Search results for: Sinhala sign language
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4056

Search results for: Sinhala sign language

4056 Creativity in the Use of Sinhala and English in Advertisements in Sri Lanka: A Morphological Analysis

Authors: Chamindi Dilkushi Senaratne

Abstract:

Sri Lanka has lived with the English language for more than 200 years. Although officially considered a link language, the phenomenal usage of English by the Sinhala-English bilingual has given rise to a mixed code with identifiable structural characteristics. The extensive use of the mixed language by the average Sri Lankan bilingual has resulted in it being used as a medium of communication by creative writers of bilingual advertisements in Sri Lanka. This study analyses the way in which English is used in bilingual advertisements in both print and electronic media in Sri Lanka. The theoretical framework for the study is based on Kachru’s analysis of the use of English by the bilingual, Muysken’s typology on code mixing theories in colonial settings and Myers-Scotton’s theory on the Matrix Language Framework Model. The study will look at a selection of Sinhala-English advertisements published in newspapers from 2015 to 2016. Only advertisements using both Sinhala and English are used for the analysis. To substantiate data collected from the newspapers, the study will select bilingual advertisements from television advertisements. The objective of the study is to analyze the mixed patterns used for creative purposes by advertisers. The results of the study will reveal the creativity used by the Sinhala –English bilingual and the morphological processes used by the creators of Sinhala-English bilingual advertisements to attract the masses.

Keywords: bilingual, code mixing, morphological processes, mixed code

Procedia PDF Downloads 284
4055 Ethnolinguistic Otherness: The Vedda Language (Baasapojja) of Indigenous Adivasi (Veddas) of Dambana in Sri Lanka

Authors: Nimasha Malalasekera

Abstract:

Working with the indigenous Adivasi (Vedda) community of Dambana in the district of Badulla in Sri Lanka, this research documents linguistic data to address language and cultural endangerment. The ancestral language of Adivasi has undergone sustained restructuration over a long historical period due to its contact with Sinhala, an Indo-Aryan language spoken by the majority Sinhalese. The Vedda language is highly endangered today. At present, all speakers of the Vedda language spoken in Dambana are Adivasi men in the parent generation, who are Sinhala-Vedda bilinguals. Adivasi women and children do not speak the Vedda language but Sinhala in everyday life. Women can understand the Vedda language and would respond to a Vedda language utterance in Sinhala. The use of the Vedda language is largely restricted to self-ascribing Adivasi men who employ it in the context of cultural tourism in Dambana to index ethnolinguistic otherness. Adivasi of Dambana often refers to this distinct linguistic code that they speak as baasapojja or language. This research employs a cooperative model of ethnographic documentation to explore the interrelations between discursive practices, linguistic structures, and linguistic (and broader sociocultural) ideologies in this community. The Vedda language has been previously identified as a dialect of Sinhala or a creole emerging in the contact between Sinhala and the ancestral Vedda language. This paper analyzes the current language endangerment context of bilingual Adivasi members that allows the birth of a mixed language. The aim of this research is to preserve ongoing linguistic innovation among this endangered language speech community. It contributes to the appreciation of creative cultural and linguistic production of a stigmatized minuscule indigenous community of South Asia that strives to assert a distinct linguistic and cultural identity from the dominant populations.

Keywords: Vedda language, language endangerment, mixed languages, indigenous identity

Procedia PDF Downloads 102
4054 Peace through Language Policy as a Solution to the Ethnic Conflict in Sri Lanka

Authors: R. M. W. Rajapakshe

Abstract:

Sri Lanka, which is officially called the Democratic Socialist Republic of Sri Lanka is an island nation situated near India. It is a multi-lingual, multi- religious and multi – ethnic country, where Sinhalese form the majority and the Tamils form the largest ethnic minority. The composition of the population (ethnic basis) in Sri Lanka is as follows: Sinhalese: 74.5%, Tamil (Sri Lankan): 12.6%, Muslim: 7.5 %, Tamil (Indian): 5.5%, Malay: 0.3%, Burgher: 0.3 %, other: 0.2 %. The Tamil people use the Tamil language as their mother tongue and the Sinhala people use the Sinhala language as their mother tongue. A very few people in both communities use English as their mother tongue and however, a large number of people use English as a second language. The Sinhala Language was declared the only official language in Sri Lanka in 1959. However, it was not acceptable to Tamil politicians as well as to the common Tamil people and it was the beginning of long standing ethnic crisis which later became a military war where a lot of blood was shed. As a solution to the above ethnic crisis the thirteenth amendment to the constitution of Sri Lanka was introduced in 1987 and according to it both Sinhala and Tamil were declared official languages and English as the link language in Sri Lanka. Thus, a new programme namely, second language teaching programme under which Sinhala was taught to Tamil students and Tamil was taught to Sinhala students, was introduced at government schools. Language teaching includes knowledge of the culture of the target language. As all cultures are mixed and have common features students have reduced their enmity about the other community and learned to respect the other culture. On the other hand as all languages are mixed, students came to the understanding that there are no pure languages. Thus, they learned to respect the other language. In the case of Sri Lanka the Sinhala language is mixed with the Tamil language and vice versa. Thus, the development of second language teaching is the prominent way to solve the above ethnic problem and this study clearly shows it. However, the above programme suffers with lack of trained second language teachers, infrastructure facilities and insufficient funds and, they can be considered as the main obstacles to develop the second language teaching programme. Yet, there are no satisfactory answers to those problems. The data were collected from relevant books, articles and other documents based on research and forty five recordings, each with one hour duration, of natural conversations covering all factions of the Sinhala community.

Keywords: ethnic crisis, official language, second language teaching, Sinhala, Tami

Procedia PDF Downloads 345
4053 Error Analysis of Pronunciation of French by Sinhala Speaking Learners

Authors: Chandeera Gunawardena

Abstract:

The present research analyzes the pronunciation errors encountered by thirty Sinhala speaking learners of French on the assumption that the pronunciation errors were systematic and they reflect the interference of the native language of the learners. The thirty participants were selected using random sampling method. By the time of the study, the subjects were studying French as a foreign language for their Bachelor of Arts Degree at University of Kelaniya, Sri Lanka. The participants were from a homogenous linguistics background. All participants speak the same native language (Sinhala) thus they had completed their secondary education in Sinhala medium and during which they had also learnt French as a foreign language. A battery operated audio tape recorder and a 120-minute blank cassettes were used for recording. A list comprised of 60 words representing all French phonemes was used to diagnose pronunciation difficulties. Before the recording process commenced, the subjects were requested to familiarize themselves with the words through reading them several times. The recording was conducted individually in a quiet classroom and each recording approximately took fifteen minutes. Each subject was required to read at a normal speed. After the completion of recording, the recordings were replayed to identify common errors which were immediately transcribed using the International Phonetic Alphabet. Results show that Sinhala speaking learners face problems with French nasal vowels and French initial consonants clusters. The learners also exhibit errors which occur because of their second language (English) interference.

Keywords: error analysis, pronunciation difficulties, pronunciation errors, Sinhala speaking learners of French

Procedia PDF Downloads 209
4052 Sinhala Sign Language to Grammatically Correct Sentences using NLP

Authors: Anjalika Fernando, Banuka Athuraliya

Abstract:

This paper presents a comprehensive approach for converting Sinhala Sign Language (SSL) into grammatically correct sentences using Natural Language Processing (NLP) techniques in real-time. While previous studies have explored various aspects of SSL translation, the research gap lies in the absence of grammar checking for SSL. This work aims to bridge this gap by proposing a two-stage methodology that leverages deep learning models to detect signs and translate them into coherent sentences, ensuring grammatical accuracy. The first stage of the approach involves the utilization of a Long Short-Term Memory (LSTM) deep learning model to recognize and interpret SSL signs. By training the LSTM model on a dataset of SSL gestures, it learns to accurately classify and translate these signs into textual representations. The LSTM model achieves a commendable accuracy rate of 94%, demonstrating its effectiveness in accurately recognizing and translating SSL gestures. Building upon the successful recognition and translation of SSL signs, the second stage of the methodology focuses on improving the grammatical correctness of the translated sentences. The project employs a Neural Machine Translation (NMT) architecture, consisting of an encoder and decoder with LSTM components, to enhance the syntactical structure of the generated sentences. By training the NMT model on a parallel corpus of Sinhala wrong sentences and their corresponding grammatically correct translations, it learns to generate coherent and grammatically accurate sentences. The NMT model achieves an impressive accuracy rate of 98%, affirming its capability to produce linguistically sound translations. The proposed approach offers significant contributions to the field of SSL translation and grammar correction. Addressing the critical issue of grammar checking, it enhances the usability and reliability of SSL translation systems, facilitating effective communication between hearing-impaired and non-sign language users. Furthermore, the integration of deep learning techniques, such as LSTM and NMT, ensures the accuracy and robustness of the translation process. This research holds great potential for practical applications, including educational platforms, accessibility tools, and communication aids for the hearing-impaired. Furthermore, it lays the foundation for future advancements in SSL translation systems, fostering inclusive and equal opportunities for the deaf community. Future work includes expanding the existing datasets to further improve the accuracy and generalization of the SSL translation system. Additionally, the development of a dedicated mobile application would enhance the accessibility and convenience of SSL translation on handheld devices. Furthermore, efforts will be made to enhance the current application for educational purposes, enabling individuals to learn and practice SSL more effectively. Another area of future exploration involves enabling two-way communication, allowing seamless interaction between sign-language users and non-sign-language users.In conclusion, this paper presents a novel approach for converting Sinhala Sign Language gestures into grammatically correct sentences using NLP techniques in real time. The two-stage methodology, comprising an LSTM model for sign detection and translation and an NMT model for grammar correction, achieves high accuracy rates of 94% and 98%, respectively. By addressing the lack of grammar checking in existing SSL translation research, this work contributes significantly to the development of more accurate and reliable SSL translation systems, thereby fostering effective communication and inclusivity for the hearing-impaired community

Keywords: Sinhala sign language, sign Language, NLP, LSTM, NMT

Procedia PDF Downloads 103
4051 Use of Interpretable Evolved Search Query Classifiers for Sinhala Documents

Authors: Prasanna Haddela

Abstract:

Document analysis is a well matured yet still active research field, partly as a result of the intricate nature of building computational tools but also due to the inherent problems arising from the variety and complexity of human languages. Breaking down language barriers is vital in enabling access to a number of recent technologies. This paper investigates the application of document classification methods to new Sinhalese datasets. This language is geographically isolated and rich with many of its own unique features. We will examine the interpretability of the classification models with a particular focus on the use of evolved Lucene search queries generated using a Genetic Algorithm (GA) as a method of document classification. We will compare the accuracy and interpretability of these search queries with other popular classifiers. The results are promising and are roughly in line with previous work on English language datasets.

Keywords: evolved search queries, Sinhala document classification, Lucene Sinhala analyzer, interpretable text classification, genetic algorithm

Procedia PDF Downloads 112
4050 Mouthing Patterns in Indian Sign Language

Authors: Neha Kulshreshtha

Abstract:

This paper examines the patterns of 'Mouthing', a non-manual marker, and its distribution in Indian Sign Language (ISL). Linguistic research in Indian Sign Language is an emerging field where much is needed to be done. The little research which has happened focuses on the structure of ISL in terms of physical or manual markers, therefore a study of mouthing patterns would give an insight into the distribution of this particular non-manual marker. Data has been collected with the help of native ISL users through various techniques in which natural signs can be captured, for example, storytelling, informal conversations etc. The aim of the study is to find out the various situations where mouthing is used. Sometimes, the mouthing is not actually the articulation of the word as spoken in the local languages. The paper aims to find out whether the mouthing patterns in ISL are influenced by any local language or they are independent of any influence from the local language or both. Mouthing patterns have been studied in many sign languages and an investigation into ISL will reveal whether it falls in pattern with the other sign languages.

Keywords: Indian sign language, mouthing, non-manual marker, spoken language influence

Procedia PDF Downloads 263
4049 Teaching Italian Sign Language in Higher Education

Authors: Maria Tagarelli De Monte

Abstract:

Since its formal recognition in 2021, Italian Sign Language (LIS) and interpreters’ education has become a topic for higher education in Italian universities. In April 2022, Italian universities have been invited to present their proposals to create sign language courses for interpreters’ training for both LIS and tactile LIS. As a result, a few universities have presented a three-year course leading candidate students from the introductory level to interpreters. In such a context, there is an open debate not only on the fact that three years may not be enough to prepare skillful interpreters but also on the need to refer to international standards in the definition of the training path to follow. Among these, are the Common European Framework of Reference (CEFR) for languages and Dublin’s descriptors. This contribution will discuss the potentials and the challenges given by LIS training in academic settings, by comparing traditional studies to the requests coming from universities. Particular attention will be given to the use of CEFR as a reference document for the Italian Sign Language Curriculum. Its use has given me the chance to reflect on how LIS can be taught in higher education, and the adaptations that need to be addressed to respect the visual-gestural nature of sign language and the formal requirements of academic settings.

Keywords: Italian sign language, higher education, sign language curriculum, interpreters education, CEFR

Procedia PDF Downloads 43
4048 Revitalization of Sign Language through Deaf Theatre: A Linguistic Analysis of an Art Form Which Combines Physical Theatre, Poetry, and Sign Language

Authors: Gal Belsitzman, Rose Stamp, Atay Citron, Wendy Sandler

Abstract:

Sign languages are considered endangered. The vitality of sign languages is compromised by its unique sociolinguistic situation, in which hearing parents that give birth to deaf children usually decide to cochlear implant their child. Therefore, these children don’t acquire their natural language – Sign Language. Despite this, many sign languages, such as Israeli Sign Language (ISL) are thriving. The continued survival of similar languages under threat has been associated with the remarkable resilience of the language community. In particular, deaf literary traditions are central in reminding the community of the importance of the language. One example of a deaf literary tradition which has received increased popularity in recent years is deaf theatre. The Ebisu Sign Language Theatre Laboratory, developed as part of the multidisciplinary Grammar of the Body Research Project, is the first deaf theatre company in Israel. Ebisu Theatre combines physical theatre and sign language research, to allow for a natural laboratory to analyze the creative use of the body. In this presentation, we focus on the recent theatre production called ‘Their language’ which tells of the struggle faced by the deaf community to use their own natural language in the education system. A thorough analysis unravels how linguistic properties are integrated with the use of poetic devices and physical theatre techniques in this performance, enabling wider access by both deaf and hearing audiences, without interpretation. Interviews with the audience illustrate the significance of this art form which serves a dual purpose, both as empowering for the deaf community and educational for the hearing and deaf audiences, by raising awareness of community-related issues.

Keywords: deaf theatre, empowerment, language revitalization, sign language

Procedia PDF Downloads 167
4047 Brazilian Sign Language: A Synthesis of the Research in the Period from 2000 to 2017

Authors: Maria da Gloria Guara-Tavares

Abstract:

This article reports a synthesis of the research in Brazilian Sign Language conducted from 2000 to 2017. The objective of the synthesis was to identify the most researched areas and the most used methodologies. Articles published in three Brazilian journals of Translation Studies, unpublished dissertations and theses were included in the analysis. Abstracts and the method sections of the papers were scrutinized. Sixty studies were analyzed, and overall results indicate that the research in Brazilian Sign Language has been fragmented in several areas such as linguistic aspects, facial expressions, subtitling, identity issues, bilingualism, and interpretation strategies. Concerning research methods, the synthesis reveals that most research is qualitative in nature. Moreover, results show that the cognitive aspects of Brazilian Sign Language seem to be poorly explored. Implications for a future research agenda are also discussed.

Keywords: Brazilian sign language, qualitative methods, research agenda, synthesis

Procedia PDF Downloads 239
4046 A Motion Dictionary to Real-Time Recognition of Sign Language Alphabet Using Dynamic Time Warping and Artificial Neural Network

Authors: Marcio Leal, Marta Villamil

Abstract:

Computacional recognition of sign languages aims to allow a greater social and digital inclusion of deaf people through interpretation of their language by computer. This article presents a model of recognition of two of global parameters from sign languages; hand configurations and hand movements. Hand motion is captured through an infrared technology and its joints are built into a virtual three-dimensional space. A Multilayer Perceptron Neural Network (MLP) was used to classify hand configurations and Dynamic Time Warping (DWT) recognizes hand motion. Beyond of the method of sign recognition, we provide a dataset of hand configurations and motion capture built with help of fluent professionals in sign languages. Despite this technology can be used to translate any sign from any signs dictionary, Brazilian Sign Language (Libras) was used as case study. Finally, the model presented in this paper achieved a recognition rate of 80.4%.

Keywords: artificial neural network, computer vision, dynamic time warping, infrared, sign language recognition

Procedia PDF Downloads 215
4045 Comparison of Sign Language Skill and Academic Achievement of Deaf Students in Special and Inclusive Primary Schools of South Nation Nationalities People Region, Ethiopia

Authors: Tesfaye Basha

Abstract:

The purpose of this study was to examine the sign language and academic achievement of deaf students in special and inclusive primary schools of Southern Ethiopia. The study used a mixed-method to collect varied data. The study contained Signed Amharic and English skill tasks, questionnaire, 8th-grade Primary School Leaving Certificate Examination results, classroom observation, and interviews. For quantitative (n=70) deaf students and for qualitative data collection, 16 participants were involved. The finding revealed that the limitation of sign language is a problem in signing and academic achievements. This displays that schools are not linguistically rich to enable sign language achievement for deaf students. Moreover, the finding revealed that the contribution of Total Communication in the growth of natural sign language for deaf students was unsatisfactory. The results also indicated that special schools of deaf students performed better sign language skills and academic achievement than inclusive schools. In addition, the findings revealed that high signed skill group showed higher academic achievement than the low skill group. This displayed that sign language skill is highly associated with academic achievement. In addition, to qualify deaf students in sign language and academics, teacher institutions must produce competent teachers on how to teach deaf students with sign language and literacy skills.

Keywords: academic achievement, inclusive school, sign language, signed Amharic, signed English, special school, total communication

Procedia PDF Downloads 133
4044 Prototyping a Portable, Affordable Sign Language Glove

Authors: Vidhi Jain

Abstract:

Communication between speakers and non-speakers of American Sign Language (ASL) can be problematic, inconvenient, and expensive. This project attempts to bridge the communication gap by designing a portable glove that captures the user’s ASL gestures and outputs the translated text on a smartphone. The glove is equipped with flex sensors, contact sensors, and a gyroscope to measure the flexion of the fingers, the contact between fingers, and the rotation of the hand. The glove’s Arduino UNO microcontroller analyzes the sensor readings to identify the gesture from a library of learned gestures. The Bluetooth module transmits the gesture to a smartphone. Using this device, one day speakers of ASL may be able to communicate with others in an affordable and convenient way.

Keywords: sign language, morse code, convolutional neural network, American sign language, gesture recognition

Procedia PDF Downloads 61
4043 Online Multilingual Dictionary Using Hamburg Notation for Avatar-Based Indian Sign Language Generation System

Authors: Sugandhi, Parteek Kumar, Sanmeet Kaur

Abstract:

Sign Language (SL) is used by deaf and other people who cannot speak but can hear or have a problem with spoken languages due to some disability. It is a visual gesture language that makes use of either one hand or both hands, arms, face, body to convey meanings and thoughts. SL automation system is an effective way which provides an interface to communicate with normal people using a computer. In this paper, an avatar based dictionary has been proposed for text to Indian Sign Language (ISL) generation system. This research work will also depict a literature review on SL corpus available for various SL s over the years. For ISL generation system, a written form of SL is required and there are certain techniques available for writing the SL. The system uses Hamburg sign language Notation System (HamNoSys) and Signing Gesture Mark-up Language (SiGML) for ISL generation. It is developed in PHP using Web Graphics Library (WebGL) technology for 3D avatar animation. A multilingual ISL dictionary is developed using HamNoSys for both English and Hindi Language. This dictionary will be used as a database to associate signs with words or phrases of a spoken language. It provides an interface for admin panel to manage the dictionary, i.e., modification, addition, or deletion of a word. Through this interface, HamNoSys can be developed and stored in a database and these notations can be converted into its corresponding SiGML file manually. The system takes natural language input sentence in English and Hindi language and generate 3D sign animation using an avatar. SL generation systems have potential applications in many domains such as healthcare sector, media, educational institutes, commercial sectors, transportation services etc. This research work will help the researchers to understand various techniques used for writing SL and generation of Sign Language systems.

Keywords: avatar, dictionary, HamNoSys, hearing impaired, Indian sign language (ISL), sign language

Procedia PDF Downloads 230
4042 Key Findings on Rapid Syntax Screening Test for Children

Authors: Shyamani Hettiarachchi, Thilini Lokubalasuriya, Shakeela Saleem, Dinusha Nonis, Isuru Dharmaratne, Lakshika Udugama

Abstract:

Introduction: Late identification of language difficulties in children could result in long-term negative consequences for communication, literacy and self-esteem. This highlights the need for early identification and intervention for speech, language and communication difficulties. Speech and language therapy is a relatively new profession in Sri Lanka and at present, there are no formal standardized screening tools to assess language skills in Sinhala-speaking children. The development and validation of a short, accurate screening tool to enable the identification of children with syntactic difficulties in Sinhala is a current need. Aims: 1) To develop test items for a Sinhala Syntactic Structures (S3 Short Form) test on children aged between 3;0 to 5;0 years 2) To validate the test of Sinhala Syntactic Structures (S3 Short Form) on children aged between 3; 0 to 5; 0 years Methods: The Sinhala Syntactic Structures (S3 Short Form) was devised based on the Renfrew Action Picture Test. As Sinhala contains post-positions in contrast to English, the principles of the Renfrew Action Picture Test were followed to gain an information score and a grammar score but the test devised reflected the linguistic-specificity and complexity of Sinhala and the pictures were in keeping with the culture of the country. This included the dative case marker ‘to give something to her’ (/ejɑ:ʈə/ meaning ‘to her’), the instrumental case marker ‘to get something from’ (/ejɑ:gən/ meaning ‘from him’ or /gɑhən/ meaning ‘from the tree’), possessive noun (/ɑmmɑge:/ meaning ‘mother’s’ or /gɑhe:/ meaning ‘of the tree’ or /male:/ meaning ‘of the flower’) and plural markers (/bɑllɑ:/ bɑllo:/ meaning ‘dog/dogs’, /mɑlə/mɑl/ meaning ‘flower/flowers’, /gɑsə/gɑs/ meaning ‘tree/trees’ and /wɑlɑ:kulə/wɑlɑ:kulu/ meaning ‘cloud/clouds’). The picture targets included socio-culturally appropriate scenes of the Sri Lankan New Year celebration, elephant procession and the Buddhist ‘Wesak’ ceremony. The test was piloted with a group of 60 participants and necessary changes made. In phase 1, the test was administered to 100 Sinhala-speaking children aged between 3; 0 and 5; 0 years in one district. In this presentation on phase 2, the test was administered to another 100 Sinhala-speaking children aged between 3; 0 to 5; 0 in three districts. In phase 2, the selection of the test items was assessed via measures of content validity, test-retest reliability and inter-rater reliability. The age of acquisition of each syntactic structure was determined using content and grammar scores which were statistically analysed using t-tests and one-way ANOVAs. Results: High percentage agreement was found on test-retest reliability on content validity and Pearson correlation measures and on inter-rater reliability. As predicted, there was a statistically significant influence of age on the production of syntactic structures at p<0.05. Conclusions: As the target test items included generated the information and the syntactic structures expected, the test could be used as a quick syntactic screening tool with preschool children.

Keywords: Sinhala, screening, syntax, language

Procedia PDF Downloads 338
4041 Transmigration of American Sign Language from the American Deaf Community to the American Society

Authors: Russell Rosen

Abstract:

American Sign Language (ASL) has been developed and used by signing deaf and hard of hearing (DHH) individuals in the American Deaf community since early nineteenth century. In the last two decades, secondary schools in the US offered ASL for foreign language credit to secondary school learners. The learners who learn ASL as a foreign language are largely American native speakers of English. They not only learn ASL in US schools but also create spaces under certain interactional and social conditions in their home communities outside of classrooms and use ASL with each other instead of their native English. This phenomenon is a transmigration of language from a native social group to a non-native, non-kin social group. This study looks at the transmigration of ASL from signing Deaf community to the general speaking and hearing American society. Theoretical implications of this study are discussed.

Keywords: American Sign Language, Foreign Language, Language transmission, United States

Procedia PDF Downloads 419
4040 Development of Taiwanese Sign Language Receptive Skills Test for Deaf Children

Authors: Hsiu Tan Liu, Chun Jung Liu

Abstract:

It has multiple purposes to develop a sign language receptive skills test. For example, this test can be used to be an important tool for education and to understand the sign language ability of deaf children. There is no available test for these purposes in Taiwan. Through the discussion of experts and the references of standardized Taiwanese Sign Language Receptive Test for adults and adolescents, the frame of Taiwanese Sign Language Receptive Skills Test (TSL-RST) for deaf children was developed, and the items were further designed. After multiple times of pre-trials, discussions and corrections, TSL-RST is finally developed which can be conducted and scored online. There were 33 deaf children who agreed to be tested from all three deaf schools in Taiwan. Through item analysis, the items were picked out that have good discrimination index and fair difficulty index. Moreover, psychometric indexes of reliability and validity were established. Then, derived the regression formula was derived which can predict the sign language receptive skills of deaf children. The main results of this study are as follows. (1). TSL-RST includes three sub-test of vocabulary comprehension, syntax comprehension and paragraph comprehension. There are 21, 20, and 9 items in vocabulary comprehension, syntax comprehension, and paragraph comprehension, respectively. (2). TSL-RST can be conducted individually online. The sign language ability of deaf students can be calculated fast and objectively, so that they can get the feedback and results immediately. This can also contribute to both teaching and research. The most subjects can complete the test within 25 minutes. While the test procedure, they can answer the test questions without relying on their reading ability or memory capacity. (3). The sub-test of the vocabulary comprehension is the easiest one, syntax comprehension is harder than vocabulary comprehension and the paragraph comprehension is the hardest. Each of the three sub-test and the whole test are good in item discrimination index. (4). The psychometric indices are good, including the internal consistency reliability (Cronbach’s α coefficient), test-retest reliability, split-half reliability, and content validity. The sign language ability are significantly related to non-verbal IQ, the teachers’ rating to the students’ sign language ability and students’ self-rating to their own sign language ability. The results showed that the higher grade students have better performance than the lower grade students, and students with deaf parent perform better than those with hearing parent. These results made TLS-RST have great discriminant validity. (5). The predictors of sign language ability of primary deaf students are age and years of starting to learn sign language. The results of this study suggested that TSL-RST can effectively assess deaf student’s sign language ability. This study also proposed a model to develop a sign language tests.

Keywords: comprehension test, elementary school, sign language, Taiwan sign language

Procedia PDF Downloads 187
4039 Assessing Language Dominance in Mexican Deaf Signers with the Bilingual Language Profile (BLP)

Authors: E. Mendoza, D. Jackson-Maldonado, G. Avecilla-Ramírez, A. Mondaca

Abstract:

Assessing language proficiency is a major issue in psycholinguistic research. There are multiple tools that measure language dominance and language proficiency in hearing bilinguals, however, this is not the case for Deaf bilinguals. Specifically, there are few, if not none, assessment tools useful in the description of the multilingual abilities of Mexican Deaf signers. Because of this, the linguistic characteristics of Mexican Deaf population have been poorly described. This paper attempts to explain the necessary changes done in order to adapt the Bilingual Language Profile (BLP) to Mexican Sign Language (LSM) and written/oral Spanish. BLP is a Self-Evaluation tool that has been adapted and translated to several oral languages, but not to sign languages. Lexical, syntactic, cultural, and structural changes were applied to the BLP. 35 Mexican Deaf signers participated in a pilot study. All of them were enrolled in Higher Education programs. BLP was presented online in written Spanish via Google Forms. No additional information in LSM was provided. Results show great heterogeneity as it is expected of Deaf populations and BLP seems to be a useful tool to create a bilingual profile of the Mexican Deaf population. This is a first attempt to adapt a widely tested tool in bilingualism research to sign language. Further modifications need to be done.

Keywords: deaf bilinguals, assessment tools, bilingual language profile, mexican sign language

Procedia PDF Downloads 151
4038 Inclusive Cultural Heritage Tourism Project

Authors: L. Cruz-Lopes, M. Sell, P. Escudeiro, B. Esteves

Abstract:

It might be difficult for deaf people to communicate since spoken and written languages are different from sign language. When it comes to getting information, going to places of cultural heritage, or using services and infrastructure, there is a clear lack of inclusiveness. By creating assistive technology that enables deaf individuals to get around communication hurdles and encourage inclusive tourism, the ICHT- Inclusive Cultural Heritage Tourism initiative hopes to increase knowledge of sign language. The purpose of the Inclusive Cultural Heritage Tourism (ICHT) project is to develop online and on-site sign language tools and material for usage at popular tourist destinations in the northern region of Portugal, including Torre dos Clérigos, the Lello bookstore, Maia Zoo, Porto wine cellars, and São Pedro do Sul (Viseu) thermae. The ICHT system consists of an application using holography, a mobile game, an online platform for collaboration with deaf and hearing users, and a collection of International Sign training courses. The project also offers a prospect for a more inclusive society by introducing a method of teaching sign languages to tourism industry professionals. As a result, the teaching and learning of sign language along with the assistive technology tools created by the project sets up an inclusive environment for the deaf community, producing results in the area of automatic sign language translation and aiding in the global recognition of the Portuguese tourism industry.

Keywords: inclusive tourism, games, international sign training, deaf community

Procedia PDF Downloads 115
4037 Facial Expression Phoenix (FePh): An Annotated Sequenced Dataset for Facial and Emotion-Specified Expressions in Sign Language

Authors: Marie Alaghband, Niloofar Yousefi, Ivan Garibay

Abstract:

Facial expressions are important parts of both gesture and sign language recognition systems. Despite the recent advances in both fields, annotated facial expression datasets in the context of sign language are still scarce resources. In this manuscript, we introduce an annotated sequenced facial expression dataset in the context of sign language, comprising over 3000 facial images extracted from the daily news and weather forecast of the public tv-station PHOENIX. Unlike the majority of currently existing facial expression datasets, FePh provides sequenced semi-blurry facial images with different head poses, orientations, and movements. In addition, in the majority of images, identities are mouthing the words, which makes the data more challenging. To annotate this dataset we consider primary, secondary, and tertiary dyads of seven basic emotions of "sad", "surprise", "fear", "angry", "neutral", "disgust", and "happy". We also considered the "None" class if the image’s facial expression could not be described by any of the aforementioned emotions. Although we provide FePh as a facial expression dataset of signers in sign language, it has a wider application in gesture recognition and Human Computer Interaction (HCI) systems.

Keywords: annotated facial expression dataset, gesture recognition, sequenced facial expression dataset, sign language recognition

Procedia PDF Downloads 157
4036 Computerized Analysis of Phonological Structure of 10,400 Brazilian Sign Language Signs

Authors: Wanessa G. Oliveira, Fernando C. Capovilla

Abstract:

Capovilla and Raphael’s Libras Dictionary documents a corpus of 4,200 Brazilian Sign Language (Libras) signs. Duduchi and Capovilla’s software SignTracking permits users to retrieve signs even when ignoring the gloss corresponding to it and to discover the meaning of all 4,200 signs sign simply by clicking on graphic menus of the sign characteristics (phonemes). Duduchi and Capovilla have discovered that the ease with which any given sign can be retrieved is an inverse function of the average popularity of its component phonemes. Thus, signs composed of rare (distinct) phonemes are easier to retrieve than are those composed of common phonemes. SignTracking offers a means of computing the average popularity of the phonemes that make up each one of 4,200 signs. It provides a precise measure of the degree of ease with which signs can be retrieved, and sign meanings can be discovered. Duduchi and Capovilla’s logarithmic model proved valid: The degree with which any given sign can be retrieved is an inverse function of the arithmetic mean of the logarithm of the popularity of each component phoneme. Capovilla, Raphael and Mauricio’s New Libras Dictionary documents a corpus of 10,400 Libras signs. The present analysis revealed Libras DNA structure by mapping the incidence of 501 sign phonemes resulting from the layered distribution of five parameters: 163 handshape phonemes (CherEmes-ManusIculi); 34 finger shape phonemes (DactilEmes-DigitumIculi); 55 hand placement phonemes (ArtrotoToposEmes-ArticulatiLocusIculi); 173 movement dimension phonemes (CinesEmes-MotusIculi) pertaining to direction, frequency, and type; and 76 Facial Expression phonemes (MascarEmes-PersonalIculi).

Keywords: Brazilian sign language, lexical retrieval, libras sign, sign phonology

Procedia PDF Downloads 344
4035 Lexical-Semantic Deficits in Sinhala Speaking Persons with Post Stroke Aphasia: Evidence from Single Word Auditory Comprehension Task

Authors: D. W. M. S. Samarathunga, Isuru Dharmarathne

Abstract:

In aphasia, various levels of symbolic language processing (semantics) are affected. It is shown that Persons with Aphasia (PWA) often experience more problems comprehending some categories of words than others. The study aimed to determine lexical semantic deficits seen in Auditory Comprehension (AC) and to describe lexical-semantic deficits across six selected word categories. Thirteen (n =13) persons diagnosed with post-stroke aphasia (PSA) were recruited to perform an AC task. Foods, objects, clothes, vehicles, body parts and animals were selected as the six categories. As the test stimuli, black and white line drawings were adapted from a picture set developed for semantic studies by Snodgrass and Vanderwart. A pilot study was conducted with five (n=5) healthy nonbrain damaged Sinhala speaking adults to decide familiarity and applicability of the test material. In the main study, participants were scored based on the accuracy and number of errors shown. The results indicate similar trends of lexical semantic deficits identified in the literature confirming ‘animals’ to be the easiest category to comprehend. Mann-Whitney U test was performed to determine the association between the selected variables and the participants’ performance on AC task. No statistical significance was found between the errors and the type of aphasia reflecting similar patterns described in aphasia literature in other languages. The current study indicates the presence of selectivity of lexical semantic deficits in AC and a hierarchy was developed based on the complexity of the categories to comprehend by Sinhala speaking PWA, which might be clinically beneficial when improving language skills of Sinhala speaking persons with post-stroke aphasia. However, further studies on aphasia should be conducted with larger samples for a longer period to study deficits in Sinhala and other Sri Lankan languages (Tamil and Malay).

Keywords: aphasia, auditory comprehension, selective lexical-semantic deficits, semantic categories

Procedia PDF Downloads 252
4034 Irreducible Sign Patterns of Minimum Rank of 3 and Symmetric Sign Patterns That Allow Diagonalizability

Authors: Sriparna Bandopadhyay

Abstract:

It is known that irreducible sign patterns in general may not allow diagonalizability and in particular irreducible sign patterns with minimum rank greater than or equal to 4. It is also known that every irreducible sign pattern matrix with minimum rank of 2 allow diagonalizability with rank of 2 and the maximum rank of the sign pattern. In general sign patterns with minimum rank of 3 may not allow diagonalizability if the condition of irreducibility is dropped, but the problem of whether every irreducible sign pattern with minimum rank of 3 allows diagonalizability remains open. In this paper it is shown that irreducible sign patterns with minimum rank of 3 under certain conditions on the underlying graph allow diagonalizability. An alternate proof of the results that every sign pattern matrix with minimum rank of 2 and no zero lines allow diagonalizability with rank of 2 and also that every full sign pattern allows diagonalizability with all permissible ranks of the sign pattern is given. Some open problems regarding composite cycles in an irreducible symmetric sign pattern that support of a rank principal certificate are also answered.

Keywords: irreducible sign patterns, minimum rank, symmetric sign patterns, rank -principal certificate, allowing diagonalizability

Procedia PDF Downloads 97
4033 Sign Language Recognition of Static Gestures Using Kinect™ and Convolutional Neural Networks

Authors: Rohit Semwal, Shivam Arora, Saurav, Sangita Roy

Abstract:

This work proposes a supervised framework with deep convolutional neural networks (CNNs) for vision-based sign language recognition of static gestures. Our approach addresses the acquisition and segmentation of correct inputs for the CNN-based classifier. Microsoft Kinect™ sensor, despite complex environmental conditions, can track hands efficiently. Skin Colour based segmentation is applied on cropped images of hands in different poses, used to depict different sign language gestures. The segmented hand images are used as an input for our classifier. The CNN classifier proposed in the paper is able to classify the input images with a high degree of accuracy. The system was trained and tested on 39 static sign language gestures, including 26 letters of the alphabet and 13 commonly used words. This paper includes a problem definition for building the proposed system, which acts as a sign language translator between deaf/mute and the rest of the society. It is then followed by a focus on reviewing existing knowledge in the area and work done by other researchers. It also describes the working principles behind different components of CNNs in brief. The architecture and system design specifications of the proposed system are discussed in the subsequent sections of the paper to give the reader a clear picture of the system in terms of the capability required. The design then gives the top-level details of how the proposed system meets the requirements.

Keywords: sign language, CNN, HCI, segmentation

Procedia PDF Downloads 157
4032 Healthcare-SignNet: Advanced Video Classification for Medical Sign Language Recognition Using CNN and RNN Models

Authors: Chithra A. V., Somoshree Datta, Sandeep Nithyanandan

Abstract:

Sign Language Recognition (SLR) is the process of interpreting and translating sign language into spoken or written language using technological systems. It involves recognizing hand gestures, facial expressions, and body movements that makeup sign language communication. The primary goal of SLR is to facilitate communication between hearing- and speech-impaired communities and those who do not understand sign language. Due to the increased awareness and greater recognition of the rights and needs of the hearing- and speech-impaired community, sign language recognition has gained significant importance over the past 10 years. Technological advancements in the fields of Artificial Intelligence and Machine Learning have made it more practical and feasible to create accurate SLR systems. This paper presents a distinct approach to SLR by framing it as a video classification problem using Deep Learning (DL), whereby a combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) has been used. This research targets the integration of sign language recognition into healthcare settings, aiming to improve communication between medical professionals and patients with hearing impairments. The spatial features from each video frame are extracted using a CNN, which captures essential elements such as hand shapes, movements, and facial expressions. These features are then fed into an RNN network that learns the temporal dependencies and patterns inherent in sign language sequences. The INCLUDE dataset has been enhanced with more videos from the healthcare domain and the model is evaluated on the same. Our model achieves 91% accuracy, representing state-of-the-art performance in this domain. The results highlight the effectiveness of treating SLR as a video classification task with the CNN-RNN architecture. This approach not only improves recognition accuracy but also offers a scalable solution for real-time SLR applications, significantly advancing the field of accessible communication technologies.

Keywords: sign language recognition, deep learning, convolution neural network, recurrent neural network

Procedia PDF Downloads 25
4031 Lithuanian Sign Language Literature: Metaphors at the Phonological Level

Authors: Anželika Teresė

Abstract:

In order to solve issues in sign language linguistics, address matters pertaining to maintaining high quality of sign language (SL) translation, contribute to dispelling misconceptions about SL and deaf people, and raise awareness and understanding of the deaf community heritage, this presentation discusses literature in Lithuanian Sign Language (LSL) and inherent metaphors that are created by using the phonological parameter –handshape, location, movement, palm orientation and nonmanual features. The study covered in this presentation is twofold, involving both the micro-level analysis of metaphors in terms of phonological parameters as a sub-lexical feature and the macro-level analysis of the poetic context. Cognitive theories underlie research of metaphors in sign language literature in a range of SL. The study follows this practice. The presentation covers the qualitative analysis of 34 pieces of LSL literature. The analysis employs ELAN software widely used in SL research. The target is to examine how specific types of each phonological parameter are used for the creation of metaphors in LSL literature and what metaphors are created. The results of the study show that LSL literature employs a range of metaphors created by using classifier signs and by modifying the established signs. The study also reveals that LSL literature tends to create reference metaphors indicating status and power. As the study shows, LSL poets metaphorically encode status by encoding another meaning in the same sign, which results in creating double metaphors. The metaphor of identity has been determined. Notably, the poetic context has revealed that the latter metaphor can also be identified as a metaphor for life. The study goes on to note that deaf poets create metaphors related to the importance of various phenomena significance of the lyrical subject. Notably, the study has allowed detecting locations, nonmanual features and etc., never mentioned in previous SL research as used for the creation of metaphors.

Keywords: Lithuanian sign language, sign language literature, sign language metaphor, metaphor at the phonological level, cognitive linguistics

Procedia PDF Downloads 135
4030 Pattern Recognition Based on Simulation of Chemical Senses (SCS)

Authors: Nermeen El Kashef, Yasser Fouad, Khaled Mahar

Abstract:

No AI-complete system can model the human brain or behavior, without looking at the totality of the whole situation and incorporating a combination of senses. This paper proposes a Pattern Recognition model based on Simulation of Chemical Senses (SCS) for separation and classification of sign language. The model based on human taste controlling strategy. The main idea of the introduced model is motivated by the facts that the tongue cluster input substance into its basic tastes first, and then the brain recognizes its flavor. To implement this strategy, two level architecture is proposed (this is inspired from taste system). The separation-level of the architecture focuses on hand posture cluster, while the classification-level of the architecture to recognizes the sign language. The efficiency of proposed model is demonstrated experimentally by recognizing American Sign Language (ASL) data set. The recognition accuracy obtained for numbers of ASL is 92.9 percent.

Keywords: artificial intelligence, biocybernetics, gustatory system, sign language recognition, taste sense

Procedia PDF Downloads 293
4029 A Novel Combined Finger Counting and Finite State Machine Technique for ASL Translation Using Kinect

Authors: Rania Ahmed Kadry Abdel Gawad Birry, Mohamed El-Habrouk

Abstract:

This paper presents a brief survey of the techniques used for sign language recognition along with the types of sensors used to perform the task. It presents a modified method for identification of an isolated sign language gesture using Microsoft Kinect with the OpenNI framework. It presents the way of extracting robust features from the depth image provided by Microsoft Kinect and the OpenNI interface and to use them in creating a robust and accurate gesture recognition system, for the purpose of ASL translation. The Prime Sense’s Natural Interaction Technology for End-user - NITE™ - was also used in the C++ implementation of the system. The algorithm presents a simple finger counting algorithm for static signs as well as directional Finite State Machine (FSM) description of the hand motion in order to help in translating a sign language gesture. This includes both letters and numbers performed by a user, which in-turn may be used as an input for voice pronunciation systems.

Keywords: American sign language, finger counting, hand tracking, Microsoft Kinect

Procedia PDF Downloads 294
4028 TechWhiz: Empowering Deaf Students through Inclusive Education

Authors: Paula Escudeiro, Nuno Escudeiro, Márcia Campos, Francisca Escudeiro

Abstract:

In today's world, technical and scientific knowledge plays a vital role in education, research, and employment. Deaf students face unique challenges in educational settings, particularly when it comes to understanding technical and scientific terminology. The reliance on written and spoken languages can create barriers for deaf individuals who primarily communicate using sign language. This lack of accessibility can hinder their learning experience and compromise equity in education. To address this issue, the TechWhiz project has been developed as a comprehensive glossary of scientific and technical concepts explained in sign language. By providing deaf students with access to education in their first language, TechWhiz aims to enhance their learning achievements and promote inclusivity while also fostering equity in education for all students.

Keywords: deaf students, technical and scientific knowledge, automatic sign language, inclusive education

Procedia PDF Downloads 66
4027 Hand Motion Trajectory Analysis for Dynamic Hand Gestures Used in Indian Sign Language

Authors: Daleesha M. Viswanathan, Sumam Mary Idicula

Abstract:

Dynamic hand gestures are an intrinsic component in sign language communication. Extracting spatial temporal features of the hand gesture trajectory plays an important role in a dynamic gesture recognition system. Finding a discrete feature descriptor for the motion trajectory based on the orientation feature is the main concern of this paper. Kalman filter algorithm and Hidden Markov Models (HMM) models are incorporated with this recognition system for hand trajectory tracking and for spatial temporal classification, respectively.

Keywords: orientation features, discrete feature vector, HMM., Indian sign language

Procedia PDF Downloads 367