Search results for: Sujeeta Maharjan
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13

Search results for: Sujeeta Maharjan

13 Study of Bagmati River Pollution Level and Remediation of Heavy Metal using Microbial Fuel Cell

Authors: Jarina Joshi, Sujeeta Maharjan

Abstract:

This study was used to assess the potential of MFCs in removing heavy metals from the urban Bagmati River while (2) simultaneously producing electricity. Upon physicochemical and biological analysis of the collected water samples from three different locations during summer and winter, it was found that the Chemical Oxygen Demand (COD) and Total Suspended Solid (TSS) values exceeded the Ministry of Environment’s (MOE 2010) guidelines, and the river was contaminated with lead (Pb). The meta-genomic analysis, revealed the presence of four electrogenic bacterial genera: Pseudomonas, Rhodobacter, Rhodoferax, and Shewanella. Upon attainment of optimal configuration - COD 3500mg/L, a Graphite rod anode (TSA-13.31cm2), Platinum cathode (10×10×0.5mm) as electrodes, and a 1% bacterial consortium- MFCs with inoculum enriched Bagmati water, showed a maximum voltage of 0.08 ± 0.001 V, a current density of 0.8 ± 0.01 A/m2, and a power density of 0.070 ± 0.002 W/m2. Comparatively higher metal removal was also achieved in this operation, with approximately 100% As (III), 99% Pb (II), 98% Hg (II), and at least 25% Cr (VI) removal. Our results highlight MFC to be able to remediate heavy metals and also generating electricity. The research showed that though the pollution in Bagmati River had decreased in terms of parametric concentrations as researched in Baniya et al, 2019, it is still polluted exceeding guideline values, possibly indicating distortion of natural restoration capacity of river. Additionally, it also showed that with downstream flow of river, it indeed becomes less polluted but human activities isn’t letting this natural process to revive.

Keywords: bagmati, heavy metal contamination, heavy metal remediation, bio-electricity

Procedia PDF Downloads 0
12 Thermal Pre-Treatment of Sewage Sludge in Fluidized Bed for Enhancing Its Solid Fuel Properties

Authors: Sujeeta Karki, Jeeban Poudel, Ja Hyung Choi, Sea Cheon Oh

Abstract:

A lab-scale fluidized bed was used for the study of sewage sludge, a non-lignocellulosic biomass, torrefaction. The influence of torrefaction temperature ranging from 200–350 °C and residence time of 0–50 minutes on the physical and chemical properties of the torrefied product was investigated. Properties of the torrefied product were analyzed on the basis of degree of torrefaction, ultimate and proximate analysis, gas analysis and chemical exergy. The degree of torrefaction and chemical exergy had a positive influence on increasing the torrefaction temperature. Moreover, the effect of torrefaction temperature and residence time on the elemental variation of sewage sludge exhibited an increase in the weight percentage of carbon while the content of H/C and O/C molar ratios decreased. The product gas emitted during torrefaction was analyzed to study the pathway of hydrocarbons and oxygen-containing compounds. The compounds with oxygen were emitted at higher temperatures in contrast to hydrocarbon gases. An attempt was made to obtain the chemical exergy of sewage sludge. In addition, the study of various correlations for predicting the calorific value of torrefied sewage sludge was made.

Keywords: chemical exergy, degree of torrefaction, fluidized bed, higher heating value (HHV), O/C and H/C molar ratios, sewage sludge

Procedia PDF Downloads 168
11 Factors Affecting the Climate Change Adaptation in Agriculture in Central and Western Nepal

Authors: Maharjan Shree Kumar

Abstract:

Climate change impacts are observed in all livelihood sectors primarily in agriculture and forestry. Multiple factors have influenced the climate vulnerabilities and adaptations in agricultural at the household level. This study focused on the factors affecting adaptation in agriculture in Madi and Deukhuri valleys of Central and Western Nepal. The systematic random sampling technique was applied to select 154 households in Madi and 150 households in Deukhuri. The main purpose of the study was to analyze the socio-economic factors that either influence or restrain the farmers’ adaptation to climate change at the household level by applying the linear probability model. Based on the analysis, it is revealed that crop diversity, education, training and total land holding (acre) were positively significant for adaptation choices the study sites. Rest of the variables were not significant though indicated positive as expected except age, occupation, ethnicity, family size, and access to credit.

Keywords: adaptation, agriculture, climate, factors, Nepal

Procedia PDF Downloads 152
10 Evaluation of Drilling Performance through Bit-Rock Interaction Using Passive Vibration Assisted Rotation Drilling (PVARD) Tool

Authors: Md. Shaheen Shah, Abdelsalam Abugharara, Dipesh Maharjan, Syed Imtiaz, Stephen Butt

Abstract:

Drilling performance is an essential goal in petroleum and mining industry. Drilling rate of penetration (ROP), which is inversely proportional to the mechanical specific energy (MSE) is influenced by numerous factors among which are the applied parameter: torque (T), weight on bit (WOB), fluid flow rate, revolution per minute (rpm), rock related parameters: rock type, rock homogeneousness, rock anisotropy orientation, and mechanical parameters: bit type, configuration of the bottom hole assembly (BHA). This paper is focused on studying the drilling performance by implementing a passive vibration assisted rotary drilling tool (pVARD) as part of the BHA through using different bit types: coring bit, roller cone bit, and PDC bit and various rock types: rock-like material, granite, sandstone, etc. The results of this study aim to produce a pVARD index for optimal drilling performance considering the recommendations of the pVARD’s spring compression tests and stress-strain analysis of rock samples conducted prior to drilling experiments, analyzing the cutting size distribution, and evaluating the applied drilling parameters as a function of WOB. These results are compared with those obtained from drilling without pVARD, which represents the typical rigid BHA of the conventional drilling.

Keywords: BHA, drilling performance, MSE, pVARD, rate of penetration, ROP, tensile and shear fractures, unconfined compressive strength

Procedia PDF Downloads 146
9 Glaucoma Detection in Retinal Tomography Using the Vision Transformer

Authors: Sushish Baral, Pratibha Joshi, Yaman Maharjan

Abstract:

Glaucoma is a chronic eye condition that causes vision loss that is irreversible. Early detection and treatment are critical to prevent vision loss because it can be asymptomatic. For the identification of glaucoma, multiple deep learning algorithms are used. Transformer-based architectures, which use the self-attention mechanism to encode long-range dependencies and acquire extremely expressive representations, have recently become popular. Convolutional architectures, on the other hand, lack knowledge of long-range dependencies in the image due to their intrinsic inductive biases. The aforementioned statements inspire this thesis to look at transformer-based solutions and investigate the viability of adopting transformer-based network designs for glaucoma detection. Using retinal fundus images of the optic nerve head to develop a viable algorithm to assess the severity of glaucoma necessitates a large number of well-curated images. Initially, data is generated by augmenting ocular pictures. After that, the ocular images are pre-processed to make them ready for further processing. The system is trained using pre-processed images, and it classifies the input images as normal or glaucoma based on the features retrieved during training. The Vision Transformer (ViT) architecture is well suited to this situation, as it allows the self-attention mechanism to utilise structural modeling. Extensive experiments are run on the common dataset, and the results are thoroughly validated and visualized.

Keywords: glaucoma, vision transformer, convolutional architectures, retinal fundus images, self-attention, deep learning

Procedia PDF Downloads 191
8 Perception of Faculties Towards Online Teaching-Learning Activities during COVID-19 Pandemic: A Cross-Sectional Study at a Tertiary Care Center in Eastern Nepal

Authors: Deependra Prasad Sarraf, Gajendra Prasad Rauniar, Robin Maskey, Rajiv Maharjan, Ashish Shrestha, Ramayan Prasad Kushwaha

Abstract:

Objectives: To assess the perception of faculties towards online teaching-learning activities conducted during the COVID-19 pandemic and to identify barriers and facilitators to conducting online teaching-learning activities in our context. Methods: A cross-sectional study was conducted among faculties at B. P. Koirala Institute of Health Sciences using a 26-item semi-structured questionnaire. A Google Form was prepared, and its link was sent to the faculties via email. Descriptive statistics were calculated, and findings were presented as tables and graphs. Results: Out of 158 faculties, the majority were male (66.46%), medical faculties (85.44%), and assistant professors (46.84%). Only 16 (10.13%) faculties had received formal training regarding preparing and/or delivering online teaching learning activities. Out of 158, 133 (84.18%) faculties faced technical and internet issues. The most common advantage and disadvantage of online teaching learning activities perceived by the faculties were ‘not limited to time or place’ (94.30%) and ‘lack of interaction with the students’ (82.28%), respectively. Majority (94.3%) of them had a positive perception towards online teaching-learning activities conducted during COVID-19 pandemic. Slow internet connection (91.77%) and frequent electricity interruption (82.91%) were the most common perceived barriers to online teaching-learning. Conclusions: Most of the faculties had a positive perception towards online teaching-learning activities. Academic leaders and stakeholders should provide uninterrupted internet and electricity connectivity, training on online teaching-learning platform, and timely technical support.

Keywords: COVID-19 pandemic, faculties, medical education, perception

Procedia PDF Downloads 173
7 Exploring Perceptions of Local Stakeholders in Climate Change Adaptation in Central and Western Terai, Nepal

Authors: Shree Kumar Maharjan

Abstract:

Climate change has varied impacts on diverse livelihood sectors, which is more prominent at the community level. The stakeholders and local institutions have been supporting the communities either by building adaptive capacities and resilience or minimizing the impacts of different adaptation interventions. Some of these interventions are effective, whereas others need further dynamisms and exertions considering the complexity of the risks and vulnerabilities. Hence, consolidated efforts of concerned stakeholders are required to minimize and adapt the present and future impacts. This study digs out and analyses the perceptions of local stakeholders in climate change adaptation in Madi and Deukhuri valleys of Nepal through a questionnaire survey. The study has categorized the local stakeholders into 5 groups in the study sites – Farmers groups and cooperatives, Government, I/NGOs, Development banks and education and other organizations. The local stakeholders revealed flood, drought, cold wave and riverbank erosion as the major climatic risks and hazards found in the sites eventually impacting on the loss of agricultural production, loss of agricultural land and properties, loss of livestock, the emergence of diseases and pest. The stakeholders believed that most of the farmers dealing with these impacts based on their traditional knowledge and practices, followed by with the support of NGOs and with the help of neighbors and community. The major supports of the stakeholders to deal with these impacts were on training and awareness, risk analysis and minimization, livelihood improvement, financial support, coordination and networking and facilitation in policy formulation. The stakeholders emphasized primarily on capacity building, appropriate technologies, community-based planning and monitoring, prioritization to the poor and the marginalized and establishment of community fund respectively for building adaptive capacities.

Keywords: climate change adaptation, local stakeholders, Madi, Deukhuri, Nepal

Procedia PDF Downloads 179
6 Impact of Organic Farming on Soil Fertility and Microbial Activity

Authors: Menuka Maharjan

Abstract:

In the name of food security, agriculture intensification through conventional farming is being implemented in Nepal. Government focus on increasing agriculture production completely ignores soil as well human health. This leads to create serious soil degradation, i.e., reduction of soil fertility and microbial activity and health hazard in the country. On this note, organic farming is sustainable agriculture approach which can address challenge of sustaining food security while protecting the environment. This creates a win-win situation both for people and the environment. However, people have limited knowledge on significance of organic farming for environment conservation and food security especially developing countries like Nepal. Thus, the objective of the study was to assess the impacts of organic farming on soil fertility and microbial activity compared to conventional farming and forest in Chitwan, Nepal. Total soil organic carbon (C) was highest in organic farming (24 mg C g⁻¹ soil) followed by conventional farming (15 mg C g⁻¹ soil) and forest (9 mg C g⁻¹ soil) in the topsoil layer (0-10 cm depth). A similar trend was found for total nitrogen (N) content in all three land uses with organic farming soil possessing the highest total N content in both 0-10 cm and 10-20 cm depth. Microbial biomass C and N were also highest under organic farming, especially in the topsoil layer (350 and 46 mg g⁻¹ soil, respectively). Similarly, microbial biomass phosphorus (P) was higher (3.6 and 1.0 mg P kg⁻¹ at 0-10 and 10-20 cm depth, respectively) in organic farming compared to conventional farming and forest at both depths. However, conventional farming and forest soils had similar microbial biomass (C, N, and P) content. After conversion of forest, the P stock significantly increased by 373% and 170% in soil under organic farming at 0-10 and 10-20 cm depth, respectively. In conventional farming, the P stock increased by 64% and 36% at 0-10 cm and 10-20 cm depth, respectively, compared to forest. Overall, organic farming practices, i.e., crop rotation, residue input and farmyard manure application, significantly alters soil fertility and microbial activity. Organic farming system is emerging as a sustainable land use system which can address the issues of food security and environment conservation by increasing sustainable agriculture production and carbon sequestration, respectively, supporting to achieve goals of sustainable development.

Keywords: organic farming, soil fertility, micobial biomas, food security

Procedia PDF Downloads 176
5 Isolation and Molecular Characterization of Lytic Bacteriophage against Carbapenem Resistant Klebsiella pneumoniae

Authors: Guna Raj Dhungana, Roshan Nepal, Apshara Parajuli, , Archana Maharjan, Shyam K. Mishra, Pramod Aryal, Rajani Malla

Abstract:

Introduction: Klebsiella pneumoniae is a well-known opportunistic human pathogen, primarily causing healthcare-associated infections. The global emergence of carbapenemase-producing K. pneumoniaeis a major public health burden, which is often extensively multidrug resistant.Thus, because of the difficulty to treat these ‘superbug’ and menace and some term as ‘apocalypse’ of post antibiotics era, an alternative approach to controlling this pathogen is prudent and one of the approaches is phage mediated control and/or treatment. Objective: In this study, we aimed to isolate novel bacteriophage against carbapenemase-producing K. pneumoniaeand characterize for potential use inphage therapy. Material and Methods: Twenty lytic phages were isolated from river water using double layer agar assay and purified. Biological features, physiochemical characters, burst size, host specificity and activity spectrum of phages were determined. One most potent phage: Phage TU_Kle10O was selected and characterized by electron microscopy. Whole genome sequences of the phage were analyzed for presence/absence of virulent factors, and other lysin genes. Results: Novel phage TU_Kle10O showed multiple host range within own genus and did not induce any BIM up to 5th generation of host’s life cycle. Electron microscopy confirmed that the phage was tailed and belonged to Caudovirales family. Next generation sequencing revealed its genome to be 166.2 Kb. bioinformatical analysis further confirmed that the phage genome ‘did not’ contain any ‘bacterial genes’ within phage genome, which ruled out the concern for transfer of virulent genes. Specific 'lysin’ enzyme was identified phages which could be used as 'antibiotics'. Conclusion: Extensively multidrug resistant bacteria like carbapenemase-producing K. pneumoniaecould be treated efficiently by phages.Absence of ‘virulent’ genes of bacterial origin and presence of lysin proteins within phage genome makes phages an excellent candidate for therapeutics.

Keywords: bacteriophage, Klebsiella pneumoniae, MDR, phage therapy, carbapenemase,

Procedia PDF Downloads 190
4 Time to Second Line Treatment Initiation Among Drug-Resistant Tuberculosis Patients in Nepal

Authors: Shraddha Acharya, Sharad Kumar Sharma, Ratna Bhattarai, Bhagwan Maharjan, Deepak Dahal, Serpahine Kaminsa

Abstract:

Background: Drug-resistant (DR) tuberculosis (TB) continues to be a threat in Nepal, with an estimated 2800 new cases every year. The treatment of DR-TB with second line TB drugs is complex and takes longer time with comparatively lower treatment success rate than drug-susceptible TB. Delay in treatment initiation for DR-TB patients might further result in unfavorable treatment outcomes and increased transmission. This study thus aims to determine median time taken to initiate second-line treatment among Rifampicin Resistant (RR) diagnosed TB patients and to assess the proportion of treatment delays among various type of DR-TB cases. Method: A retrospective cohort study was done using national routine electronic data (DRTB and TB Laboratory Patient Tracking System-DHIS2) on drug resistant tuberculosis patients between January 2020 and December 2022. The time taken for treatment initiation was computed as– days from first diagnosis as RR TB through Xpert MTB/Rif test to enrollment on second-line treatment. The treatment delay (>7 days after diagnosis) was calculated. Results: Among total RR TB cases (N=954) diagnosed via Xpert nationwide, 61.4% were enrolled under shorter-treatment regimen (STR), 33.0% under longer treatment regimen (LTR), 5.1% for Pre-extensively drug resistant TB (Pre-XDR) and 0.4% for Extensively drug resistant TB (XDR) treatment. Among these cases, it was found that the median time from diagnosis to treatment initiation was 6 days (IQR:2-15.8). The median time was 5 days (IQR:2.0-13.3) among STR, 6 days (IQR:3.0-15.0) among LTR, 30 days (IQR:5.5-66.8) among Pre-XDR and 4 days (IQR:2.5-9.0) among XDR TB cases. The overall treatment delay (>7 days after diagnosis) was observed in 42.4% of the patients, among which, cases enrolled under Pre-XDR contributed substantially to treatment delay (72.0%), followed by LTR (43.6%), STR (39.1%) and XDR (33.3%). Conclusion: Timely diagnosis and prompt treatment initiation remain fundamental focus of the National TB program. The findings of the study, however suggest gaps in timeliness of treatment initiation for the drug-resistant TB patients, which could bring adverse treatment outcomes. Moreover, there is an alarming delay in second line treatment initiation for the Pre-XDR TB patients. Therefore, this study generates evidence to identify existing gaps in treatment initiation and highlights need for formulating specific policies and intervention in creating effective linkage between the RR TB diagnosis and enrollment on second line TB treatment with intensified efforts from health providers for follow-ups and expansion of more decentralized, adequate, and accessible diagnostic and treatment services for DR-TB, especially Pre-XDR TB cases, due to the observed long treatment delays.

Keywords: drug-resistant, tuberculosis, treatment initiation, Nepal, treatment delay

Procedia PDF Downloads 85
3 Understanding and Addressing the Tuberculosis Notification Gap in Nepal

Authors: Lok Raj Joshi, Naveen Prakash Shah, Sharad Kumar Sharma, I. Ratna Bhattarai, Rajendra Basnet, Deepak Dahal, Bahagwan Maharjan, Seraphine Kaminsa

Abstract:

Context: Tuberculosis (TB) is a significant health issue in Nepal, a country with a high burden of the disease. Despite efforts to control TB, there is still a gap in the notification of TB cases, which hinders effective control and treatment. This paper aims to address this notification gap and proposes strategies to improve TB control in Nepal. Research Aim: The aim of this research is to understand and address the tuberculosis notification gap in Nepal. The focus is on enhancing the healthcare system, involving the private sector and communities, raising awareness, and addressing social determinants to achieve sustainable TB control. Methodology: The research methodology involved a review of existing epidemiological data and research studies related to TB in Nepal. Additionally, consultation with an expert group from the TB control program in Nepal provided insights into the current state of TB control and challenges in addressing the notification gap. Findings: The findings reveal that only 55% of TB cases were reported in 2022, indicating a significant notification gap. Of the reported cases, only 32% and 19% were referred by the private sector and community, respectively. Furthermore, 20% of diagnosed cases were not treated in the initial phase. The estimated number of cases of multidrug-resistant TB (MDR TB) was 2,800, suggesting a low diagnosis rate. Among the diagnosed MDR TB cases, only 60% were receiving treatment. Additionally, it was observed that 20% of diagnosed MDR TB cases were from India and not enrolling in TB treatment in Nepal, indicating a high rate of defaulters. Theoretical Importance: The study highlights the importance of adopting a holistic strategy to address the notification gap in TB cases in Nepal. It emphasizes the need to enhance healthcare infrastructure, raise awareness, involve the private sector and local communities, establish effective methods to trace initial defaulters, implement TB interventions in border regions, and mitigate the social stigma associated with the disease. Data Collection and Analysis Procedures: Data for this study was collected through a review of existing epidemiological data and research studies. The data were then analyzed to identify patterns, trends, and gaps in TB case notification in Nepal.

Keywords: TB, tuberculosis, private sector, community, migrants, nepal

Procedia PDF Downloads 100
2 Fabrication of High Energy Hybrid Capacitors from Biomass Waste-Derived Activated Carbon

Authors: Makhan Maharjan, Mani Ulaganathan, Vanchiappan Aravindan, Srinivasan Madhavi, Jing-Yuan Wang, Tuti Mariana Lim

Abstract:

There is great interest to exploit sustainable, low-cost, renewable resources as carbon precursors for energy storage applications. Research on development of energy storage devices has been growing rapidly due to mismatch in power supply and demand from renewable energy sources This paper reported the synthesis of porous activated carbon from biomass waste and evaluated its performance in supercapicators. In this work, we employed orange peel (waste material) as the starting material and synthesized activated carbon by pyrolysis of KOH impregnated orange peel char at 800 °C in argon atmosphere. The resultant orange peel-derived activated carbon (OP-AC) exhibited a high BET surface area of 1,901 m2 g-1, which is the highest surface area so far reported for the orange peel. The pore size distribution (PSD) curve exhibits the pores centered at 11.26 Å pore width, suggesting dominant microporosity. The OP-AC was studied as positive electrode in combination with different negative electrode materials, such as pre-lithiated graphite (LiC6) and Li4Ti5O12 for making different hybrid capacitors. The lithium ion capacitor (LIC) fabricated using OP-AC with pre-lithiated graphite delivered a high energy density of ~106 Wh kg–1. The energy density for OP-AC||Li4Ti5O12 capacitor was ~35 Wh kg–1. For comparison purpose, configuration of OP-AC||OP-AC capacitors were studied in both aqueous (1M H2SO4) and organic (1M LiPF6 in EC-DMC) electrolytes, which delivered the energy density of 6.6 Wh kg-1 and 16.3 Wh kg-1, respectively. The cycling retentions obtained at current density of 1 A g–1 were ~85.8, ~87.0 ~82.2 and ~58.8% after 2500 cycles for OP-AC||OP-AC (aqueous), OP-AC||OP-AC (organic), OP-AC||Li4Ti5O12 and OP-AC||LiC6 configurations, respectively. In addition, characterization studies were performed by elemental and proximate composition, thermogravimetry, field emission-scanning electron microscopy, Raman spectra, X-ray diffraction (XRD) pattern, Fourier transform-infrared, X-ray photoelectron spectroscopy (XPS) and N2 sorption isotherms. The morphological features from FE-SEM exhibited well-developed porous structures. Two typical broad peaks observed in the XRD framework of the synthesized carbon implies amorphous graphitic structure. The ratio of 0.86 for ID/IG in Raman spectra infers high degree of graphitization in the sample. The band spectra of C 1s in XPS display the well resolved peaks related to carbon atoms in various chemical environments; for instances, the characteristics binding energies appeared at ~283.83, ~284.83, ~286.13, ~288.56, and ~290.70 eV which correspond to sp2 -graphitic C, sp3 -graphitic C, C-O, C=O and π-π*, respectively. Characterization studies revealed the synthesized carbon to be promising electrode material towards the application for energy storage devices. The findings opened up the possibility of developing high energy LICs from abundant, low-cost, renewable biomass waste.

Keywords: lithium-ion capacitors, orange peel, pre-lithiated graphite, supercapacitors

Procedia PDF Downloads 243
1 High Performance Lithium Ion Capacitors from Biomass Waste-Derived Activated Carbon

Authors: Makhan Maharjan, Mani Ulaganathan, Vanchiappan Aravindan, Srinivasan Madhavi, Jing-Yuan Wang, Tuti Mariana Lim

Abstract:

The ever-increasing energy demand has made research to develop high performance energy storage systems that are able to fulfill energy needs. Supercapacitors have potential applications as portable energy storage devices. In recent years, there have been huge research interests to enhance the performances of supercapacitors via exploiting novel promising carbon precursors, tailoring textural properties of carbons, exploiting various electrolytes and device types. In this work, we employed orange peel (waste material) as the starting material and synthesized activated carbon by pyrolysis of KOH impregnated orange peel char at 800 °C in argon atmosphere. The resultant orange peel-derived activated carbon (OP-AC) exhibited BET surface area of 1,901 m² g-1, which is the highest surface area so far reported for the orange peel. The pore size distribution (PSD) curve exhibits the pores centered at 11.26 Å pore width, suggesting dominant microporosity. The high surface area OP-AC accommodates more ions in the electrodes and its well-developed porous structure facilitates fast diffusion of ions which subsequently enhance electrochemical performance. The OP-AC was studied as positive electrode in combination with different negative electrode materials, such as pre-lithiated graphite (LiC6) and Li4Ti5O12 for making hybrid capacitors. The lithium ion capacitor (LIC) fabricated using OP-AC with pre-lithiated graphite delivered high energy density of ~106 Wh kg–1. The energy density for OP-AC||Li4Ti5O12 capacitor was ~35 Wh kg⁻¹. For comparison purpose, configuration of OP-AC||OP-AC capacitors were studied in both aqueous (1M H2SO4) and organic (1M LiPF6 in EC-DMC) electrolytes, which delivered the energy density of 8.0 Wh kg⁻¹ and 16.3 Wh kg⁻¹, respectively. The cycling retentions obtained at current density of 1 A g⁻¹ were ~85.8, ~87.0 ~82.2 and ~58.8% after 2500 cycles for OP-AC||OP-AC (aqueous), OP-AC||OP-AC (organic), OP-AC||Li4Ti5O12 and OP-AC||LiC6 configurations, respectively. In addition, characterization studies were performed by elemental and proximate composition, thermogravimetry analysis, field emission-scanning electron microscopy, Raman spectra, X-ray diffraction (XRD) pattern, Fourier transform-infrared, X-ray photoelectron spectroscopy (XPS) and N2 sorption isotherms. The morphological features from FE-SEM exhibited well-developed porous structures. Two typical broad peaks observed in the XRD framework of the synthesized carbon implies amorphous graphitic structure. The ratio of 0.86 for ID/IG in Raman spectra infers high degree of graphitization in the sample. The band spectra of C 1s in XPS display the well resolved peaks related to carbon atoms in various chemical environments. The presence of functional groups is also corroborated from the FTIR spectroscopy. Characterization studies revealed the synthesized carbon to be promising electrode material towards the application for energy storage devices. Overall, the intriguing properties of OP-AC make it a new alternative promising electrode material for the development of high energy lithium ion capacitors from abundant, low-cost, renewable biomass waste. The authors gratefully acknowledge Agency for Science, Technology and Research (A*STAR)/ Singapore International Graduate Award (SINGA) and Nanyang Technological University (NTU), Singapore for funding support.

Keywords: energy storage, lithium-ion capacitors, orange peels, porous activated carbon

Procedia PDF Downloads 229