thickness model. Critical acceleration model of various geomorphological unit using Remote Sensing, field geotechnical, geophysical, and geospatial data collected from the areas affected by the 06 July 2017 M6.5 Leyte earthquake. Spatial analysis of earthquake-induced landslide from the 06 July 2017, were then performed to assess the relationship between the calculated critical acceleration and peak ground acceleration. The observed trends proved helpful in establishing the role of critical acceleration as a determining factor in the distribution of co-seismic landslides.

Keywords: earthquake-induced landslide, remote sensing, geomorphology, seismic response

Procedia PDF Downloads 67
301 Biotite from Contact-Metamorphosed Rocks of the Dizi Series of the Greater Caucasus

Authors: Irakli Javakhishvili, Tamara Tsutsunava, Giorgi Beridze

Abstract:

The Caucasus is a component of the Mediterranean collision belt. The Dizi series is situated within the Greater Caucasian region of the Caucasus and crops out in the core of the Svaneti anticlinorium. The series was formed in the continental slope conditions on the southern passive margin of the small ocean basin. The Dizi series crops out on about 560 square km with the thickness 2000-2200 m. The rocks are faunally dated from the Devonian to the Triassic inclusive. The series is composed of terrigenous phyllitic schists, sandstones, quartzite aleurolites and lenses and interlayers of marbleized limestones. During the early Cimmerian orogeny, they underwent regional metamorphism of chlorite-sericite subfacies of greenschist facies. Typical minerals of metapelites are chlorite, sericite, augite, quartz, and tourmaline, but of basic rocks - actinolite, fibrolite, prehnite, calcite, and chlorite are developed. Into the Dizi series, polyphase intrusions of gabbros, diorites, quartz-diorites, syenite-diorites, syenites, and granitoids are intruded. Their K-Ar age dating (176-165Ma) points out that their formation corresponds to the Bathonian orogeny. The Dizi series is well-studied geologically, but very complicated processes of its regional and contact metamorphisms are insufficiently investigated. The aim of the authors was a detailed study of contact metamorphism processes of the series rocks. Investigations were accomplished applying the following methodologies: finding of key sections, a collection of material, microscopic study of samples, microprobe and structural analysis of minerals and X-ray determination of elements. The Dizi series rocks formed under the influence of the Bathonian magmatites on metapelites and carbonate-enriched rocks. They are represented by quartz, biotite, sericite, graphite, andalusite, muscovite, plagioclase, corundum, cordierite, clinopyroxene, hornblende, cummingtonite, actinolite, and tremolite bearing hornfels, marbles, and skarns. The contact metamorphism aureole reaches 350 meters. Biotite is developed only in contact-metamorphosed rocks and is a rather informative index mineral. In metapelites, biotite is formed as a result of the reaction between phengite, chlorite, and leucoxene, but in basites, it replaces actinolite or actinolite-hornblende. To study the compositional regularities of biotites, they were investigated from both - metapelites and metabasites. In total, biotite from the basites is characterized by an increased of titanium in contrast to biotite from metapelites. Biotites from metapelites are distinguished by an increased amount of aluminum. In biotites an increased amount of titanium and aluminum is observed as they approximate the contact, while their magnesia content decreases. Metapelite biotites are characterized by an increased amount of alumina in aluminum octahedrals, in contrast to biotite of the basites. In biotites of metapelites, the amount of tetrahedric aluminum is 28–34%, octahedral - 15–26%, and in basites tetrahedral aluminum is 28–33%, and octahedral 7–21%. As a result of the study of minerals, including biotite, from the contact-metamorphosed rocks of the Dizi series three exocontact zones with corresponding mineral assemblages were identified. It was established that contact metamorphism in the aureole of the Dizi series intrusions is going on at a significantly higher temperature and lower pressure than the regional metamorphism preceding the contact metamorphism.

Keywords: biotite, contact metamorphism, Dizi series, the Greater Caucasus

Procedia PDF Downloads 112
300 Analysis of Aquifer Productivity in the Mbouda Area (West Cameroon)

Authors: Folong Tchoffo Marlyse Fabiola, Anaba Onana Achille Basile

Abstract:

Located in the western region of Cameroon, in the BAMBOUTOS department, the city of Mbouda belongs to the Pan-African basement. The water resources exploited in this region consist of surface water and groundwater from weathered and fractured aquifers within the same basement. To study the factors determining the productivity of aquifers in the Mbouda area, we adopted a methodology based on collecting data from boreholes drilled in the region, identifying different types of rocks, analyzing structures, and conducting geophysical surveys in the field. The results obtained allowed us to distinguish two main types of rocks: metamorphic rocks composed of amphibolites and migmatitic gneisses and igneous rocks, namely granodiorites and granites. Several types of structures were also observed, including planar structures (foliation and schistosity), folded structures (folds), and brittle structures (fractures and lineaments). A structural synthesis combines all these elements into three major phases of deformation. Phase D1 is characterized by foliation and schistosity, phase D2 is marked by shear planes and phase D3 is characterized by open and sealed fractures. The analysis of structures (fractures in outcrops, Landsat lineaments, subsurface structures) shows a predominance of ENE-WSW and WNW-ESE directions. Through electrical surveys and borehole data, we were able to identify the sequence of different geological formations. Four geo-electric layers were identified, each with a different electrical conductivity: conductive, semi-resistive, or resistive. The last conductive layer is considered a potentially aquiferous zone. The flow rates of the boreholes ranged from 2.6 to 12 m3/h, classified as moderate to high according to the CIEH classification. The boreholes were mainly located in basalts, which are mineralogically rich in ferromagnesian minerals. This mineral composition contributes to their high productivity as they are more likely to be weathered. The boreholes were positioned along linear structures or at their intersections.

Keywords: Mbouda, Pan-African basement, productivity, west-Cameroon

Procedia PDF Downloads 31
299 Characterization of the Pore System and Gas Storage Potential in Unconventional Reservoirs: A Case of Study of the Cretaceous la Luna Formation, Middle Magdalena Valley Basin, Colombia

Authors: Carlos Alberto Ríos-Reyes, Efraín Casadiego-Quintero

Abstract:

We propose a generalized workflow for mineralogy investigation of unconventional reservoirs using multi-scale imaging and pore-scale analyses. This workflow can be used for the integral evaluation of these resources. The Cretaceous La Luna Formation´s mudstones in the Middle Magdalena Valley Basin (Colombia) inherently show a heterogeneous pore system with organic and inorganic pores. For this reason, it is necessary to carry out the integration of high resolution 2D images of mapping by conventional petrography, scanning electron microscopy and quantitative evaluation of minerals by scanning electron microscopy to describe their organic and inorganic porosity to understand the transport mechanism through pores. The analyzed rocks show several pore types, including interparticle pores, organoporosity, intraparticle pores, intraparticle pores, and microchannels and/or microfractures. The existence of interconnected pores in pore system of these rocks promotes effective pathways for primary gas migration and storage space for residual hydrocarbons in mudstones, which is very useful in this type of gas reservoirs. It is crucial to understand not only the porous system of these rocks and their mineralogy but also to project the gas flow in order to design the appropriate strategies for the stimulation of unconventional reservoirs. Keywords: mudstones; La Luna Formation; gas storage; migration; hydrocarbon.

Keywords: mudstones, La luna formation, gas storage, migration, hydrocarbon

Procedia PDF Downloads 52
298 Oxygen and Sulfur Isotope Composition of Gold Bearing Granite Gneiss and Quartz Veins of Megele Area, Western Ethiopia: Implication for Fluid Source

Authors: Temesgen Oljira, Olugbenga Akindeji Okunlola, Akinade Shadrach Olatunji, Dereje Ayalew, Bekele A. Bedada, Tasin Godlove Bafon

Abstract:

The Megele area gold-bearing Neoproterozoic rocks in the Western Ethiopian Shield has been under exploration for the last few decades. The geochemical and ore petrological characterization of the gold-bearing granite gneiss and associated quartz vein is crucial in understanding the gold's genesis. The present study concerns the ore petrological, geochemical, and stable O2 and S characterization of the gold-bearing granite gneiss and associated quartz vein. This area is known for its long history of placer gold mining. The presence of quartz veins of different generations and orientations, visible sulfide mineralization, and oxidation suggests that the Megele area is geologically fertile for mineralization. The Au and base metals analysis also indicate that Megele area rocks are characterized by Cu (2-22 ppm av. 7.83 ppm), Zn (2-53 ppm av. 29.33 ppm), Co (1-27 ppm av. 13.33 ppm), Ni (2-16 ppm av. 10 ppm), Pb (5-10 ppm av. 8.33 ppm), Au (1-5 ppb av. 2.11 ppb), Ag (0.5 ppm), As (5-12 ppm av. 7.83 ppm), Cd (0.5ppm), Li (0.5 ppm), Mo (1-4 ppm av. 1.6 ppm), Sc (5-13 ppm av. 9.3 ppm), and Tl (10 ppm). The oxygen isotope (δ18O) values of gold-bearing granite gneiss and associated quartz veins range from +8.6 to +11.5 ‰, suggesting the mixing of metamorphic water with magmatic water within the ore-forming fluid. The Sulfur isotope (δ34S) values of gold-bearing granite gneiss range from -1.92 to -0.45 ‰ (mean value of -1.13 ‰) indicating the narrow range of value. This suggests that the sulfides have been precipitated from the fluid system originating from a single source of the magmatic component under sulfur isotopic fractionation equilibrium condition. The tectonic setting of the host rocks, the occurrence of ore bodies, mineral assemblages of the host rocks and proposed ore-forming fluids of the Megele area gold prospects have similarities with features of orogenic gold deposit. The δ18O and δ34S isotopic values also suggested a metamorphic origin with the magmatic components. Thus, the Megele gold prospect could be related to an orogenic gold deposit related to metamorphism and associated intrusions.

Keywords: fluid source, gold mineralization, oxygen isotope, stable isotope, sulfur isotope

Procedia PDF Downloads 51
297 A Study on Genus Carolia Cantraine, 1838: A Case Study in Egypt with Special Emphasis on Paleobiogeographic, and Biometric Context

Authors: Soheir El-Shazly, Gouda Abdel-Gawad, Yasser Salama, Dina Sayed

Abstract:

Twelve species belonging to genus Carolia Cantraine, 1838 were recorded from nine localities in the Tertiary rocks of the Tethys, Atlantic and Eastern Pacific Provinces. During The Eocene two species were collected from Indian-Pakistani region, two from North Africa (Libya, Tunis and Algeria), one from Jamaica and two from Peru. The Oligocene shows its appearance in North America (Florida) and Argentina. The genus showed its last occurrence in the Miocene rocks of North America (Florida) before its extinction. In Egypt, the genus was diversified in the Eocene rocks and was represented by four species and two subspecies. The paleobiogeographic distribution of Genus Carolia Cantraine, 1838 indicates that it appeared in the Lower Eocene of West Indian Ocean and migrated westward flowing circumtropical Tethys Current to the central Tethyan province, where it appeared in North Africa and continued its dispersal westward to the Atlantic Ocean and arrived Jamaica in the Middle Eocene. It persisted in the Caribbean Sea and appeared later in the Oligocene and Miocene rocks of North America (Florida). Crossing Panama corridor, the genus migrated to the south Eastern Pacific Ocean and was collected from the Middle Eocene of Peru. The appearance of the genus in the Oligocene of the South Atlantic Coast of Argentina may be via South America Seaway or its southward migration from Central America to Austral Basin. The thickening of the upper valve of the genus, after the loss of its byssus to withstand the current action, caused inability of the animal to carry on its vital activity and caused its extinction. The biometric study of Carolia placunoides Cantraine, 1938 from thhe Eocene of Egypt, indicates that the distance between the muscle scars in the upper valve increases with the closure of the byssal notch.

Keywords: Atlantic, carolia, paleobiogeography, tethys

Procedia PDF Downloads 326
296 Risk Assessment of Roof Structures in Concepcion, Tarlac in the Event of an Ash Fall

Authors: Jerome Michael J. Sadullo, Jamaica Lois A. Torres, Trisha Muriel T. Valino

Abstract:

In the Philippines, Central Luzon is one of the regions at high risk in terms of volcanic eruption. In fact, last June 15, 1991, which were the Mount Pinatubo has erupted, the most affected provinces were Zambales, Olangapo, Pampanga, Tarlac, Bataan, Bulacan and Nueva Ecija. During the Mount Pinatubo eruption, Castillejos, Zambales, has recorded the most significant damage to both commercial and residential structures. In this study, the researchers aim to determine and analyze the various impacts of ashfall on roof structures in Concepcion, Tarlac, during the event of a volcanic eruption. In able for the researcher to determine the sample size of the study, they have utilized Cochran's sample size formula. With the computed sample size, the researchers have gathered data through the distribution of survey forms, utilizing public records, and picture documentation of different roof structures in Concepcion, Tarlac. With the data collected, Chi-squared goodness of fit was done by the researcher in order to compare the data collected from the observed N (Concepcion, Tarlac) and expected N (Castillejos, Zambales). The results showed that when it comes to the roof constructions material used in Concepcion, Tarlac and Castillejos, Zambales. Structures in Concepcion, Tarlac were most likely to suffer worse when another eruption happens compared to the structures in Castillejos, Zambales. Yet, considering the current structural statuses of structure in Concepcion Tarlac and its location from Mount Pinatubo, they are less likely to experience ashfall.

Keywords: risk assessment, Concepcion, Tarlac, Volcano Pinatubo, roof structures, ashfall

Procedia PDF Downloads 72
295 Determination of Weathering at Kilistra Ancient City by Using Non-Destructive Techniques, Central Anatolia, Turkey

Authors: İsmail İnce, Osman Günaydin, Fatma Özer

Abstract:

Stones used in the construction of historical structures are exposed to various direct or indirect atmospheric effects depending on climatic conditions. Building stones deteriorate partially or fully as a result of this exposure. The historic structures are important symbols of any cultural heritage. Therefore, it is important to protect and restore these historical structures. The aim of this study is to determine the weathering conditions at the Kilistra ancient city. It is located in the southwest of the Konya city, Central Anatolia, and was built by carving into pyroclastic rocks during the Byzantine Era. For this purpose, the petrographic and mechanical properties of the pyroclastic rocks were determined. In the assessment of weathering of structures in the ancient city, in-situ non-destructive testing (i.e., Schmidt hardness rebound value, relative humidity measurement) methods were applied.

Keywords: cultural heritage, Kilistra ancient city, non-destructive techniques, weathering

Procedia PDF Downloads 332
294 The Rock Paintings and Engravings of Kabylia Region (Algeria): Sites of Azru Imeyazen (Tarihant)

Authors: Samia Ait Ali Yahia

Abstract:

Rock paintings and engravings in the Kabylia region of Algeria have been extensively studied, with 54 sites identified. These artworks were primarily discovered by Poyto and Musso in the mid-1960s. The paintings are predominantly adorned with red ochre ornaments, while some engravings can also be found on sandstone rocks. These artistic expressions can be found in various locations, such as shelters, rocks, and sandstone blocks in the northern part of Kabylia. These sites showcase a diverse range of decorations, including human figures, animal silhouettes, enigmatic designs, symbolic drawings, engravings, and Libyan characters. The research will involve conducting fieldwork at the Azru Imeyazen site to identify and study the different paintings and engravings present. This research aims to provide a detailed description of the rock paintings and engravings found in Kabylia, specifically focusing on the Azru Imeyazen (Tarihant) site.

Keywords: rock paintings, engraving, Kabylia, Tarihant, Azru Imayazen

Procedia PDF Downloads 49
293 An Experimental Study of Dynamic Compressive Strength of Bushveld Complex Brittle Rocks under Impact Loadingsa Chemicals and Fibre Corporation, Changhua Branch

Authors: A. Mudau, T. R. Stacey, R. A. Govender

Abstract:

This paper reports for the first time the findings on the dynamic compressive strength data of Bushveld Complex brittle rock materials. These rocks were subjected to both quasi-static and impact loading tests to help understand their behaviour both under quasi-static and dynamic loading conditions. Unlike quasi-static tests, characterization of dynamic behaviour of materials is challenging, in particularly brittle rock materials. The split Hopkinson pressure bar (SHPB) results reported for anorthosite and norite showed relatively low values for dynamic compressive strength compared to the quasi-static uniaxial compressive strength data. It was noticed that the dynamic stress conditions were not fully attained during testing, as well as constant strain rate.

Keywords: Bushveld Complex, dynamic comperession, rock brittleness, stress equilibrium

Procedia PDF Downloads 459
292 Geochemical and Petrological Survey in Northern Ethiopia Basement Rocks for Investigation of Gold and Base Metal Mineral Potential in Finarwa, Southeast Tigray, Ethiopia

Authors: Siraj Beyan Mohamed, Woldia University

Abstract:

The study is accompanied in northern Ethiopian basement rocks, Finarwa area, and its surrounding areas, south eastern Tigray. From the field observations, the geology of the area haven been described and mapped based on mineral composition, texture, structure, and colour of both fresh and weather rocks. Inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS) have conducted to analysis gold and base metal mineralization. The ore mineral under microscope are commonly base metal sulphides pyrrhotite, Chalcopyrite, pentilanditeoccurring in variable proportions. Galena, chalcopyrite, pyrite, and gold mineral are hosted in quartz vein. Pyrite occurs both in quartz vein and enclosing rocks as a primary mineral. The base metal sulfides occur as disseminated, vein filling, and replacement. Geochemical analyses result determination of the threshold of geochemical anomalies is directly related to the identification of mineralization information. From samples, stream sediment samples and the soil samples indicated that the most promising mineralization occur in the prospect area are gold(Au), copper (Cu), and zinc (Zn). This is also supported by the abundance of chalcopyrite and sphalerite in some highly altered samples. The stream sediment geochemical survey data shows relatively higher values for zinc compared to Pb and Cu. The moderate concentration of the base metals in some of the samples indicates availability base metal mineralization in the study area requiring further investigation. The rock and soil geochemistry shows the significant concentration of gold with maximum value of 0.33ppm and 0.97 ppm in the south western part of the study area. In Finarwa, artisanal gold mining has become an increasingly widespread economic activity of the local people undertaken by socially differentiated groups with a wide range of education levels and economic backgrounds incorporating a wide variety of ‘labour intensive activities without mechanisation.

Keywords: gold, base metal, anomaly, threshold

Procedia PDF Downloads 72
291 A Practice Model for Quality Improvement in Concrete Block Mini Plants Based on Merapi Volcanic Sand

Authors: Setya Winarno

Abstract:

Due to abundant Merapi volcanic sand in Yogyakarta City, many local people have utilized it for mass production of concrete blocks through mini plants although their products are low in quality. This paper presents a practice model for quality improvement in this situation in order to supply the current customer interest in good quality of construction material. The method of this research was to investigate a techno economic evaluation through laboratory test and interview. Samples of twenty existing concrete blocks made by local people had only 19.4 kg/cm2 in average compression strength which was lower than the minimum Indonesian standard of 25 kg/cm2. Through repeat testing in laboratory for fulfilling the standard, the concrete mix design of water cement ratio should not be more than 0.64 by weight basis. The proportion of sand as aggregate content should not be more than 9 parts to 1 part by volume of Portland cement. Considering the production cost, the basic price was Rp 1,820 for each concrete block, comparing to Rp 2,000 as a normal competitive market price. At last, the model describes (a) maximum water cement ratio is 0.64, (b) maximum proportion of sand and cement is 1:9, (c) the basic price is about Rp. 1,820.00 and (d) strategies to win the competitive market on mass production of concrete blocks are focus in quality, building relationships with consumer, rapid respond to customer need, continuous innovation by product diversification, promotion in social media, and strict financial management.

Keywords: concrete block, good quality, improvement model, diversification

Procedia PDF Downloads 492
290 Targeting Mineral Resources of the Upper Benue trough, Northeastern Nigeria Using Linear Spectral Unmixing

Authors: Bello Yusuf Idi

Abstract:

The Gongola arm of the Upper Banue Trough, Northeastern Nigeria is predominantly covered by the outcrops of Limestone-bearing rocks in form of Sandstone with intercalation of carbonate clay, shale, basaltic, felsphatic and migmatide rocks at subpixel dimension. In this work, subpixel classification algorithm was used to classify the data acquired from landsat 7 Enhance Thematic Mapper (ETM+) satellite system with the aim of producing fractional distribution image for three most economically important solid minerals of the area: Limestone, Basalt and Migmatide. Linear Spectral Unmixing (LSU) algorithm was used to produce fractional distribution image of abundance of the three mineral resources within a 100Km2 portion of the area. The results show that the minerals occur at different proportion all over the area. The fractional map could therefore serve as a guide to the ongoing reconnaissance for the economic potentiality of the formation.

Keywords: linear spectral un-mixing, upper benue trough, gongola arm, geological engineering

Procedia PDF Downloads 346
289 High-Pressure CO₂ Adsorption Capacity of Selected Unusual Porous Materials and Rocks

Authors: Daniela Rimnacova, Maryna Vorokhta, Martina Svabova

Abstract:

CO₂ adsorption capacity of several materials - waste (power fly ash, slag, carbonized sewage sludge), rocks (Czech Silurian shale, black coal), and carbon (synthesized carbon, activated carbon as a reference material) - were measured on dry samples using a unique hand-made manometric sorption apparatus at a temperature of 45 °C and pressures of up to 7 MPa. The main aim was finding utilization of the waste materials and rocks for removal of the air or water pollutants caused by anthropogenic activities, as well as for the carbon dioxide storage. The equilibrium amount of the adsorbate depends on temperature, gas saturation pressure, porosity, surface area and volume of pores, and last but not least, on the composition of the adsorbents. Given experimental conditions can simulate in-situ situations in the rock bed and can be achieved just by a high-pressure apparatus. The CO₂ excess adsorption capacities ranged from 0.018 mmol/g (ash) to 13.55 mmol/g (synthesized carbon). The synthetized carbon had the highest adsorption capacity among all studied materials as well as the highest price. This material is usually used for the adsorption of specific pollutants. The excess adsorption capacity of activated carbon was 9.19 mmol/g. It is used for water and air cleaning. Ash can be used for chemisorption onto ash particle surfaces or capture of special pollutants. Shale is a potential material for enhanced gas recovery or CO₂ sequestration in-situ. Slag is a potential material for capture of gases with a possibility of the underground gas storage after the adsorption process. The carbonized sewage sludge is quite a good adsorbent for the removal and capture of pollutants, as well as shales or black coal which show an interesting relationship between the price and adsorption capacity.

Keywords: adsorption, CO₂, high pressure, porous materials

Procedia PDF Downloads 125
288 Prospectivity Mapping of Orogenic Lode Gold Deposits Using Fuzzy Models: A Case Study of Saqqez Area, Northwestern Iran

Authors: Fanous Mohammadi, Majid H. Tangestani, Mohammad H. Tayebi

Abstract:

This research aims to evaluate and compare Geographical Information Systems (GIS)-based fuzzy models for producing orogenic gold prospectivity maps in the Saqqez area, NW of Iran. Gold occurrences are hosted in sericite schist and mafic to felsic meta-volcanic rocks in this area and are associated with hydrothermal alterations that extend over ductile to brittle shear zones. The predictor maps, which represent the Pre-(Source/Trigger/Pathway), syn-(deposition/physical/chemical traps) and post-mineralization (preservation/distribution of indicator minerals) subsystems for gold mineralization, were generated using empirical understandings of the specifications of known orogenic gold deposits and gold mineral systems and were then pre-processed and integrated to produce mineral prospectivity maps. Five fuzzy logic operators, including AND, OR, Fuzzy Algebraic Product (FAP), Fuzzy Algebraic Sum (FAS), and GAMMA, were applied to the predictor maps in order to find the most efficient prediction model. Prediction-Area (P-A) plots and field observations were used to assess and evaluate the accuracy of prediction models. Mineral prospectivity maps generated by AND, OR, FAP, and FAS operators were inaccurate and, therefore, unable to pinpoint the exact location of discovered gold occurrences. The GAMMA operator, on the other hand, produced acceptable results and identified potentially economic target sites. The P-A plot revealed that 68 percent of known orogenic gold deposits are found in high and very high potential regions. The GAMMA operator was shown to be useful in predicting and defining cost-effective target sites for orogenic gold deposits, as well as optimizing mineral deposit exploitation.

Keywords: mineral prospectivity mapping, fuzzy logic, GIS, orogenic gold deposit, Saqqez, Iran

Procedia PDF Downloads 97
287 Cement Bond Characteristics of Artificially Fabricated Sandstones

Authors: Ashirgul Kozhagulova, Ainash Shabdirova, Galym Tokazhanov, Minh Nguyen

Abstract:

The synthetic rocks have been advantageous over the natural rocks in terms of availability and the consistent studying the impact of a particular parameter. The artificial rocks can be fabricated using variety of techniques such as mixing sand and Portland cement or gypsum, firing the mixture of sand and fine powder of borosilicate glass or by in-situ precipitation of calcite solution. In this study, sodium silicate solution has been used as the cementing agent for the quartz sand. The molded soft cylindrical sandstone samples are placed in the gas-tight pressure vessel, where the hardening of the material takes place as the chemical reaction between carbon dioxide and the silicate solution progresses. The vessel allows uniform disperse of carbon dioxide and control over the ambient gas pressure. Current paper shows how the bonding material is initially distributed in the intergranular space and the surface of the sand particles by the usage of Electron Microscopy and the Energy Dispersive Spectroscopy. During the study, the strength of the cement bond as a function of temperature is observed. The impact of cementing agent dosage on the micro and macro characteristics of the sandstone is investigated. The analysis of the cement bond at micro level helps to trace the changes to particles bonding damage after a potential yielding. Shearing behavior and compressional response have been examined resulting in the estimation of the shearing resistance and cohesion force of the sandstone. These are considered to be main input values to the mathematical prediction models of sand production from weak clastic oil reservoir formations.

Keywords: artificial sanstone, cement bond, microstructure, SEM, triaxial shearing

Procedia PDF Downloads 140
286 Identification of Accumulated Hydrocarbon Based on Heat Propagation Analysis in Order to Develop Mature Field: Case Study in South Sumatra Basin, Indonesia

Authors: Kukuh Suprayogi, Muhamad Natsir, Olif Kurniawan, Hot Parulian, Bayu Fitriana, Fery Mustofa

Abstract:

The new approach by utilizing the heat propagation analysis carried out by studying and evaluating the effect of the presence of hydrocarbons to the flow of heat that goes from the bottom surface to surface. Heat propagation is determined by the thermal conductivity of rocks. The thermal conductivity of rock itself is a quantity that describes the ability of a rock to deliver heat. This quantity depends on the constituent rock lithology, large porosity, and pore fluid filler. The higher the thermal conductivity of a rock, the more easily the flow of heat passing through these rocks. With the same sense, the heat flow will more easily pass through the rock when the rock is filled with water than hydrocarbons, given the nature of the hydrocarbons having more insulator against heat. The main objective of this research is to try to make the model the heat propagation calculations in degrees Celsius from the subsurface to the surface which is then compared with the surface temperature is measured directly at the point of location. In calculating the propagation of heat, we need to first determine the thermal conductivity of rocks, where the rocks at the point calculation are not composed of homogeneous but consist of strata. Therefore, we need to determine the mineral constituent and porosity values of each stratum. As for the parameters of pore fluid filler, we assume that all the pores filled with water. Once we get a thermal conductivity value of each unit of the rock, then we begin to model the propagation of heat profile from the bottom to the surface. The initial value of the temperature that we use comes from the data bottom hole temperature (BHT) is obtained from drilling results. Results of calculations per depths the temperature is displayed in plotting temperature versus depth profiles that describe the propagation of heat from the bottom of the well to the surface, note that pore fluid is water. In the technical implementation, we can identify the magnitude of the effect of hydrocarbons in reducing the amount of heat that crept to the surface based on the calculation of propagation of heat at a certain point and compared with measurements of surface temperature at that point, assuming that the surface temperature measured is the temperature that comes from the asthenosphere. This publication proves that the accumulation of hydrocarbon can be identified by analysis of heat propagation profile which could be a method for identifying the presence of hydrocarbons.

Keywords: thermal conductivity, rock, pore fluid, heat propagation

Procedia PDF Downloads 89
285 Industrial Rock Characterization using Nuclear Magnetic Resonance (NMR): A Case Study of Ewekoro Quarry

Authors: Olawale Babatunde Olatinsu, Deborah Oluwaseun Olorode

Abstract:

Industrial rocks were collected from a quarry site at Ewekoro in south-western Nigeria and analysed using Nuclear Magnetic Resonance (NMR) technique. NMR measurement was conducted on the samples in partial water-saturated and full brine-saturated conditions. Raw NMR data were analysed with the aid of T2 curves and T2 spectra generated by inversion of raw NMR data using conventional regularized least-squares inversion routine. Results show that NMR transverse relaxation (T2) signatures fairly adequately distinguish between the rock types. Similar T2 curve trend and rates at partial saturation suggests that the relaxation is mainly due to adsorption of water on micropores of similar sizes while T2 curves at full saturation depict relaxation decay rate as: 1/T2(shale)>1/ T2(glauconite)>1/ T2(limestone) and 1/T2(sandstone). NMR T2 distributions at full brine-saturation show: unimodal distribution in shale; bimodal distribution in sandstone and glauconite; and trimodal distribution in limestone. Full saturation T2 distributions revealed the presence of well-developed and more abundant micropores in all the samples with T2 in the range, 402-504 μs. Mesopores with amplitudes much lower than those of micropores are present in limestone, sandstone and glauconite with T2 range: 8.45-26.10 ms, 6.02-10.55 ms, and 9.45-13.26 ms respectively. Very low amplitude macropores of T2 values, 90.26-312.16 ms, are only recognizable in limestone samples. Samples with multiple peaks showed well-connected pore systems with sandstone having the highest degree of connectivity. The difference in T2 curves and distributions for the rocks at full saturation can be utilised as a potent diagnostic tool for discrimination of these rock types found at Ewekoro.

Keywords: Ewekoro, NMR techniques, industrial rocks, characterization, relaxation

Procedia PDF Downloads 270
284 Ichnofacies and Microfacies Analysis of Late Eocene Rocks in Fayum Area, Egypt and Their Paleoenvironmental Implications

Authors: Soheir El-Shazly, Gouda Abdelgawad, Yasser Salama, Dina Sayed

Abstract:

Abstract- The Late Eocene rocks (Qasr El-Sagha ) Formation, north east of Birket Qarun in Fayum area of Egypt reveals 6 Ichnogenera Thalassinoides Ehrenberg, 1944, Ophiomorpha Lundgren (1891), Skolithos Haldemann (1840), Diplocraterion Torell, 1870, Arenicolites Salter, 1857 and Planolites Nicholson, 1873. These Ichnogenera are related to Skolithos ichnofacies of typical sandy shoreline environment, only the ichnogenus Planolites is related to Cruziana ichnofacies, which occurs in somewhat deeper water than the Skolithos ichnofacies. Four microfacies types have been distinguished from the study sections, Mudstone, Sandy micrite (wackstone), Sandy dolomitic ferruginous biomicrite (Packstone), Sandy glauconitic biomicrite (packstone). The ichnofacies and the microfacies study indicates that the study area was deposited in shelf lagoon with open circulation environment

Keywords: Egypt, Fayum, icnofacies, late eocene, microfacies

Procedia PDF Downloads 187
283 Biotechnological Methods for the Grouting of the Tunneling Space

Authors: V. Ivanov, J. Chu, V. Stabnikov

Abstract:

Different biotechnological methods for the production of construction materials and for the performance of construction processes in situ are developing within a new scientific discipline of Construction Biotechnology. The aim of this research was to develop and test new biotechnologies and biotechnological grouts for the minimization of the hydraulic conductivity of the fractured rocks and porous soil. This problem is essential to minimize flow rate of groundwater into the construction sites, the tunneling space before and after excavation, inside levies, as well as to stop water seepage from the aquaculture ponds, agricultural channels, radioactive waste or toxic chemicals storage sites, from the landfills or from the soil-polluted sites. The conventional fine or ultrafine cement grouts or chemical grouts have such restrictions as high cost, viscosity, sometime toxicity but the biogrouts, which are based on microbial or enzymatic activities and some not expensive inorganic reagents, could be more suitable in many cases because of lower cost and low or zero toxicity. Due to these advantages, development of biotechnologies for biogrouting is going exponentially. However, most popular at present biogrout, which is based on activity of urease- producing bacteria initiating crystallization of calcium carbonate from calcium salt has such disadvantages as production of toxic ammonium/ammonia and development of high pH. Therefore, the aim of our studies was development and testing of new biogrouts that are environmentally friendly and have low cost suitable for large scale geotechnical, construction, and environmental applications. New microbial biotechnologies have been studied and tested in the sand columns, fissured rock samples, in 1 m3 tank with sand, and in the pack of stone sheets that were the models of the porous soil and fractured rocks. Several biotechnological methods showed positive results: 1) biogrouting using sequential desaturation of sand by injection of denitrifying bacteria and medium following with biocementation using urease-producing bacteria, urea and calcium salt decreased hydraulic conductivity of sand to 2×10-7 ms-1 after 17 days of treatment and consumed almost three times less reagents than conventional calcium-and urea-based biogrouting; 2) biogrouting using slime-producing bacteria decreased hydraulic conductivity of sand to 1x10-6 ms-1 after 15 days of treatment; 3) biogrouting of the rocks with the width of the fissures 65×10-6 m using calcium bicarbonate solution, that was produced from CaCO3 and CO2 under 30 bars pressure, decreased hydraulic conductivity of the fissured rocks to 2×10-7 ms-1 after 5 days of treatment. These bioclogging technologies could have a lot of advantages over conventional construction materials and processes and can be used in geotechnical engineering, agriculture and aquaculture, and for the environmental protection.

Keywords: biocementation, bioclogging, biogrouting, fractured rocks, porous soil, tunneling space

Procedia PDF Downloads 186
282 Features of Fossil Fuels Generation from Bazhenov Formation Source Rocks by Hydropyrolysis

Authors: Anton G. Kalmykov, Andrew Yu. Bychkov, Georgy A. Kalmykov

Abstract:

Nowadays, most oil reserves in Russia and all over the world are hard to recover. That is the reason oil companies are searching for new sources for hydrocarbon production. One of the sources might be high-carbon formations with unconventional reservoirs. Bazhenov formation is a huge source rock formation located in West Siberia, which contains unconventional reservoirs on some of the areas. These reservoirs are formed by secondary processes with low predicting ratio. Only one of five wells is drilled through unconventional reservoirs, in others kerogen has low thermal maturity, and they are of low petroliferous. Therefore, there was a request for tertiary methods for in-situ cracking of kerogen and production of oil. Laboratory experiments of Bazhenov formation rock hydrous pyrolysis were used to investigate features of the oil generation process. Experiments on Bazhenov rocks with a different mineral composition (silica concentration from 15 to 90 wt.%, clays – 5-50 wt.%, carbonates – 0-30 wt.%, kerogen – 1-25 wt.%) and thermal maturity (from immature to late oil window kerogen) were performed in a retort under reservoir conditions. Rock samples of 50 g weight were placed in retort, covered with water and heated to the different temperature varied from 250 to 400°C with the durability of the experiments from several hours to one week. After the experiments, the retort was cooled to room temperature; generated hydrocarbons were extracted with hexane, then separated from the solvent and weighted. The molecular composition of this synthesized oil was then investigated via GC-MS chromatography Characteristics of rock samples after the heating was measured via the Rock-Eval method. It was found, that the amount of synthesized oil and its composition depending on the experimental conditions and composition of rocks. The highest amount of oil was produced at a temperature of 350°C after 12 hours of heating and was up to 12 wt.% of initial organic matter content in the rocks. At the higher temperatures and within longer heating time secondary cracking of generated hydrocarbons occurs, the mass of produced oil is lowering, and the composition contains more hydrocarbons that need to be recovered by catalytical processes. If the temperature is lower than 300°C, the amount of produced oil is too low for the process to be economically effective. It was also found that silica and clay minerals work as catalysts. Selection of heating conditions allows producing synthesized oil with specified composition. Kerogen investigations after heating have shown that thermal maturity increases, but the yield is only up to 35% of the maximum amount of synthetic oil. This yield is the result of gaseous hydrocarbons formation due to secondary cracking and aromatization and coaling of kerogen. Future investigations will allow the increase in the yield of synthetic oil. The results are in a good agreement with theoretical data on kerogen maturation during oil production. Evaluated trends could be tooled up for in-situ oil generation by shale rocks thermal action.

Keywords: Bazhenov formation, fossil fuels, hydropyrolysis, synthetic oil

Procedia PDF Downloads 92