Search results for: Seebeck coefficient
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2172

Search results for: Seebeck coefficient

1902 Effect of Filler Size and Shape on Positive Temperature Coefficient Effect

Authors: Eric Asare, Jamie Evans, Mark Newton, Emiliano Bilotti

Abstract:

Two types of filler shapes (sphere and flakes) and three different sizes are employed to study the size effect on PTC. The composite is prepared using a mini-extruder with high-density polyethylene (HDPE) as the matrix. A computer modelling is used to fit the experimental results. The percolation threshold decreases with decreasing filler size and this was observed for both the spherical particles as well as the flakes. This was caused by the decrease in interparticle distance with decreasing filler size. The 100 µm particles showed a larger PTC intensity compared to the 5 µm particles for the metal coated glass sphere and flake. The small particles have a large surface area and agglomeration and this makes it difficult for the conductive network to e disturbed. Increasing the filler content decreased the PTC intensity and this is due to an increase in the conductive network within the polymer matrix hence more energy is needed to disrupt the network.

Keywords: positive temperature coefficient (PTC) effect, conductive polymer composite (CPC), electrical conductivity

Procedia PDF Downloads 400
1901 A Parametric Study of the Effect of Size, Position, and Number of Flexible Membranes Attached to a Circular Cylinder on the Fluid Flow Behavior

Authors: Nabaouia.Maktouf, Ali Ben Moussa, Saïd Turki

Abstract:

This paper discusses the effect of an attached flexible membrane on the control of fluid around a circular cylinder. A parametric study has been investigated for different positions, sizes, modes as well as frequencies of oscillation of the flexible membrane. The numerical investigation was conducted for a Reynolds number equal to 150 using the commercial code Fluent 16.0 and parallel calculation into 4 processors. The motion of the flexible membrane was managed by the dynamic mesh and compiled into Fluent as a user-defined function. The first part of this paper discusses the effect of changing the position of a flexible membrane sized 8° as an angle of aperture on the aerodynamic coefficients. Results show that the flexible membrane placed at 110° from the stagnation point presents more non-linearity on the behavior of the drag coefficient compared to the drag behavior when placed at 180°, relative to the stagnation point. The effect of the size of the flexible surface was studied for the corresponding angles of aperture: 32° and 42°, respectively. The effect of modes (modes 1, 2, and 3) of vibrations has been investigated at a constant frequency of vibration f=2Hz for angles 32° and 42°. All the calculations have been done with a constant amplitude A =0.001m. A non-linearity of the drag coefficient was clearly observed for all the sizes, modes as well as frequencies of excitation. The Fast Fourier transformation shows the appearance of the natural shedding frequency and the multiples of the frequency of excitation. An increase in the modes of oscillation leads to a more linear behavior of the drag coefficient.

Keywords: fluid flow control, numerical simulation, dynamic mesh, aerodynamic forces, flexible membrane

Procedia PDF Downloads 50
1900 Effect of a Stepwise Discontinuity on a 65 Degree Delta Wing

Authors: Nishit L. Sanil, Raza M. Khan

Abstract:

Increasing lift effectively at higher angles of attack has always been a daunting challenge in aviation especially on a delta wing. These are used on military jet fighter planes and has some undesirable characteristics, notably flow separation at high angles of attack and high drag at low speeds. In order to solve this problem, a design modification is modeled on a delta wing which would increase the lift so that we can improve maneuverability. To attain an increase in the lift of a 65 degree delta wing at higher angles of attack, a step-wise discontinuity is created at the upper surface of the delta wing. A normal delta wing is validated for comparison which would thereby give us a measure of flow separation and coefficient of lift affected by the modification. The results obtained deliver a significant increase in lift at higher angles of attack thereby delaying stall. Hence the benefits of the modification would aid the potential designs of aircraft’s in the time to come.

Keywords: coefficient of lift, delta wing, flow separation, step-wise discontinuity

Procedia PDF Downloads 275
1899 Improving Lubrication Efficiency at High Sliding Speeds by Plasma Surface Texturing

Authors: Wei Zha, Jingzeng Zhang, Chen Zhao, Ran Cai, Xueyuan Nie

Abstract:

Cathodic plasma electrolysis (CPE) is used to create surface textures on cast iron samples for improving the tribological properties. Micro craters with confined size distribution were successfully formed by CPE process. These craters can generate extra hydrodynamic pressure that separates two sliding surfaces, increase the oil film thickness and accelerate the transition from boundary to mixed lubrication. It was found that the optimal crater size was 1.7 μm, at which the maximum lubrication efficiency was achieved. The Taguchi method was used to optimize the process parameters (voltage and roughness) for CPE surface texturing. The orthogonal array and the signal-to-noise ratio were employed to study the effect of each process parameter on the coefficient of friction. The results showed that with higher voltage and lower roughness, the lower friction coefficient can be obtained, and thus the lubrication can be more efficiently used for friction reduction.

Keywords: cathodic plasma electrolysis, friction, lubrication, plasma surface texturing

Procedia PDF Downloads 108
1898 Tribological Characterization of Composites Based on Epoxy Resin Filled with Tailings of Scheelite

Authors: Clarissa D. M. O. Guimaraes, Mariza C. M. Fernandes, Francisco R. V. Diaz, Juliana R. Souza

Abstract:

The use of mineral fillers in the preparation of organic matrix composites can be an efficient alternative in minimizing the environmental damage generated in passive mineral beneficiation processes. In addition, it may represent a new material option for wind, construction, and aeronautical industries, for example. In this sense, epoxy resin composites with Tailings of Scheelite (TS) were developed. The composites were manufactured with 5%, 10% and 20% of TS in volume percentage, homogenized by mechanical mixing and molded in a silicon mold. In order to make the tribological evaluation, pin on disk tests were performed to analyze coefficient of friction and wear. The wear mechanisms were identified by SEM (scanning electron microscope) images. The coefficient of friction had a tendency to decrease with increasing amount of filler. The wear tends to increase with increasing amount of filler, although it exhibits a similar wear behavior. The results suggest characteristics that are potential used in many tribological applications.

Keywords: composites, mineral filler, tailings of scheelite, tribology

Procedia PDF Downloads 140
1897 Income Inequality among Selected Entrepreneurs in Ondo State, Nigeria

Authors: O.O. Ehinmowo, A.I. Fatuase, D.F. Oke

Abstract:

Nigeria is endowed with resources that could boost the economy as well as generate income and provide jobs to the teaming populace. One of the keys of attaining this is by making the environment conducive for the entrepreneurs to excel in their respective enterprises so that more income could be accrued to the entrepreneurs. This study therefore examines income inequality among selected entrepreneurs in Ondo State, Nigeria using primary data. A multistage sampling technique was used to select 200 respondents for the study with the aid of structured questionnaire and personal interview. The data collected were subjected to descriptive statistics, Lorenz curve, Gini coefficient and Double - Log regression model. Results revealed that majority of the entrepreneurs (63%) were males and 90% were married with an average age of 44 years. About 40% of the respondents spent at most 12 years in school with 81% of the respondents had 4-6 members per household, while hair dressing (43.5%) and fashion designing (31.5%) were the most common enterprises among the sampled respondents. The findings also showed that majority of the entrepreneurs in hairdressing, fashion designing and laundry service earned below N200,000 per annum while the majority of those in restaurant and food vending earned between N400,000 – N600,000 followed by the entrepreneurs in pure water enterprise where majority earned N800,000 and above per annum. The result of the Gini coefficient (0.58) indicated that there was presence of inequality among the entrepreneurs which was also affirmed by the Lorenz curve. The Regression results showed that gender, household size and number of employees significantly affected the income of the entrepreneurs in the study area. Therefore, more female households should be encouraged into entrepreneurial businesses and government should give incentive cum conductive environment that could bridge the disparity in the income of the entrepreneurs in their various enterprises.

Keywords: entrepreneurs, Gini coefficient, income inequality, Lorenz curve

Procedia PDF Downloads 320
1896 Modelling of Atomic Force Microscopic Nano Robot's Friction Force on Rough Surfaces

Authors: M. Kharazmi, M. Zakeri, M. Packirisamy, J. Faraji

Abstract:

Micro/Nanorobotics or manipulation of nanoparticles by Atomic Force Microscopic (AFM) is one of the most important solutions for controlling the movement of atoms, particles and micro/nano metrics components and assembling of them to design micro/nano-meter tools. Accurate modelling of manipulation requires identification of forces and mechanical knowledge in the Nanoscale which are different from macro world. Due to the importance of the adhesion forces and the interaction of surfaces at the nanoscale several friction models were presented. In this research, friction and normal forces that are applied on the AFM by using of the dynamic bending-torsion model of AFM are obtained based on Hurtado-Kim friction model (HK), Johnson-Kendall-Robert contact model (JKR) and Greenwood-Williamson roughness model (GW). Finally, the effect of standard deviation of asperities height on the normal load, friction force and friction coefficient are studied.

Keywords: atomic force microscopy, contact model, friction coefficient, Greenwood-Williamson model

Procedia PDF Downloads 173
1895 Evaluation of Particle Settling in Flow Chamber

Authors: Abdulrahman Alenezi, B. Stefan

Abstract:

Abstract— The investigation of fluids containing particles or filaments includes a category of complex fluids and is vital in both theory and application. The forecast of particle behaviors plays a significant role in the existing technology as well as future technology. This paper focuses on the prediction of the particle behavior through the investigation of the particle disentrainment from a pipe on a horizontal air stream. This allows for examining the influence of the particle physical properties on its behavior when falling on horizontal air stream. This investigation was conducted on a device located at the University of Greenwich's Medway Campus. Two materials were selected to carry out this study: Salt and Glass Beads particles. The shape of the Slat particles is cubic where the shape of the Glass Beads is almost spherical. The outcome from the experimental work were presented in terms of distance travelled by the particles according to their diameters as After that, the particles sizes were measured using Laser Diffraction device and used to determine the drag coefficient and the settling velocity.

Keywords: flow experiment, drag coefficient, Particle Settling, Flow Chamber

Procedia PDF Downloads 100
1894 Unsteady 3D Post-Stall Aerodynamics Accounting for Effective Loss in Camber Due to Flow Separation

Authors: Aritras Roy, Rinku Mukherjee

Abstract:

The current study couples a quasi-steady Vortex Lattice Method and a camber correcting technique, ‘Decambering’ for unsteady post-stall flow prediction. The wake is force-free and discrete such that the wake lattices move with the free-stream once shed from the wing. It is observed that the time-averaged unsteady coefficient of lift sees a relative drop at post-stall angles of attack in comparison to its steady counterpart for some angles of attack. Multiple solutions occur at post-stall and three different algorithms to choose solutions in these regimes show both unsteadiness and non-convergence of the iterations. The distribution of coefficient of lift on the wing span also shows sawtooth. Distribution of vorticity changes both along span and in the direction of the free-stream as the wake develops over time with distinct roll-up, which increases with time.

Keywords: post-stall, unsteady, wing, aerodynamics

Procedia PDF Downloads 345
1893 2D Fingerprint Performance for PubChem Chemical Database

Authors: Fatimah Zawani Abdullah, Shereena Mohd Arif, Nurul Malim

Abstract:

The study of molecular similarity search in chemical database is increasingly widespread, especially in the area of drug discovery. Similarity search is an application in the field of Chemoinformatics to measure the similarity between the molecular structure which is known as the query and the structure of chemical compounds in the database. Similarity search is also one of the approaches in virtual screening which involves computational techniques and scoring the probabilities of activity. The main objective of this work is to determine the best fingerprint when compared to the other five fingerprints selected in this study using PubChem chemical dataset. This paper will discuss the similarity searching process conducted using 6 types of descriptors, which are ECFP4, ECFC4, FCFP4, FCFC4, SRECFC4 and SRFCFC4 on 15 activity classes of PubChem dataset using Tanimoto coefficient to calculate the similarity between the query structures and each of the database structure. The results suggest that ECFP4 performs the best to be used with Tanimoto coefficient in the PubChem dataset.

Keywords: 2D fingerprints, Tanimoto, PubChem, similarity searching, chemoinformatics

Procedia PDF Downloads 261
1892 Salting Effect in Partially Miscible Systems of Water/Acétic Acid/1-Butanol at 298.15k: Experimental Study and Estimation of New Solvent-Solvent and Salt-Solvent Binary Interaction Parameters for NRTL Model

Authors: N. Bourayou, A. -H. Meniai, A. Gouaoura

Abstract:

The presence of salt can either raise or lower the distribution coefficient of a solute acetic acid in liquid- liquid equilibria. The coefficient of solute is defined as the ratio of the composition of solute in solvent rich phase to the composition of solute in diluents (water) rich phase. The phenomena are known as salting–out or salting-in, respectively. The effect of monovalent salt, sodium chloride and the bivalent salt, sodium sulfate on the distribution of acetic acid between 1-butanol and water at 298.15K were experimentally shown to be effective in modifying the liquid-liquid equilibrium of water/acetic acid/1-butanol system in favour of the solvent extraction of acetic acid from an aqueous solution with 1-butanol, particularly at high salt concentrations of both salts. All the two salts studied are found to have to salt out effect for acetic acid in varying degrees. The experimentally measured data were well correlated by Eisen-Joffe equation. NRTL model for solvent mixtures containing salts was able to provide good correlation of the present liquid-liquid equilibrium data. Using the regressed salt concentration coefficients for the salt-solvent interaction parameters and the solvent-solvent interaction parameters obtained from the same system without salt. The calculated phase equilibrium was in a quite good agreement with the experimental data, showing the ability of NRTL model to correlate salt effect on the liquid-liquid equilibrium.

Keywords: activity coefficient, Eisen-Joffe, NRTL model, sodium chloride

Procedia PDF Downloads 259
1891 Nonlinear Finite Element Modeling of Deep Beam Resting on Linear and Nonlinear Random Soil

Authors: M. Seguini, D. Nedjar

Abstract:

An accuracy nonlinear analysis of a deep beam resting on elastic perfectly plastic soil is carried out in this study. In fact, a nonlinear finite element modeling for large deflection and moderate rotation of Euler-Bernoulli beam resting on linear and nonlinear random soil is investigated. The geometric nonlinear analysis of the beam is based on the theory of von Kàrmàn, where the Newton-Raphson incremental iteration method is implemented in a Matlab code to solve the nonlinear equation of the soil-beam interaction system. However, two analyses (deterministic and probabilistic) are proposed to verify the accuracy and the efficiency of the proposed model where the theory of the local average based on the Monte Carlo approach is used to analyze the effect of the spatial variability of the soil properties on the nonlinear beam response. The effect of six main parameters are investigated: the external load, the length of a beam, the coefficient of subgrade reaction of the soil, the Young’s modulus of the beam, the coefficient of variation and the correlation length of the soil’s coefficient of subgrade reaction. A comparison between the beam resting on linear and nonlinear soil models is presented for different beam’s length and external load. Numerical results have been obtained for the combination of the geometric nonlinearity of beam and material nonlinearity of random soil. This comparison highlighted the need of including the material nonlinearity and spatial variability of the soil in the geometric nonlinear analysis, when the beam undergoes large deflections.

Keywords: finite element method, geometric nonlinearity, material nonlinearity, soil-structure interaction, spatial variability

Procedia PDF Downloads 379
1890 Effect of Different Diesel Fuels on Formation of the Cavitation Phenomena

Authors: Mohammadreza Nezamirad, Sepideh Amirahmadian, Nasim Sabetpour, Azadeh Yazdi, Amirmasoud Hamedi

Abstract:

Cavitation inside the diesel injector nozzle is investigated numerically in this study. Reynolds Stress Navier Stokes set of equations (RANS) are utilized to investigate flow behavior inside the nozzle numerically. Moreover, K-ε turbulent model is found to be a better approach comparing to K-ω turbulent model. Winklhofer rectangular shape nozzle is also simulated in order to verify the current numerical scheme, and with, mass flow rate approach, the current solution is verified. Afterward, a six-hole real-size nozzle was simulated, and it was found that among different fuels used in this study with the same condition, diesel fuel provides the largest length of cavitation. Also, it was found that at the same boundary condition, RME fuel leads to the highest value of discharge coefficient and mass flow rate.

Keywords: cavitation, diesel fuel, CFD, real size nozzle, discharge coefficient

Procedia PDF Downloads 124
1889 Monomial Form Approach to Rectangular Surface Modeling

Authors: Taweechai Nuntawisuttiwong, Natasha Dejdumrong

Abstract:

Geometric modeling plays an important role in the constructions and manufacturing of curve, surface and solid modeling. Their algorithms are critically important not only in the automobile, ship and aircraft manufacturing business, but are also absolutely necessary in a wide variety of modern applications, e.g., robotics, optimization, computer vision, data analytics and visualization. The calculation and display of geometric objects can be accomplished by these six techniques: Polynomial basis, Recursive, Iterative, Coefficient matrix, Polar form approach and Pyramidal algorithms. In this research, the coefficient matrix (simply called monomial form approach) will be used to model polynomial rectangular patches, i.e., Said-Ball, Wang-Ball, DP, Dejdumrong and NB1 surfaces. Some examples of the monomial forms for these surface modeling are illustrated in many aspects, e.g., construction, derivatives, model transformation, degree elevation and degress reduction.

Keywords: monomial forms, rectangular surfaces, CAGD curves, monomial matrix applications

Procedia PDF Downloads 123
1888 The Sequential Estimation of the Seismoacoustic Source Energy in C-OTDR Monitoring Systems

Authors: Andrey V. Timofeev, Dmitry V. Egorov

Abstract:

The practical efficient approach is suggested for estimation of the seismoacoustic sources energy in C-OTDR monitoring systems. This approach represents the sequential plan for confidence estimation both the seismoacoustic sources energy, as well the absorption coefficient of the soil. The sequential plan delivers the non-asymptotic guaranteed accuracy of obtained estimates in the form of non-asymptotic confidence regions with prescribed sizes. These confidence regions are valid for a finite sample size when the distributions of the observations are unknown. Thus, suggested estimates are non-asymptotic and nonparametric, and also these estimates guarantee the prescribed estimation accuracy in the form of the prior prescribed size of confidence regions, and prescribed confidence coefficient value.

Keywords: nonparametric estimation, sequential confidence estimation, multichannel monitoring systems, C-OTDR-system, non-lineary regression

Procedia PDF Downloads 322
1887 Characteristics and Drivers of Greenhouse Gas (GHG) emissions from China’s Manufacturing Industry: A Threshold Analysis

Authors: Rong Yuan, Zhao Tao

Abstract:

Only a handful of literature have used to non-linear model to investigate the influencing factors of greenhouse gas (GHG) emissions in China’s manufacturing sectors. And there is a limit in investigating quantitatively and systematically the mechanism of correlation between economic development and GHG emissions considering inherent differences among manufacturing sub-sectors. Considering the sectorial characteristics, the manufacturing sub-sectors with various impacts of output on GHG emissions may be explained by different development modes in each manufacturing sub-sector, such as investment scale, technology level and the level of international competition. In order to assess the environmental impact associated with any specific level of economic development and explore the factors that affect GHG emissions in China’s manufacturing industry during the process of economic growth, using the threshold Stochastic Impacts by Regression on Population, Affluence and Technology (STIRPAT) model, this paper investigated the influence impacts of GHG emissions for China’s manufacturing sectors of different stages of economic development. A data set from 28 manufacturing sectors covering an 18-year period was used. Results demonstrate that output per capita and investment scale contribute to increasing GHG emissions while energy efficiency, R&D intensity and FDI mitigate GHG emissions. Results also verify the nonlinear effect of output per capita on emissions as: (1) the Environmental Kuznets Curve (EKC) hypothesis is supported when threshold point RMB 31.19 million is surpassed; (2) the driving strength of output per capita on GHG emissions becomes stronger as increasing investment scale; (3) the threshold exists for energy efficiency with the positive coefficient first and negative coefficient later; (4) the coefficient of output per capita on GHG emissions decreases as R&D intensity increases. (5) FDI shows a reduction in elasticity when the threshold is compassed.

Keywords: China, GHG emissions, manufacturing industry, threshold STIRPAT model

Procedia PDF Downloads 397
1886 The Appraisal of Construction Sites Productivity: In Kendall’s Concordance

Authors: Abdulkadir Abu Lawal

Abstract:

For the dearth of reliable cardinal numerical data, the linked phenomena in productivity indices such as operational costs and company turnovers, etc. could not be investigated. This would not give us insight to the root of productivity problems at unique sites. So, ordinal ranking by professionals who were most directly involved with construction sites was applied for Kendall’s concordance. Responses gathered from independent architects, builders/engineers, and quantity surveyors were herein analyzed. They were responses based on factors that affect sites productivity, and these factors were categorized as head office factors, resource management effectiveness factors, motivational factors, and training/skill development factors. It was found that productivity is low and has to be improved in order to facilitate Nigerian efforts in bridging its infrastructure deficit. The significance of this work is underlined with the Kendall’s coefficient of concordance of 0.78, while remedial measures must be emphasized to stimulate better productivity. Further detailed study can be undertaken by using Fuzzy logic analysis on wider Delphi survey.

Keywords: factors, Kendall's coefficient of concordance, magnitude of agreement, percentage magnitude of dichotomy, ranking variables

Procedia PDF Downloads 593
1885 Internal Capital Market Efficiency Study Based on Improved Cash Flow Sensitivity Coefficient - Take Tomorrow Group as an Example

Authors: Peng Lu, Liu Ting

Abstract:

Because of the difficulty of financing from the external capital market, the reorganization and merger of private enterprises have formed a family group, seeking the help of the internal capital market to alleviate the capital demand. However, the inefficiency of the internal capital market can damage the effect it should have played, and even hinder the development of enterprises. This paper takes the "Tomorrow Group" as the research object to carry on the case analysis. After using the improved cash flow sensitivity coefficient to measure the efficiency of the internal capital market of Tomorrow Group, the inefficiency phenomenon is found. Then the analysis reveals that the reasons for its inefficiency include that the pyramidal equity structure is conducive to control, the separation of cash flow rights and control rights, the concentration of equity leads to poor balance, the abandonment of real industries and information asymmetry.

Keywords: tomorrow group, internal capital market, related-party transactions, Baotou tomorrow technology Co., LTD

Procedia PDF Downloads 97
1884 Wheeled Robot Stable Braking Process under Asymmetric Traction Coefficients

Authors: Boguslaw Schreyer

Abstract:

During the wheeled robot’s braking process, the extra dynamic vertical forces act on all wheels: left, right, front or rear. Those forces are directed downward on the front wheels while directed upward on the rear wheels. In order to maximize the deceleration, therefore, minimize the braking time and braking distance, we need to calculate a correct torque distribution: the front braking torque should be increased, and rear torque should be decreased. At the same time, we need to provide better transversal stability. In a simple case of all adhesion coefficients being the same under all wheels, the torque distribution may secure the optimal (maximal) control of the robot braking process, securing the minimum braking distance and a minimum braking time. At the same time, the transversal stability is relatively good. At any time, we control the transversal acceleration. In the case of the transversal movement, we stop the braking process and re-apply braking torque after a defined period of time. If we correctly calculate the value of the torques, we may secure the traction coefficient under the front and rear wheels close to its maximum. Also, in order to provide an optimum braking control, we need to calculate the timing of the braking torque application and the timing of its release. The braking torques should be released shortly after the wheels passed a maximum traction coefficient (while a wheels’ slip increases) and applied again after the wheels pass a maximum of traction coefficient (while the slip decreases). The correct braking torque distribution secures the front and rear wheels, passing this maximum at the same time. It guarantees an optimum deceleration control, therefore, minimum braking time. In order to calculate a correct torque distribution, a control unit should receive the input signals of a rear torque value (which changes independently), the robot’s deceleration, and values of the vertical front and rear forces. In order to calculate the timing of torque application and torque release, more signals are needed: speed of the robot: angular speed, and angular deceleration of the wheels. In case of different adhesion coefficients under the left and right wheels, but the same under each pair of wheels- the same under right wheels and the same under left wheels, the Select-Low (SL) and select high (SH) methods are applied. The SL method is suggested if transversal stability is more important than braking efficiency. Often in the case of the robot, more important is braking efficiency; therefore, the SH method is applied with some control of the transversal stability. In the case that all adhesion coefficients are different under all wheels, the front-rear torque distribution is maintained as in all previous cases. However, the timing of the braking torque application and release is controlled by the rear wheels’ lowest adhesion coefficient. The Lagrange equations have been used to describe robot dynamics. Matlab has been used in order to simulate the process of wheeled robot braking, and in conclusion, the braking methods have been selected.

Keywords: wheeled robots, braking, traction coefficient, asymmetric

Procedia PDF Downloads 139
1883 Topping Failure Analysis of Anti-Dip Bedding Rock Slopes Subjected to Crest Loads

Authors: Chaoyi Sun, Congxin Chen, Yun Zheng, Kaizong Xia, Wei Zhang

Abstract:

Crest loads are often encountered in hydropower, highway, open-pit and other engineering rock slopes. Toppling failure is one of the most common deformation failure types of anti-dip bedding rock slopes. Analysis on such failure of anti-dip bedding rock slopes subjected to crest loads has an important influence on engineering practice. Based on the step-by-step analysis approach proposed by Goodman and Bray, a geo-mechanical model was developed, and the related analysis approach was proposed for the toppling failure of anti-dip bedding rock slopes subjected to crest loads. Using the transfer coefficient method, a formulation was derived for calculating the residual thrust of slope toe and the support force required to meet the requirements of the slope stability under crest loads, which provided a scientific reference to design and support for such slopes. Through slope examples, the influence of crest loads on the residual thrust and sliding ratio coefficient was investigated for cases of different block widths and slope cut angles. The results show that there exists a critical block width for such slope. The influence of crest loads on the residual thrust is non-negligible when the block thickness is smaller than the critical value. Moreover, the influence of crest loads on the slope stability increases with the slope cut angle and the sliding ratio coefficient of anti-dip bedding rock slopes increases with the crest loads. Finally, the theoretical solutions and numerical simulations using Universal Distinct Element Code (UDEC) were compared, in which the consistent results show the applicability of both approaches.

Keywords: anti-dip bedding rock slope, crest loads, stability analysis, toppling failure

Procedia PDF Downloads 156
1882 Heat Sink Optimization for a High Power Wearable Thermoelectric Module

Authors: Zohreh Soleimani, Sally Salome Shahzad, Stamatis Zoras

Abstract:

As a result of current energy and environmental issues, the human body is known as one of the promising candidate for converting wasted heat to electricity (Seebeck effect). Thermoelectric generator (TEG) is one of the most prevalent means of harvesting body heat and converting that to eco-friendly electrical power. However, the uneven distribution of the body heat and its curvature geometry restrict harvesting adequate amount of energy. To perfectly transform the heat radiated by the body into power, the most direct solution is conforming the thermoelectric generators (TEG) with the arbitrary surface of the body and increase the temperature difference across the thermoelectric legs. Due to this, a computational survey through COMSOL Multiphysics is presented in this paper with the main focus on the impact of integrating a flexible wearable TEG with a corrugated shaped heat sink on the module power output. To eliminate external parameters (temperature, air flow, humidity), the simulations are conducted within indoor thermal level and when the wearer is stationary. The full thermoelectric characterization of the proposed TEG fabricated by a wavy shape heat sink has been computed leading to a maximum power output of 25µW/cm2 at a temperature gradient nearly 13°C. It is noteworthy that for the flexibility of the proposed TEG and heat sink, the applicability and efficiency of the module stay high even on the curved surfaces of the body. As a consequence, the results demonstrate the superiority of such a TEG to the most state of the art counterparts fabricated with no heat sink and offer a new train of thought for the development of self-sustained and unobtrusive wearable power suppliers which generate energy from low grade dissipated heat from the body.

Keywords: device simulation, flexible thermoelectric module, heat sink, human body heat

Procedia PDF Downloads 131
1881 Asymmetric Relation between Earnings and Returns

Authors: Seungmin Chee

Abstract:

This paper investigates which of the two arguments, conservatism or liquidation option, is a true underlying driver of the asymmetric slope coefficient result regarding the association between earnings and returns. The analysis of the relation between earnings and returns in four mutually exclusive settings segmented by ‘profits vs. losses’ and ‘positive returns vs. negative returns’ suggests that liquidation option rather than conservatism is likely to cause the asymmetric slope coefficient result. Furthermore, this paper documents the temporal changes between Basu period (1963-1990) and post-Basu period (1990-2005). Although no significant change in degree of conservatism or value relevance of losses is reported, stronger negative relation between losses and positive returns is observed in the post-Basu period. Separate regression analysis of each quintile based on the rankings of price to sales ratio and book to market ratio suggests that the strong negative relation is driven by growth firms.

Keywords: conservatism, earnings, liquidation option, returns

Procedia PDF Downloads 348
1880 A Study on the Method of Accelerated Life Test to Electric Rotating System

Authors: Youn-Hwan Kim, Jae-Won Moon, Hae-Joong Kim

Abstract:

This paper introduces the study on the method of accelerated life test to electrical rotating system. In recent years, as well as efficiency for motors and generators, there is a growing need for research on the life expectancy. It is considered impossible to calculate the acceleration coefficient by increasing the rotational load or temperature load as the acceleration stress in the motor system because the temperature of the copper exceeds the wire thermal class rating. In this paper, the accelerated life test methods of the electrical rotating system are classified according to the application. This paper describes the development of the test procedure for the highly accelerated life test (HALT) of the 100kW permanent magnet synchronous motor (PMSM) of electric vehicle. Finally, it explains how to select acceleration load for vibration, temperature, bearing load, etc. for accelerated life test.

Keywords: acceleration coefficient, electric vehicle motor, HALT, life expectancy, vibration

Procedia PDF Downloads 293
1879 The Effect of Gross Vehicle Weight on the Stability of Heavy Vehicle during Cornering

Authors: Nurzaki Ikhsan, Ahmad Saifizul Abdullah, Rahizar Ramli

Abstract:

One of the functions of the commercial heavy vehicle is to safely and efficiently transport goods and people. Due to its size and carrying capacity, it is important to study the vehicle dynamic stability during cornering. Study has shown that there are a number of overloaded heavy vehicles or permissible gross vehicle weight (GVW) violations recorded at selected areas in Malaysia assigned by its type and category. Thus, the objective of this study is to investigate the correlation and effect of the GVW on heavy vehicle stability during cornering event using simulation. Various selected heavy vehicle types and category are simulated using IPG/Truck Maker® with different GVW and road condition (coefficient of friction of road surface), while the speed, driver characteristic, center of gravity of load and road geometry are constant. Based on the analysis, the relationship between GVW and lateral acceleration were established. As expected, on the same value of coefficient of friction, the maximum lateral acceleration would be increased as the GVW increases.

Keywords: heavy vehicle, road safety, vehicle stability, lateral acceleration, gross vehicle weight

Procedia PDF Downloads 504
1878 Effect of Thickness and Solidity on the Performance of Straight Type Vertical Axis Wind Turbine

Authors: Jianyang Zhu, Lin Jiang, Tixian Tian

Abstract:

Inspired by the increasing interesting on the wind power associated with production of clear electric power, a numerical experiment is applied to investigate the aerodynamic performance of straight type vertical axis wind turbine with different thickness and solidity, where the incompressible Navier-Stokes (N-S) equations coupled with dynamic mesh technique is solved. By analyzing the flow field, as well as energy coefficient of different thickness and solidity turbine, it is found that the thickness and solidity can significantly influence the performance of vertical axis wind turbine. For the turbine under low tip speed, the mean energy coefficient increase with the increasing of thickness and solidity, which may improve the self starting performance of the turbine. However for the turbine under high tip speed, the appropriate thickness and smaller solidity turbine possesses better performance. In addition, delay stall and no interaction of the blade and previous separated vortex are observed around appropriate thickness and solidity turbine, therefore lead better performance characteristics.

Keywords: vertical axis wind turbine, N-S equations, dynamic mesh technique, thickness, solidity

Procedia PDF Downloads 221
1877 The Superhydrophobic Surface Effect on Laminar Boundary Layer Flows

Authors: Chia-Yung Chou, Che-Chuan Cheng, Chin Chi Hsu, Chun-Hui Wu

Abstract:

This study investigates the fluid of boundary layer flow as it flows through the superhydrophobic surface. The superhydrophobic surface will be assembled into an observation channel for fluid experiments. The fluid in the channel will be doped with visual flow field particles, which will then be pumped by the syringe pump and introduced into the experimentally observed channel through the pipeline. Through the polarized light irradiation, the movement of the particles in the channel is captured by a high-speed camera, and the velocity of the particles is analyzed by MATLAB to find out the particle velocity field changes caused on the fluid boundary layer. This study found that the superhydrophobic surface can effectively increase the velocity near the wall surface, and the faster with the flow rate increases. The superhydrophobic surface also had longer the slip length compared with the plan surface. In the calculation of the drag coefficient, the superhydrophobic surface produces a lower drag coefficient, and there is a more significant difference when the Re reduced in the flow field.

Keywords: hydrophobic, boundary layer, slip length, friction

Procedia PDF Downloads 117
1876 Select-Low and Select-High Methods for the Wheeled Robot Dynamic States Control

Authors: Bogusław Schreyer

Abstract:

The paper enquires on the two methods of the wheeled robot braking torque control. Those two methods are applied when the adhesion coefficient under left side wheels is different from the adhesion coefficient under the right side wheels. In case of the select-low (SL) method the braking torque on both wheels is controlled by the signals originating from the wheels on the side of the lower adhesion. In the select-high (SH) method the torque is controlled by the signals originating from the wheels on the side of the higher adhesion. The SL method is securing stable and secure robot behaviors during the braking process. However, the efficiency of this method is relatively low. The SH method is more efficient in terms of time and braking distance but in some situations may cause wheels blocking. It is important to monitor the velocity of all wheels and then take a decision about the braking torque distribution accordingly. In case of the SH method the braking torque slope may require significant decrease in order to avoid wheel blocking.

Keywords: select-high, select-low, torque distribution, wheeled robots

Procedia PDF Downloads 95
1875 Flow Boiling Heat Transfer at Low Mass and Heat Fluxes: Heat Transfer Coefficient, Flow Pattern Analysis and Correlation Assessment

Authors: Ernest Gyan Bediako, Petra Dancova, Tomas Vit

Abstract:

Flow boiling heat transfer remains an important area of research due to its relevance in thermal management systems and other applications. Despite the enormous work done in the field of flow boiling heat transfer over the years to understand how flow parameters such as mass flux, heat flux, saturation conditions and tube geometries influence the characteristics of flow boiling heat transfer, there are still many contradictions and lack of agreement on the actual mechanisms controlling heat transfer and how flow parameters impact the heat transfer. This work thus seeks to experimentally investigate the heat transfer characteristics and flow patterns at low mass fluxes, low heat fluxes and low saturation pressure conditions which are of less attention in literature but prevalent in refrigeration, air-conditioning and heat pump applications. In this study, flow boiling experiment was conducted for R134a working fluid in a 5 mm internal diameter stainless steel horizontal smooth tube with mass flux ranging from 80- 100 kg/m2 s, heat fluxes ranging from 3.55kW/m2 - 25.23 kW/m2 and saturation pressure of 460 kPa. Vapor quality ranged from 0 to 1. A well-known flow pattern map created by Wojtan et al. was used to predict the flow patterns noticed during the study. The experimental results were correlated with well-known flow boiling heat transfer correlations in literature. The findings show that, heat transfer coefficient was influenced by both mass flux and heat fluxes. However, for an increasing heat flux, nucleate boiling was observed to be the dominant mechanism controlling the heat transfer especially at low vapor quality region. For an increasing mass flux, convective boiling was the dominant mechanism controlling the heat transfer especially in the high vapor quality region. Also, the study observed an unusual high heat transfer coefficient at low vapor qualities which could be due to periodic wetting of the walls of the tube due to slug flow pattern and stratified wavy flow patterns. The flow patterns predicted by Wojtan et al. flow pattern map were mixture of slug and stratified wavy, purely stratified wavy and dry out. Statistical assessment of the experimental data with various well-known correlations from literature showed that, none of the correlations reported in literature could predicted the experimental data with enough accuracy.

Keywords: flow boiling, heat transfer coefficient, mass flux, heat flux.

Procedia PDF Downloads 84
1874 Numerical Study of the Influence of the Primary Stream Pressure on the Performance of the Ejector Refrigeration System Based on Heat Exchanger Modeling

Authors: Elhameh Narimani, Mikhail Sorin, Philippe Micheau, Hakim Nesreddine

Abstract:

Numerical models of the heat exchangers in ejector refrigeration system (ERS) were developed and validated with the experimental data. The models were based on the switched heat exchangers model using the moving boundary method, which were capable of estimating the zones’ lengths, the outlet temperatures of both sides and the heat loads at various experimental points. The developed models were utilized to investigate the influence of the primary flow pressure on the performance of an R245fa ERS based on its coefficient of performance (COP) and exergy efficiency. It was illustrated numerically and proved experimentally that increasing the primary flow pressure slightly reduces the COP while the exergy efficiency goes through a maximum before decreasing.

Keywords: Coefficient of Performance, COP, Ejector Refrigeration System, ERS, exergy efficiency (ηII), heat exchangers modeling, moving boundary method

Procedia PDF Downloads 172
1873 The Study of the Mutual Effect of Genotype in Environment by Percent of Oil Criterion in Sunflower

Authors: Seyed Mohammad Nasir Mousavi, Pasha Hejazi, Maryam Ebrahimian Dehkordi

Abstract:

In order to study the Mutual effect of genotype × environment for the percent of oil index in sunflower items, an experiment was accomplished in form of complete random block designs in four iteration in four diverse researching station comprising Esfahan, Birjand, Sari, and Karaj. Complex variance analysis showed that there is an important diversity between the items under investigation. The results pertaining the coefficient variation of items Azargol and Vidoc has respectively allocated the minimum coefficient of variations. According to the results extrapolated from Shokla stability variance, the Items Brocar, Allison and Fabiola, are among the stable genotypes for oil percent respectively. in the biplot GGE, the location under investigations divided in two super-environment, first one comprised of locations naming Esfahan, Karaj, and Birjand, and second one were such a location as Sari. By this point of view, in the first super-environment, the Item Fabiola and in the second Almanzor item was among the best items and crops.

Keywords: sunflower, stability, GGE bipilot, super-environment

Procedia PDF Downloads 512