Search results for: Ryuji Hashimoto
27 Dynamical Analysis of the Fractional-Order Mathematical Model of Hashimoto’s Thyroiditis
Authors: Neelam Singha
Abstract:
The present work intends to analyze the system dynamics of Hashimoto’s thyroiditis with the assistance of fractional calculus. Hashimoto’s thyroiditis or chronic lymphocytic thyroiditis is an autoimmune disorder in which the immune system attacks the thyroid gland, which gradually results in interrupting the normal thyroid operation. Consequently, the feedback control of the system gets disrupted due to thyroid follicle cell lysis. And, the patient perceives life-threatening clinical conditions like goiter, hyperactivity, euthyroidism, hyperthyroidism, etc. In this work, we aim to obtain the approximate solution to the posed fractional-order problem describing Hashimoto’s thyroiditis. We employ the Adomian decomposition method to solve the system of fractional-order differential equations, and the solutions obtained shall be useful to provide information about the effect of medical care. The numerical technique is executed in an organized manner to furnish the associated details of the progression of the disease and to visualize it graphically with suitable plots.Keywords: adomian decomposition method, fractional derivatives, Hashimoto's thyroiditis, mathematical modeling
Procedia PDF Downloads 21426 Towards Realistic and Explainable Market Simulations: Factorizing Financial Power Law Using Optimal Transport
Authors: Ryuji Hashimoto, Yuri Murayama, Kiyoshi Izumi
Abstract:
This study aims to analyze the mechanism underlying the power law of stock returns through artificial market simulations. Although traditional financial theory postulates a Gaussian distribution for stock price fluctuations, empirical evidence indicates that the tail distribution of these fluctuations follows a power law. Research motivated by this gap has proposed various hypotheses regarding the components that generate power laws in financial price fluctuations. One hypothesis attributes the power law to investor behavior, whereas the other points to the demand distribution of institutional investors. However, existing research has not simultaneously modeled these components to study their individual contributions to the power law and their interactions. The complexity of real financial markets complicates the isolation of the contribution of a single component using existing data. To determine the extent to which each component contributes to the formation of this stylized fact and the effect when multiple components are present simultaneously, this study utilizes artificial markets and optimal transport (OT) to conduct controlled experiments. Artificial markets have been used for both financial counterfactual analysis and synthetic data generation, facing trade-off between explainability and realism. The proposed pipeline of hypotheses evaluation cycles of agent models based on quantitative evaluation using OT tackles this trade-off by examining the impact of each component in the agent model on the realism of the simulation, providing insights into why the simulations are able to reproduce real-world phenomena. The experiments revealed that the informational effect of prices plays a dominant role in generating realistic power law distributions, and a synergistic effect exists among multiple components.Keywords: power law, artificial market, multi-agent simulation, optimal transport, financial synthetic data
Procedia PDF Downloads 025 PD-L1 Expression in Papillary Thyroid Carcinoma Arising Denovo or on Top of Autoimmune Thyroiditis
Authors: Dalia M. Abouelfadl, Noha N. Yassen, Marwa E. Shabana
Abstract:
Background: The evolution of immune therapy motivated many to study the relation between immune response and progression of cancer. Little is known about expression of PD-L1 (a newly evolving immunotherapeutic drug) in papillary thyroid carcinoma (PTC) arising de-novo and PTC arising on top of autoimmune thyroiditis (Hashimoto's (HT) and lymphocytic thyroiditis (LT)). The aim of this work is to study the alteration of expression of PD-L1 in PTCs arising from de-novo or on top of HT OR LT using immunohistochemistry and image analyser system. Method: 100 paraffin blocks for PTC cases were collected retrospectively for staining using PD-L1 rabbit monoclonal antibody (BIOCARE-ACI 3171 A, C). The antibody expression is measured digitally using Image Analyzer Leica Qwin 3000, and the membranous and cytoplasmic expression of PD-L1 in tumor cells was considered positive. The results were correlated with tumor grade, size, and LN status. Results: The study samples consisted of 41 cases of PTC arising De novo, 36 cases on top of HT, and 23 on top of LT. Expression of PD-L1 was highest among the PTC-HL group (25 case-69%) followed by PTC-TL group (14 case-60.8%) then de-novo PTC (19 case-46%) with P Value < 0.05. PD-L1 expression correlated with nodal metastasis and was not relevant to tumor size or grade. Conclusion: The severity of the immune response in tumor microenvironment directly influences PTC prognosis. The anti PD-L1 Ab can be a very successful therapeutic agent for PTC arising on top of HT.Keywords: carcinoma, Hashimoto's, lymphocytic, papillary, PD-L1, thyroiditis
Procedia PDF Downloads 18224 Autoimmune Diseases Associated with Primary Biliary Cirrhosis: A Retrospective Study of 51 Patients
Authors: Soumaya Mrabet, Imen Akkari, Amira Atig, Elhem Ben Jazia
Abstract:
Introduction: Primary biliary cirrhosis (PBC) is a cholestatic cholangitis of unknown etiology. It is frequently associated with autoimmune diseases, which explains their systematic screening. The aim of our study was to determine the prevalence and the type of autoimmune disorders associated with PBC and to assess their impact on the prognosis of the disease. Material and methods: It is a retrospective study over a period of 16 years (2000-2015) including all patients followed for PBC. In all these patients we have systematically researched: dysthyroidism (thyroid balance, antithyroid autoantibodies), type 1 diabetes, dry syndrome (ophthalmologic examination, Schirmer test and lip biopsy in case of Presence of suggestive clinical signs), celiac disease(celiac disease serology and duodenal biopsies) and dermatological involvement (clinical examination). Results: Fifty-one patients (50 women and one men) followed for PBC were collected. The Mean age was 54 years (37-77 years). Among these patients, 30 patients(58.8%) had at least one autoimmune disease associated with PBC. The discovery of these autoimmune diseases preceded the diagnosis of PBC in 8 cases (26.6%) and was concomitant, through systematic screening, in the remaining cases. Autoimmune hepatitis was found in 12 patients (40%), defining thus an overlap syndrome. Other diseases were Hashimoto's thyroiditis (n = 10), dry syndrome (n = 7), Gougerot Sjogren syndrome (n=6), celiac disease (n = 3), insulin-dependent diabetes (n = 1), scleroderma (n = 1), rheumatoid arthritis (n = 1), Biermer Anemia (n=1) and Systemic erythematosus lupus (n=1). The two groups of patients with PBC with or without associated autoimmune disorders were comparable for bilirubin levels, Child-Pugh score, and response to treatment. Conclusion: In our series, the prevalence of autoimmune diseases in PBC was 58.8%. These diseases were dominated by autoimmune hepatitis and Hashimoto's thyroiditis. Even if their association does not seem to alter the prognosis, screening should be systematic in order to institute an early and adequate management.Keywords: autoimmune diseases, autoimmune hepatitis, primary biliary cirrhosis, prognosis
Procedia PDF Downloads 27823 Solutions to Probabilistic Constrained Optimal Control Problems Using Concentration Inequalities
Authors: Tomoaki Hashimoto
Abstract:
Recently, optimal control problems subject to probabilistic constraints have attracted much attention in many research field. Although probabilistic constraints are generally intractable in optimization problems, several methods haven been proposed to deal with probabilistic constraints. In most methods, probabilistic constraints are transformed to deterministic constraints that are tractable in optimization problems. This paper examines a method for transforming probabilistic constraints into deterministic constraints for a class of probabilistic constrained optimal control problems.Keywords: optimal control, stochastic systems, discrete-time systems, probabilistic constraints
Procedia PDF Downloads 28122 Rehabilitation Robot in Primary Walking Pattern Training for SCI Patient at Home
Authors: Taisuke Sakaki, Toshihiko Shimokawa, Nobuhiro Ushimi, Koji Murakami, Yong-Kwun Lee, Kazuhiro Tsuruta, Kanta Aoki, Kaoru Fujiie, Ryuji Katamoto, Atsushi Sugyo
Abstract:
Recently attention has been focused on incomplete spinal cord injuries (SCI) to the central spine caused by pressure on parts of the white matter conduction pathway, such as the pyramidal tract. In this paper, we focus on a training robot designed to assist with primary walking-pattern training. The target patient for this training robot is relearning the basic functions of the usual walking pattern; it is meant especially for those with incomplete-type SCI to the central spine, who are capable of standing by themselves but not of performing walking motions. From the perspective of human engineering, we monitored the operator’s actions to the robot and investigated the movement of joints of the lower extremities, the circumference of the lower extremities, and exercise intensity with the machine. The concept of the device was to provide mild training without any sudden changes in heart rate or blood pressure, which will be particularly useful for the elderly and disabled. The mechanism of the robot is modified to be simple and lightweight with the expectation that it will be used at home.Keywords: training, rehabilitation, SCI patient, welfare, robot
Procedia PDF Downloads 42921 Frequency- and Content-Based Tag Cloud Font Distribution Algorithm
Authors: Ágnes Bogárdi-Mészöly, Takeshi Hashimoto, Shohei Yokoyama, Hiroshi Ishikawa
Abstract:
The spread of Web 2.0 has caused user-generated content explosion. Users can tag resources to describe and organize them. Tag clouds provide rough impression of relative importance of each tag within overall cloud in order to facilitate browsing among numerous tags and resources. The goal of our paper is to enrich visualization of tag clouds. A font distribution algorithm has been proposed to calculate a novel metric based on frequency and content, and to classify among classes from this metric based on power law distribution and percentages. The suggested algorithm has been validated and verified on the tag cloud of a real-world thesis portal.Keywords: tag cloud, font distribution algorithm, frequency-based, content-based, power law
Procedia PDF Downloads 50720 On Phase Based Stereo Matching and Its Related Issues
Authors: András Rövid, Takeshi Hashimoto
Abstract:
The paper focuses on the problem of the point correspondence matching in stereo images. The proposed matching algorithm is based on the combination of simpler methods such as normalized sum of squared differences (NSSD) and a more complex phase correlation based approach, by considering the noise and other factors, as well. The speed of NSSD and the preciseness of the phase correlation together yield an efficient approach to find the best candidate point with sub-pixel accuracy in stereo image pairs. The task of the NSSD in this case is to approach the candidate pixel roughly. Afterwards the location of the candidate is refined by an enhanced phase correlation based method which in contrast to the NSSD has to run only once for each selected pixel.Keywords: stereo matching, sub-pixel accuracy, phase correlation, SVD, NSSD
Procedia PDF Downloads 47019 3-D Visualization and Optimization for SISO Linear Systems Using Parametrization of Two-Stage Compensator Design
Authors: Kazuyoshi Mori, Keisuke Hashimoto
Abstract:
In this paper, we consider the two-stage compensator designs of SISO plants. As an investigation of the characteristics of the two-stage compensator designs, which is not well investigated yet, of SISO plants, we implement three dimensional visualization systems of output signals and optimization system for SISO plants by the parametrization of stabilizing controllers based on the two-stage compensator design. The system runs on Mathematica by using “Three Dimensional Surface Plots,” so that the visualization can be interactively manipulated by users. In this paper, we use the discrete-time LTI system model. Even so, our approach is the factorization approach, so that the result can be applied to many linear models.Keywords: linear systems, visualization, optimization, Mathematica
Procedia PDF Downloads 30218 Robust Stabilization of Rotational Motion of Underwater Robots against Parameter Uncertainties
Authors: Riku Hayashida, Tomoaki Hashimoto
Abstract:
This paper provides a robust stabilization method for rotational motion of underwater robots against parameter uncertainties. Underwater robots are expected to be used for various work assignments. The large variety of applications of underwater robots motivates researchers to develop control systems and technologies for underwater robots. Several control methods have been proposed so far for the stabilization of nominal system model of underwater robots with no parameter uncertainty. Parameter uncertainties are considered to be obstacles in implementation of the such nominal control methods for underwater robots. The objective of this study is to establish a robust stabilization method for rotational motion of underwater robots against parameter uncertainties. The effectiveness of the proposed method is verified by numerical simulations.Keywords: robust control, stabilization method, underwater robot, parameter uncertainty
Procedia PDF Downloads 16317 Computational Simulations on Stability of Model Predictive Control for Linear Discrete-Time Stochastic Systems
Authors: Tomoaki Hashimoto
Abstract:
Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial time and a moving terminal time. This paper examines the stability of model predictive control for linear discrete-time systems with additive stochastic disturbances. A sufficient condition for the stability of the closed-loop system with model predictive control is derived by means of a linear matrix inequality. The objective of this paper is to show the results of computational simulations in order to verify the validity of the obtained stability condition.Keywords: computational simulations, optimal control, predictive control, stochastic systems, discrete-time systems
Procedia PDF Downloads 43616 Attitude Stabilization of Satellites Using Random Dither Quantization
Authors: Kazuma Okada, Tomoaki Hashimoto, Hirokazu Tahara
Abstract:
Recently, the effectiveness of random dither quantization method for linear feedback control systems has been shown in several papers. However, the random dither quantization method has not yet been applied to nonlinear feedback control systems. The objective of this paper is to verify the effectiveness of random dither quantization method for nonlinear feedback control systems. For this purpose, we consider the attitude stabilization problem of satellites using discrete-level actuators. Namely, this paper provides a control method based on the random dither quantization method for stabilizing the attitude of satellites using discrete-level actuators.Keywords: quantized control, nonlinear systems, random dither quantization
Procedia PDF Downloads 24615 Conservativeness of Probabilistic Constrained Optimal Control Method for Unknown Probability Distribution
Authors: Tomoaki Hashimoto
Abstract:
In recent decades, probabilistic constrained optimal control problems have attracted much attention in many research field. Although probabilistic constraints are generally intractable in an optimization problem, several tractable methods haven been proposed to handle probabilistic constraints. In most methods, probabilistic constraints are reduced to deterministic constraints that are tractable in an optimization problem. However, there is a gap between the transformed deterministic constraints in case of known and unknown probability distribution. This paper examines the conservativeness of probabilistic constrained optimization method with the unknown probability distribution. The objective of this paper is to provide a quantitative assessment of the conservatism for tractable constraints in probabilistic constrained optimization with the unknown probability distribution.Keywords: optimal control, stochastic systems, discrete time systems, probabilistic constraints
Procedia PDF Downloads 58314 A Pilot Study of Robot Reminiscence in Dementia Care
Authors: Ryuji Yamazaki, Masahiro Kochi, Weiran Zhu, Hiroko Kase
Abstract:
In care for older adults, behavioral and psychological symptoms of dementia (BPSD) like agitation and aggression are distressing for patients and their caretakers, often resulting in premature institutionalization with increased costs of care. To improve mood and mitigate symptoms, as a non-pharmaceutical approach, emotion-oriented therapy like reminiscence work is adopted in face-to-face communication. Telecommunication support is expected to be provided by robotic media as a bridge for digital divide for those with dementia and facilitate social interaction both verbally and nonverbally. The purpose of this case study is to explore the conditions in which robotic media can effectively attract attention from older adults with dementia and promote their well-being. As a pilot study, we introduced the pillow-phone Hugvie®, a huggable humanly shaped communication medium to five residents with dementia at a care facility, to investigate how the following conditions work for the elderly when they use the medium; 1) no sound, 2) radio, non-interactive, 3) daily conversation, and 4) reminiscence work. As a result, under condition 4, reminiscence work, the five participants kept concentration in interacting with the medium for a longer duration than other conditions. In condition 4, they also showed larger amount of utterances than under other conditions. These results indicate that providing topics related to personal histories through robotic media could affect communication positively and should, therefore, be further investigated. In addition, the issue of ethical implications by using persuasive technology that affects emotions and behaviors of older adults is also discussed.Keywords: BPSD, reminiscence, tactile telecommunication, utterances
Procedia PDF Downloads 17513 Model Predictive Control Using Thermal Inputs for Crystal Growth Dynamics
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
Recently, crystal growth technologies have made progress by the requirement for the high quality of crystal materials. To control the crystal growth dynamics actively by external forces is useuful for reducing composition non-uniformity. In this study, a control method based on model predictive control using thermal inputs is proposed for crystal growth dynamics of semiconductor materials. The control system of crystal growth dynamics considered here is governed by the continuity, momentum, energy, and mass transport equations. To establish the control method for such thermal fluid systems, we adopt model predictive control known as a kind of optimal feedback control in which the control performance over a finite future is optimized with a performance index that has a moving initial time and terminal time. The objective of this study is to establish a model predictive control method for crystal growth dynamics of semiconductor materials.Keywords: model predictive control, optimal control, process control, crystal growth
Procedia PDF Downloads 36112 State Estimation Method Based on Unscented Kalman Filter for Vehicle Nonlinear Dynamics
Authors: Wataru Nakamura, Tomoaki Hashimoto, Liang-Kuang Chen
Abstract:
This paper provides a state estimation method for automatic control systems of nonlinear vehicle dynamics. A nonlinear tire model is employed to represent the realistic behavior of a vehicle. In general, all the state variables of control systems are not precisedly known, because those variables are observed through output sensors and limited parts of them might be only measurable. Hence, automatic control systems must incorporate some type of state estimation. It is needed to establish a state estimation method for nonlinear vehicle dynamics with restricted measurable state variables. For this purpose, unscented Kalman filter method is applied in this study for estimating the state variables of nonlinear vehicle dynamics. The objective of this paper is to propose a state estimation method using unscented Kalman filter for nonlinear vehicle dynamics. The effectiveness of the proposed method is verified by numerical simulations.Keywords: state estimation, control systems, observer systems, nonlinear systems
Procedia PDF Downloads 13911 Stability of Stochastic Model Predictive Control for Schrödinger Equation with Finite Approximation
Authors: Tomoaki Hashimoto
Abstract:
Recent technological advance has prompted significant interest in developing the control theory of quantum systems. Following the increasing interest in the control of quantum dynamics, this paper examines the control problem of Schrödinger equation because quantum dynamics is basically governed by Schrödinger equation. From the practical point of view, stochastic disturbances cannot be avoided in the implementation of control method for quantum systems. Thus, we consider here the robust stabilization problem of Schrödinger equation against stochastic disturbances. In this paper, we adopt model predictive control method in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. The objective of this study is to derive the stability criterion for model predictive control of Schrödinger equation under stochastic disturbances.Keywords: optimal control, stochastic systems, quantum systems, stabilization
Procedia PDF Downloads 46410 Stabilization of Rotational Motion of Spacecrafts Using Quantized Two Torque Inputs Based on Random Dither
Authors: Yusuke Kuramitsu, Tomoaki Hashimoto, Hirokazu Tahara
Abstract:
The control problem of underactuated spacecrafts has attracted a considerable amount of interest. The control method for a spacecraft equipped with less than three control torques is useful when one of the three control torques had failed. On the other hand, the quantized control of systems is one of the important research topics in recent years. The random dither quantization method that transforms a given continuous signal to a discrete signal by adding artificial random noise to the continuous signal before quantization has also attracted a considerable amount of interest. The objective of this study is to develop the control method based on random dither quantization method for stabilizing the rotational motion of a rigid spacecraft with two control inputs. In this paper, the effectiveness of random dither quantization control method for the stabilization of rotational motion of spacecrafts with two torque inputs is verified by numerical simulations.Keywords: spacecraft control, quantized control, nonlinear control, random dither method
Procedia PDF Downloads 1829 Autoimmune Diseases Associated to Autoimmune Hepatitis: A Retrospective Study of 24 Tunisian Patients
Authors: Soumaya Mrabet, Imen Akkari, Amira Atig, Elhem Ben Jazia
Abstract:
Introduction: Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease of unknown cause. Concomitant autoimmune disorders have been described in 30–50% of patients with AIH. The aim of our study is to determine the prevalence and the type of autoimmune disorders associated with AIH. Material and Methods: It is a retrospective study over a period of 16 years (2000-2015) including all patients followed for AIH. The diagnosis of AHI was based on the criteria of the revised International AIH group scoring system (IAIHG). Results: Twenty-for patients (21 women and 3 men) followed for AIH were collected. The mean age was 39 years (17-65 years). Among these patients, 11 patients(45.8%) had at least one autoimmune disease associated to AIH. These diseases were Hashimoto's thyroiditis (n = 5), Gougerot Sjogren syndrome (n=5), Primary biliary cirrhosis (n=2), Primitive sclerosant Cholangitis (n=1), Addison disease (n = 1) and systemic sclerosis (n=1). Patients were treated with corticosteroids alone or with azathioprine associated to the specific treatment of associated diseases with complete remission of AIH in 90% of cases and clinical improvement of other diseases. Conclusion: In our study, the prevalence of autoimmune diseases in AIH patients was 45.8%. These diseases were dominated by autoimmune thyroiditis and Gougerot Sjogren syndrome. The investigation of autoimmune diseases in autoimmune hepatitis must be systematic because of their frequency and the importance of adequate management.Keywords: autoimmune diseases, autoimmune hepatitis, autoimmune thyroiditis, gougerot sjogren syndrome
Procedia PDF Downloads 2678 Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization
Authors: Tomoaki Hashimoto
Abstract:
Recently, feedback control systems using random dither quantizers have been proposed for linear discrete-time systems. However, the constraints imposed on state and control variables have not yet been taken into account for the design of feedback control systems with random dither quantization. Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. An important advantage of model predictive control is its ability to handle constraints imposed on state and control variables. Based on the model predictive control approach, the objective of this paper is to present a control method that satisfies probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization. In other words, this paper provides a method for solving the optimal control problems subject to probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization.Keywords: optimal control, stochastic systems, random dither, quantization
Procedia PDF Downloads 4477 Model Predictive Control with Unscented Kalman Filter for Nonlinear Implicit Systems
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
A class of implicit systems is known as a more generalized class of systems than a class of explicit systems. To establish a control method for such a generalized class of systems, we adopt model predictive control method which is a kind of optimal feedback control with a performance index that has a moving initial time and terminal time. However, model predictive control method is inapplicable to systems whose all state variables are not exactly known. In other words, model predictive control method is inapplicable to systems with limited measurable states. In fact, it is usual that the state variables of systems are measured through outputs, hence, only limited parts of them can be used directly. It is also usual that output signals are disturbed by process and sensor noises. Hence, it is important to establish a state estimation method for nonlinear implicit systems with taking the process noise and sensor noise into consideration. To this purpose, we apply the model predictive control method and unscented Kalman filter for solving the optimization and estimation problems of nonlinear implicit systems, respectively. The objective of this study is to establish a model predictive control with unscented Kalman filter for nonlinear implicit systems.Keywords: optimal control, nonlinear systems, state estimation, Kalman filter
Procedia PDF Downloads 2056 THRAP2 Gene Identified as a Candidate Susceptibility Gene of Thyroid Autoimmune Diseases Pedigree in Tunisian Population
Authors: Ghazi Chabchoub, Mouna Feki, Mohamed Abid, Hammadi Ayadi
Abstract:
Autoimmune thyroid diseases (AITDs), including Graves’ disease (GD) and Hashimoto’s thyroiditis (HT), are inherited as complex traits. Genetic factors associated with AITDs have been tentatively identified by candidate gene and genome scanning approaches. We analysed three intragenic microsatellite markers in the thyroid hormone receptor associated protein 2 gene (THRAP2), mapped near D12S79 marker, which have a potential role in immune function and inflammation [THRAP2-1(TG)n, THRAP2-2 (AC)n and THRAP2-3 (AC)n]. Our study population concerned 12 patients affected with AITDs belonging to a multiplex Tunisian family with high prevalence of AITDs. Fluorescent genotyping was carried out on ABI 3100 sequencers (Applied Biosystems USA) with the use of GENESCAN for semi-automated fragment sizing and GENOTYPER peak-calling software. Statistical analysis was performed using the non parametric Lod score (NPL) by Merlin software. Merlin outputs non-parametric NPLall (Z) and LOD scores and their corresponding asymptotic P values. The analysis for three intragenic markers in the THRAP2 gene revealed strong evidence for linkage (NPL=3.68, P=0.00012). Our results suggested the possible role of THRAP2 gene in AITDs susceptibility in this family.Keywords: autoimmunity, autoimmune disease, genetic, linkage analysis
Procedia PDF Downloads 1285 Numerical Simulations on Feasibility of Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization
Authors: Taiki Baba, Tomoaki Hashimoto
Abstract:
The random dither quantization method enables us to achieve much better performance than the simple uniform quantization method for the design of quantized control systems. Motivated by this fact, the stochastic model predictive control method in which a performance index is minimized subject to probabilistic constraints imposed on the state variables of systems has been proposed for linear feedback control systems with random dither quantization. In other words, a method for solving optimal control problems subject to probabilistic state constraints for linear discrete-time control systems with random dither quantization has been already established. To our best knowledge, however, the feasibility of such a kind of optimal control problems has not yet been studied. Our objective in this paper is to investigate the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization. To this end, we provide the results of numerical simulations that verify the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization.Keywords: model predictive control, stochastic systems, probabilistic constraints, random dither quantization
Procedia PDF Downloads 2824 State Estimation Based on Unscented Kalman Filter for Burgers’ Equation
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
Controlling the flow of fluids is a challenging problem that arises in many fields. Burgers’ equation is a fundamental equation for several flow phenomena such as traffic, shock waves, and turbulence. The optimal feedback control method, so-called model predictive control, has been proposed for Burgers’ equation. However, the model predictive control method is inapplicable to systems whose all state variables are not exactly known. In practical point of view, it is unusual that all the state variables of systems are exactly known, because the state variables of systems are measured through output sensors and limited parts of them can be only available. In fact, it is usual that flow velocities of fluid systems cannot be measured for all spatial domains. Hence, any practical feedback controller for fluid systems must incorporate some type of state estimator. To apply the model predictive control to the fluid systems described by Burgers’ equation, it is needed to establish a state estimation method for Burgers’ equation with limited measurable state variables. To this purpose, we apply unscented Kalman filter for estimating the state variables of fluid systems described by Burgers’ equation. The objective of this study is to establish a state estimation method based on unscented Kalman filter for Burgers’ equation. The effectiveness of the proposed method is verified by numerical simulations.Keywords: observer systems, unscented Kalman filter, nonlinear systems, Burgers' equation
Procedia PDF Downloads 1543 Teaching the Tacit Nuances of Japanese Onomatopoeia through an E-Learning System: An Evaluation Approach of Narrative Interpretation
Authors: Xiao-Yan Li, Takashi Hashimoto, Guanhong Li, Shuo Yang
Abstract:
In Japanese, onomatopoeia is an important element in the lively expression of feelings and experiences. It is very difficult for students of Japanese to acquire onomatopoeia, especially, its nuances. In this paper, based on traditional L2 learning theories, we propose a new method to improve the efficiency of teaching the nuances – both explicit and tacit - to non-native speakers of Japanese. The method for teaching the tacit nuances of onomatopoeia consists of three elements. First is to teach the formal rules representing the explicit nuances of onomatopoeic words. Second is to have the students create new onomatopoeic words by utilizing those formal rules. The last element is to provide feedback by evaluating the onomatopoeias created. Our previous study used five-grade relative estimation. However students were confused about the five-grade system, because they could not understand the evaluation criteria only based on a figure. In this new system, then, we built an evaluation database through native speakers’ narrative interpretation. We asked Japanese native speakers to describe their awareness of the nuances of onomatopoeia in writing. Then they voted on site and defined priorities for showing to learners on the system. To verify the effectiveness of the proposed method and the learning system, we conducted a preliminary experiment involving two groups of subjects. While Group A got feedback about the appropriateness of their onomatopoeic constructions from the native speakers’ narrative interpretation, Group B got feedback just in the form of the five-grade relative estimation. A questionnaire survey administered to all of the learners clarified our learning system availability and also identified areas that should be improved. Repetitive learning of word-formation rules, creating new onomatopoeias and gaining new awareness from narrative interpretation is the total process used to teach the explicit and tacit nuances of onomatopoeia.Keywords: onomatopoeia, tacit nuance, narrative interpretation, e-learning system, second language teaching
Procedia PDF Downloads 3992 Autoimmune Diseases Associated with Celiac Disease in Adults
Authors: Soumaya Mrabet, Taieb Ach, Imen Akkari, Amira Atig, Neirouz Ghannouchi, Koussay Ach, Elhem Ben Jazia
Abstract:
Introduction: Celiac disease (CD) is an immune-mediated small intestinal disorder that occurs in genetically susceptible people. It is significantly associated with other autoimmune disorders represented mainly by type 1 diabetes and autoimmune dysthyroidism. The aim of our study is to determine the prevalence and the type of the various autoimmune diseases associated with CD in adult patients. Material and methods: This is a retrospective study including patients diagnosed with CD, explored in Internal Medicine, Gastroenterology and Endocrinology and Diabetology Departments of the Farhat Hached University Hospital, between January 2005 and January 2016. The diagnosis of CD was confirmed by serological tests and duodenal biopsy. The screening of autoimmune diseases was based on physical examination, biological and serological tests. Results: Sixty five patients with a female predominance were included, 48women (73.8%) and 17 men (26.2%). The mean age was 31.8 years (17-75). A family history of CD or other autoimmune diseases was present in 5 and 10 patients respectively. Clinical presentation of CD was made by recurrent abdominal pain in 49 cases, diarrhea in 29 cases, bloating in 17 cases, constipation in 25 cases and vomiting in 8 cases. Autoimmune diseases associated with CD were found in 30 cases (46.1%): type 1 diabetes in 15 patients attested by the positivity of anti-GAD antibodies in 11 cases and anti-IA2 in 4 cases, Hashimoto thyroiditis in 8 cases confirmed by the positivity of anti-TPO antibodies, Addison's disease in 2 patients, Anemia of Biermer in 2 patients, autoimmune hepatitis, Systemic erythematosus lupus, Gougerot Sjögren syndrome, rheumatoid arthritis, Vitiligo and antiphospholipid syndrome in one patient each. CD was associated with more than one autoimmune disease defining multiple autoimmune syndrome in 2 female patients. The first patient had Basedow disease, Addison disease and type 1 diabetes. The second patient had systemic erythematosus lupus and Gougerot Sjögren syndrome. Conclusion: In our study autoimmune diseases were associated with CD in 46.1% of cases and were dominated by diabetes and dysthroidism. After establishing the diagnosis of CD the search of associated autoimmune diseases is necessary in order to avoid any therapeutic delay which can alter the prognosis of the patient.Keywords: association, autoimmune thyroiditis, celiac disease, diabetes
Procedia PDF Downloads 2851 Importance of Remote Sensing and Information Communication Technology to Improve Climate Resilience in Low Land of Ethiopia
Authors: Hasen Keder Edris, Ryuji Matsunaga, Toshi Yamanaka
Abstract:
The issue of climate change and its impact is a major contemporary global concern. Ethiopia is one of the countries experiencing adverse climate change impact including frequent extreme weather events that are exacerbating drought and water scarcity. Due to this reason, the government of Ethiopia develops a strategic document which focuses on the climate resilience green economy. One of the major components of the strategic framework is designed to improve community adaptation capacity and mitigation of drought. For effective implementation of the strategy, identification of regions relative vulnerability to drought is vital. There is a growing tendency of applying Geographic Information System (GIS) and Remote Sensing technologies for collecting information on duration and severity of drought by direct measure of the topography as well as an indirect measure of land cover. This study aims to show an application of remote sensing technology and GIS for developing drought vulnerability index by taking lowland of Ethiopia as a case study. In addition, it assesses integrated Information Communication Technology (ICT) potential of Ethiopia lowland and proposes integrated solution. Satellite data is used to detect the beginning of the drought. The severity of drought risk prone areas of livestock keeping pastoral is analyzed through normalized difference vegetation index (NDVI) and ten years rainfall data. The change from the existing and average SPOT NDVI and vegetation condition index is used to identify the onset of drought and potential risks. Secondary data is used to analyze geographical coverage of mobile and internet usage in the region. For decades, the government of Ethiopia introduced some technologies and approach to overcoming climate change related problems. However, lack of access to information and inadequate technical support for the pastoral area remains a major challenge. In conventional business as usual approach, the lowland pastorals continue facing a number of challenges. The result indicated that 80% of the region face frequent drought occurrence and out of this 60% of pastoral area faces high drought risk. On the other hand, the target area mobile phone and internet coverage is rapidly growing. One of identified ICT solution enabler technology is telecom center which covers 98% of the region. It was possible to identify the frequently affected area and potential drought risk using the NDVI remote-sensing data analyses. We also found that ICT can play an important role in mitigating climate change challenge. Hence, there is a need to strengthen implementation efforts of climate change adaptation through integrated Remote Sensing and web based information dissemination and mobile alert of extreme events.Keywords: climate changes, ICT, pastoral, remote sensing
Procedia PDF Downloads 320