Search results for: R. Gayathri
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15

Search results for: R. Gayathri

15 Analysis of Collision Avoidance System

Authors: N. Gayathri Devi, K. Batri

Abstract:

The advent of technology has increased the traffic hazards and the road accidents take place. Collision detection system in automobile aims at reducing or mitigating the severity of an accident. This project aims at avoiding Vehicle head on collision by means of collision detection algorithm. This collision detection algorithm predicts the collision and the avoidance or minimization have to be done within few seconds on confirmation. Under critical situation collision minimization is made possible by turning the vehicle to the desired turn radius so that collision impact can be reduced. In order to avoid the collision completely, the turning of the vehicle should be achieved at reduced speed in order to maintain the stability.

Keywords: collision avoidance system, time to collision, time to turn, turn radius

Procedia PDF Downloads 545
14 Experimental Study of Various Sandwich Composites

Authors: R. Naveen, E. Vanitha, S. Gayathri

Abstract:

The use of Sandwich composite materials in aerospace and civil infrastructure application has been increasing especially due to their enormously low weight that leads to a reduction in the total weight and fuel consumption, high flexural and transverse shear stiffness, and corrosion resistance. The essential properties of sandwich materials vary according to the application area of the structure. The objectives of this study are to identify the mechanical behaviour and failure mechanisms of sandwich structures made of bamboo, V- board and metal (Aluminium as face sheet and Foam as Core material). The three-point bending test and UTM (Universal testing machine) experimental tests are done for three specimens for each type of sandwich composites. From the experiment results of three sandwich composites, bamboo shows high Young’s modulus of elasticity and low density.

Keywords: bamboo sandwich composite, metal sandwich composite, sandwich composite, v-board sandwich composite

Procedia PDF Downloads 256
13 Effects of Pharmaceutical Drugs on Fish (koi) Behaviour and Muscle Function

Authors: Gayathri Vijayakumar, Preethi Baskaran

Abstract:

The effluents that are let down by the industries mix with the water bodies and drastically affect the aquatic life, which leads to pollution and bio magnifications. Effluents mostly contain chemicals, heavy metals etc., and cause toxicity to the environment. The pharmaceutical industries too contribute. The by-products and other unwanted waste are discharged without any treatment; these causes DNA damage and affect behavior of aquatic life. The study was conducted on koi carp (Cyprinus carpio) the ornamental variety of common carp. A two week long study was conducted on them using common anti-depressant drug (Diazepam) in various concentrations. These drugs are known to cause behavioral damage and organ malfunctions (muscle twitch). The histopathological study conducted showed permanent muscle twitching and lesions in the fish samples studied. The sociability was also affected in the span of 14 days. Higher concentrations of this drug showed severe damage in the muscle structures. Thus, this drug can cause adverse effects on marine ecosystem and eventually cause bio magnification of drug by running through the food chain.

Keywords: pollution, toxicity, bio-magnifications, koi carp, muscle twitch, diazepam, histopathology

Procedia PDF Downloads 99
12 The Board Structure of Public and Private Sector Companies and Its Impact on Firm Performance: A Study of Fortune 500 Indian Companies from 2006 to 2015

Authors: Gayathri P. Nair

Abstract:

The focus of this study is to identify whether the board structure has any significant impact on the firm performance and finding out any evidence of being listed in the Fortune 500 list compiled and published by the American business magazine, Fortune and published globally by Time Inc., as the world’s wealthiest companies. The list has been released based on the ranking obtained for the total revenues for the respective fiscal year which has ended on or before March 31st. The study has been conducted on the Indian companies that were listed in the Fortune 500 list for the past 10 years. This study employs a logical regression between the variables, firm performance and board composition as mentioned in the clause 49 of companies act 1956 and 2013. For getting the firm performance, ROA has selected as the key performance metric, as it focuses the management attention on the assets required to run the business. The highlight of the study is that the tools had been applied between public and private sector firms so that, it reveals whether the board composition is helping out to maintain the position in the list. In addition, the findings reveal that apart from independent directors, all other variables have significant impact on firm performance.

Keywords: board structure, Fortune 500 company, firm performance, India

Procedia PDF Downloads 235
11 Predictive Modeling of Student Behavior in Virtual Reality: A Machine Learning Approach

Authors: Gayathri Sadanala, Shibam Pokhrel, Owen Murphy

Abstract:

In the ever-evolving landscape of education, Virtual Reality (VR) environments offer a promising avenue for enhancing student engagement and learning experiences. However, understanding and predicting student behavior within these immersive settings remain challenging tasks. This paper presents a comprehensive study on the predictive modeling of student behavior in VR using machine learning techniques. We introduce a rich data set capturing student interactions, movements, and progress within a VR orientation program. The dataset is divided into training and testing sets, allowing us to develop and evaluate predictive models for various aspects of student behavior, including engagement levels, task completion, and performance. Our machine learning approach leverages a combination of feature engineering and model selection to reveal hidden patterns in the data. We employ regression and classification models to predict student outcomes, and the results showcase promising accuracy in forecasting behavior within VR environments. Furthermore, we demonstrate the practical implications of our predictive models for personalized VR-based learning experiences and early intervention strategies. By uncovering the intricate relationship between student behavior and VR interactions, we provide valuable insights for educators, designers, and developers seeking to optimize virtual learning environments.

Keywords: interaction, machine learning, predictive modeling, virtual reality

Procedia PDF Downloads 141
10 Mechanism of in Vitro Inhibition of Alpha-Amylase, Alpha-Glucosidase by Ethanolic Extracts of Polyalthia Longifolia, Its in Vitro Cytotoxicity on L6, Vero Cell-Lines and Influence of Glucose Uptake by Rat Hemi-Diaphragm

Authors: P. Gayathri, G. P. Jeyanthi

Abstract:

The bark of Polyalthia longifolia is used in ayurvedic system of medicine for the manangement of various ailments including diabetes mellitus. The bark of P. longifolia extracts was extracted using various polar and non-polar solvents and tested for inhibition of alpha-amylase and alpha-glucosidase among which the ethanolic extracts were found to be more potent. The ethanolic extracts of the bark were tested for the in vitro inhibition of alpha-amylase using starch as substrate and alpha-glucosidase using p-nitro phenyl alpha-D-gluco pyranoside as substrate to establish its in vitro antidiabetic effect. The mechanism of inhibition was determined by Dixon plot and Cornish-Bowden plot. The cytotoxic effect of the extract was tested on L6 and Vero cell-lines. The extract was partially purified by TLC. The individual effect of the ethanolic extract, TLC fractions and its combinatorial effect with insulin and glibenclamide on glucose uptake by rat hemi-diaphragm were studied.Results revealed that the ethanolic extracts of Polyalthia longifolia bark exhibited competitive inhibition of alpha-amylase and alpha-glucosidase. The extracts were also found not to be cytotoxic at the highest dose of 1 mg/mL. Glucose uptake study revealed that the extract alone and when combined with insulin, decreased the glucose uptake when compared to insulin control, however the purified TLC fractions exhibited significantly higher (p<0.05) glucose uptake by the rat hemi-diaphragm when compared to insulin. The study shows various possible mechanism of in vitro antidiabetic effect of the P. longifolia bark.

Keywords: alpha-amylase, alpha-glucosidase, dixon, cornish-bowden, L6 , Vero cell-lines, glucose uptake, polyalthia longifolia bark, ethanolic extract, TLC fractions

Procedia PDF Downloads 469
9 Specific Language Impairment: Assessing Bilingual Children for Identifying Children with Specific Language Impairment (SLI)

Authors: Manish Madappa, Madhavi Gayathri Raman

Abstract:

The primary vehicle of human communication is language. A breakdown occurring in any aspect of communication may lead to frustration and isolation among the learners and the teachers. Over seven percent of the population in the world currently experience limitations and those children who exhibit a deviant/deficient language acquisition curve even when being in a language rich environment as their peers may be at risk of having a language disorder or language impairment. The difficulty may be in the word level [vocabulary/word knowledge] and/or the sentence level [syntax/morphology) Children with SLI appear to be developing normally in all aspects except for their receptive and/or expressive language skills. Thus, it is utmost importance to identify children with or at risk of SLI so that an early intervention can foster language and social growth, provide the best possible learning environment with special support for language to be explicitly taught and a step in providing continuous and ongoing support. The present study looks at Kannada English bilingual children and works towards identifying children at risk of “specific language impairment”. The study was conducted through an exploratory study which systematically enquired into the narratives of young Kannada-English bilinguals and to investigate the data for story structure in their narrative formulations. Oral narrative offers a rich source of data about a child’s language use in a relatively natural context. The fundamental objective is to ensure comparability and to be more universal and thus allows for the evaluation narrative text competence. The data was collected from 10 class three students at a primary school in Mysore, Karnataka and analyzed for macrostructure component reflecting the goal directed behavior of a protagonist who is motivated to carry out some kind of action with the intention of attaining a goal. The results show that the children exhibiting a deviation of -1.25 SD are at risk of SLI. Two learners were identified to be at risk of Specific Language Impairment with a standard deviation of more the 1.25 below the mean score.

Keywords: bilingual, oral narratives, SLI, macrostructure

Procedia PDF Downloads 288
8 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data

Authors: Gayathri Nagarajan, L. D. Dhinesh Babu

Abstract:

Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.

Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform

Procedia PDF Downloads 238
7 Detecting the Palaeochannels Based on Optical Data and High-Resolution Radar Data for Periyarriver Basin

Authors: S. Jayalakshmi, Gayathri S., Subiksa V., Nithyasri P., Agasthiya

Abstract:

Paleochannels are the buried part of an active river system which was separated from the active river channel by the process of cutoff or abandonment during the dynamic evolution of the active river. Over time, they are filled by young unconsolidated or semi-consolidated sediments. Additionally, it is impacted by geo morphological influences, lineament alterations, and other factors. The primary goal of this study is to identify the paleochannels in Periyar river basin for the year 2023. Those channels has a high probability in the presence of natural resources, including gold, platinum,tin,an duranium. Numerous techniques are used to map the paleochannel. Using the optical data, Satellite images were collected from various sources, which comprises multispectral satellite images from which indices such as Normalized Difference Vegetation Index (NDVI),Normalized Difference Water Index (NDWI), Soil Adjusted Vegetative Index (SAVI) and thematic layers such as Lithology, Stream Network, Lineament were prepared. Weights are assigned to each layer based on its importance, and overlay analysis has done, which concluded that the northwest region of the area has shown some paleochannel patterns. The results were cross-verified using the results obtained using microwave data. Using Sentinel data, Synthetic Aperture Radar (SAR) Image was extracted from European Space Agency (ESA) portal, pre-processed it using SNAP 6.0. In addition to that, Polarimetric decomposition technique has incorporated to detect the paleochannels based on its scattering property. Further, Principal component analysis has done for enhanced output imagery. Results obtained from optical and microwave radar data were compared and the location of paleochannels were detected. It resulted six paleochannels in the study area out of which three paleochannels were validated with the existing data published by Department of Geology and Environmental Science, Kerala. The other three paleochannels were newly detected with the help of SAR image.

Keywords: paleochannels, optical data, SAR image, SNAP

Procedia PDF Downloads 89
6 Improved Computational Efficiency of Machine Learning Algorithm Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK

Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick

Abstract:

The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning archetypal that could forecast COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organisation (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data is split into 8:2 ratio for training and testing purposes to forecast future new COVID cases. Support Vector Machines (SVM), Random Forests, and linear regression algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID cases is evaluated. Random Forest outperformed the other two Machine Learning algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n=30. The mean square error obtained for Random Forest is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis Random Forest algorithm can perform more effectively and efficiently in predicting the new COVID cases, which could help the health sector to take relevant control measures for the spread of the virus.

Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest

Procedia PDF Downloads 120
5 Sponge Urbanism as a Resilient City Design to Overcome Urban Flood Risk, for the Case of Aluva, Kerala, India

Authors: Gayathri Pramod, Sheeja K. P.

Abstract:

Urban flooding has been seen rising in cities for the past few years. This rise in urban flooding is the result of increasing urbanization and increasing climate change. A resilient city design focuses on 'living with water'. This means that the city is capable of accommodating the floodwaters without having to risk any loss of lives or properties. The resilient city design incorporates green infrastructure, river edge treatment, open space design, etc. to form a city that functions as a whole for resilience. Sponge urbanism is a recent method for building resilient cities and is founded by China in 2014. Sponge urbanism is the apt method for resilience building for a tropical town like Aluva of Kerala. Aluva is a tropical town that experiences rainfall of about 783 mm per month during the rainy season. Aluva is an urbanized town which faces the risk of urban flooding and riverine every year due to the presence of Periyar River in the town. Impervious surfaces and hard construction and developments contribute towards flood risk by posing as interference for a natural flow and natural filtration of water into the ground. This type of development is seen in Aluva also. Aluva is designed in this research as a town that have resilient strategies of sponge city and which focusses on natural methods of construction. The flood susceptibility of Aluva is taken into account to design the spaces for sponge urbanism and in turn, reduce the flood susceptibility for the town. Aluva is analyzed, and high-risk zones for development are identified through studies. These zones are designed to withstand the risk of flooding. Various catchment areas are identified according to the natural flow of water, and then these catchment areas are designed to act as a public open space and as detention ponds in case of heavy rainfall. Various development guidelines, according to land use, is also prescribed, which help in increasing the green cover of the town. Aluva is then designed to be a completely flood-adapted city or sponge city according to the guidelines and interventions.

Keywords: climate change, flooding, resilient city, sponge city, sponge urbanism, urbanization

Procedia PDF Downloads 152
4 Development and Evaluation of a Calcium Rich Plant-Based Supplement on Bone Turnover of Peri and Post Menopausal Women

Authors: Gayathri.G, Hemamalini.A.J, Chandrasekaran.A

Abstract:

Problem statement: Nutritional deficiency, especially calcium, may lead to poor bone formation and mineralization. Although there are plenty of synthetic supplements available, it is essential to make a calcium rich food supplement accessible to combat calcium deficiency that could be readily prepared at the household level. Thus the current study aimed to formulate and standardize an indigenous low-cost calcium-rich food supplement and to study the impact of supplementation on the bone resorption and formation markers. Methods: A Randomized controlled trial was conducted with 60 subjects distributed equally in control and experimental groups, including perimenopausal and postmenopausal women. A plant-based calcium-rich product was developed and supplemented in form of balls as a midmorning and evening snack by addition of optimized proportions of leaves of Sesbania Grandiflora, seeds of Sesamum indicum, Eleusine coracana, Glycine max, Vigna mungo for a period of 6 months. Postmenopausal and perimenopausal women received 1200mg and 800mg of calcium per day from the supplemented, respectively. Outcome measures like serum calcium; betacrosslaps (bone resorption marker) and total P1NP (bone absorption marker) were assessed after 3 months and after 6 months. Results: There were no significant changes seen in the serum calcium and total P1NP levels (bone formation marker) among the subjects during the supplementation period. The bone resorption marker (betacrosslaps) reduced in all the groups and the reduction (0.32 ± 0.130 ng/ml to 0.25 ± 0.130 ng/ml) was found to be statistically highly significant (p < 0.01) in experimental group of perimenopausal subjects and significant (p < 0.05) in experimental group of postmenopausal subjects (1.11 ± 0.290 ng/ml to 0.42 ± 0.263 ng/ml). Conclusion: With the current severe calcium deficiency in the Indian population, integrating low-cost, calcium-rich native foods that could be readily prepared at household level would be useful in raising the nutritional consumption of calcium, which would, in turn, decrease bone turnover.

Keywords: calcium, sesbania grandiflora, sesamum indicum, eleusine coracana, glycine max, vigna mungo, postmenopause, perimenopause, bone resorption, bone absorption, betacrosslaps, total P1NP

Procedia PDF Downloads 132
3 Quantum Chemical Investigation of Hydrogen Isotopes Adsorption on Metal Ion Functionalized Linde Type A and Faujasite Type Zeolites

Authors: Gayathri Devi V, Aravamudan Kannan, Amit Sircar

Abstract:

In the inner fuel cycle system of a nuclear fusion reactor, the Hydrogen Isotopes Removal System (HIRS) plays a pivoted role. It enables the effective extraction of the hydrogen isotopes from the breeder purge gas which helps to maintain the tritium breeding ratio and sustain the fusion reaction. One of the components of HIRS, Cryogenic Molecular Sieve Bed (CMSB) columns with zeolites adsorbents are considered for the physisorption of hydrogen isotopes at 1 bar and 77 K. Even though zeolites have good thermal stability and reduced activation properties making them ideal for use in nuclear reactor applications, their modest capacity for hydrogen isotopes adsorption is a cause of concern. In order to enhance the adsorbent capacity in an informed manner, it is helpful to understand the adsorption phenomena at the quantum electronic structure level. Physicochemical modifications of the adsorbent material enhances the adsorption capacity through the incorporation of active sites. This may be accomplished through the incorporation of suitable metal ions in the zeolite framework. In this work, molecular hydrogen isotopes adsorption on the active sites of functionalized zeolites are investigated in detail using Density Functional Theory (DFT) study. This involves the utilization of hybrid Generalized Gradient Approximation (GGA) with dispersion correction to account for the exchange and correlation functional of DFT. The electronic energies, adsorption enthalpy, adsorption free energy, Highest Occupied Molecular Orbital (HOMO), Lowest Unoccupied Molecular Orbital (LUMO) energies are computed on the stable 8T zeolite clusters as well as the periodic structure functionalized with different active sites. The characteristics of the dihydrogen bond with the active metal sites and the isotopic effects are also studied in detail. Validation studies with DFT will also be presented for adsorption of hydrogen on metal ion functionalized zeolites. The ab-inito screening analysis gave insights regarding the mechanism of hydrogen interaction with the zeolites under study and also the effect of the metal ion on adsorption. This detailed study provides guidelines for selection of the appropriate metal ions that may be incorporated in the zeolites framework for effective adsorption of hydrogen isotopes in the HIRS.

Keywords: adsorption enthalpy, functionalized zeolites, hydrogen isotopes, nuclear fusion, physisorption

Procedia PDF Downloads 179
2 Ecosystem Modeling along the Western Bay of Bengal

Authors: A. D. Rao, Sachiko Mohanty, R. Gayathri, V. Ranga Rao

Abstract:

Modeling on coupled physical and biogeochemical processes of coastal waters is vital to identify the primary production status under different natural and anthropogenic conditions. About 7, 500 km length of Indian coastline is occupied with number of semi enclosed coastal bodies such as estuaries, inlets, bays, lagoons, and other near shore, offshore shelf waters, etc. This coastline is also rich in wide varieties of ecosystem flora and fauna. Directly/indirectly extensive domestic and industrial sewage enter into these coastal water bodies affecting the ecosystem character and create environment problems such as water quality degradation, hypoxia, anoxia, harmful algal blooms, etc. lead to decline in fishery and other related biological production. The present study is focused on the southeast coast of India, starting from Pulicat to Gulf of Mannar, which is rich in marine diversity such as lagoon, mangrove and coral ecosystem. Three dimensional Massachusetts Institute of Technology general circulation model (MITgcm) along with Darwin biogeochemical module is configured for the western Bay of Bengal (BoB) to study the biogeochemistry over this region. The biogeochemical module resolves the cycling of carbon, phosphorous, nitrogen, silica, iron and oxygen through inorganic, living, dissolved and particulate organic phases. The model domain extends from 4°N-16.5°N and 77°E-86°E with a horizontal resolution of 1 km. The bathymetry is derived from General Bathymetric Chart of the Oceans (GEBCO), which has a resolution of 30 sec. The model is initialized by using the temperature, salinity filed from the World Ocean Atlas (WOA2013) of National Oceanographic Data Centre with a resolution of 0.25°. The model is forced by the surface wind stress from ASCAT and the photosynthetically active radiation from the MODIS-Aqua satellite. Seasonal climatology of nutrients (phosphate, nitrate and silicate) for the southwest BoB region are prepared using available National Institute of Oceanography (NIO) in-situ data sets and compared with the WOA2013 seasonal climatology data. The model simulations with the two different initial conditions viz., WOA2013 and the generated NIO climatology, showed evident changes in the concentration and the evolution of the nutrients in the study region. It is observed that the availability of nutrients is more in NIO data compared to WOA in the model domain. The model simulated primary productivity is compared with the spatially distributed satellite derived chlorophyll data and at various locations with the in-situ data. The seasonal variability of the model simulated primary productivity is also studied.

Keywords: Bay of Bengal, Massachusetts Institute of Technology general circulation model, MITgcm, biogeochemistry, primary productivity

Procedia PDF Downloads 140
1 Bio-Nanotechnology Approach of Nano-Size Iron Particles as Promising Iron Supplements: An Exploratory Study to Combat the Problems of Iron Fortification in Children and Pregnant Women of Rural India

Authors: Roshni Raha, Kavya P., Gayathri M.

Abstract:

India, with a humongous population, remains the world's poorest developing nation in terms of nutritional status, with iron deficiency anaemia (IDA) affecting the population. Despite efforts over the past decades, India's anaemia prevalence has not been reduced. Researchers are interested in developing therapies that will minimize the typical side effects of oral iron and optimize iron salts-based treatment through delivery methods based on the physiology of hepcidin regulation. However, they need to come up with iron therapies that will prevent making the infection worse. This article explores using bio-nanotechnology as the alternative, promising substitution of providing iron supplements for the treatment of diarrhoea and gut inflammation in kids and pregnant women. This article is an exploratory study using a literature survey and secondary research from review papers. In the realm of biotechnology, nanoparticles have become extremely famous due to unexpected variations in surface characteristics caused by particle size. Particle size distribution and shape exhibit unusual, enhanced characteristics when reduced to nanoscale. The article attempts to develop a model for a nanotechnology based solution in iron fortification to combat the problems of diarrhoea and gut inflammation. Certain dimensions that have been considered in the model include the size, shape, source, and biosynthesis of the iron nanoparticles. Another area of investigation addressed in the article is the cost-effective biocompatible production of these iron nanoparticles. Studies have demonstrated that a substantial reduction of metal ions to form nanoparticles from the bulk metal occurs in plants because of the presence of a wide diversity of biomolecules. Using this concept, the paper investigates the effectiveness and impact of how similar sources can be used for the biological synthesis of iron nanoparticles. Results showed that iron particles, when prepared in nano-metre size, offer potential advantages. When the particle size of the iron compound decreases and attains nano configuration, its surface area increases, which further improves its solubility in the gastric acid, leading to higher absorption, higher bioavailability, and producing the least organoleptic changes in food. It has no negative effects and possesses a safe, effective profile to reduce IDA. Considering all the parameters, it has been concluded that iron particles in nano configuration serve as alternative iron supplements for the complete treatment of IDA. Nanoparticles of ferric phosphate, ferric pyrophosphate, and iron oxide are the choices of iron supplements. From a sourcing perspective, the paper concludes green sources are the primary sources for the biological synthesis of iron nanoparticles. It will also be a cost-effective strategy since our goal is to treat the target population in rural India. Bio-nanotechnology serves as an alternative and promising substitution for iron supplements due to its low cost, excellent bioavailability, and strong organoleptic properties. One area of future research can be to explore the type of size and shape of iron nanoparticles that would be suitable for the different age groups of pregnant women and children and whether it would be influenced based on the topography in certain areas.

Keywords: anemia, bio-nanotechnology, iron-fortification, nanoparticle

Procedia PDF Downloads 76